mirror of
https://github.com/facebookresearch/pytorch3d.git
synced 2025-08-02 03:42:50 +08:00
Summary: Attempt to solve an internal issue Reviewed By: shapovalov Differential Revision: D35143263 fbshipit-source-id: b4fd9ee441d85f0a3ee08f2f1e7febd1c1ccbe86
194 lines
6.9 KiB
Python
194 lines
6.9 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the BSD-style license found in the
|
|
# LICENSE file in the root directory of this source tree.
|
|
|
|
|
|
import contextlib
|
|
import copy
|
|
import os
|
|
import unittest
|
|
|
|
import torch
|
|
import torchvision
|
|
from pytorch3d.implicitron.dataset.implicitron_dataset import ImplicitronDataset
|
|
from pytorch3d.implicitron.dataset.visualize import get_implicitron_sequence_pointcloud
|
|
from pytorch3d.implicitron.tools.point_cloud_utils import render_point_cloud_pytorch3d
|
|
from pytorch3d.vis.plotly_vis import plot_scene
|
|
from visdom import Visdom
|
|
|
|
if os.environ.get("FB_TEST", False):
|
|
from .common_resources import get_skateboard_data
|
|
else:
|
|
from common_resources import get_skateboard_data
|
|
|
|
|
|
class TestDatasetVisualize(unittest.TestCase):
|
|
def setUp(self):
|
|
if os.environ.get("INSIDE_RE_WORKER") is not None:
|
|
raise unittest.SkipTest("Visdom not available")
|
|
category = "skateboard"
|
|
stack = contextlib.ExitStack()
|
|
dataset_root, path_manager = stack.enter_context(get_skateboard_data())
|
|
self.addCleanup(stack.close)
|
|
frame_file = os.path.join(dataset_root, category, "frame_annotations.jgz")
|
|
sequence_file = os.path.join(dataset_root, category, "sequence_annotations.jgz")
|
|
self.image_size = 256
|
|
self.datasets = {
|
|
"simple": ImplicitronDataset(
|
|
frame_annotations_file=frame_file,
|
|
sequence_annotations_file=sequence_file,
|
|
dataset_root=dataset_root,
|
|
image_height=self.image_size,
|
|
image_width=self.image_size,
|
|
box_crop=True,
|
|
load_point_clouds=True,
|
|
path_manager=path_manager,
|
|
),
|
|
"nonsquare": ImplicitronDataset(
|
|
frame_annotations_file=frame_file,
|
|
sequence_annotations_file=sequence_file,
|
|
dataset_root=dataset_root,
|
|
image_height=self.image_size,
|
|
image_width=self.image_size // 2,
|
|
box_crop=True,
|
|
load_point_clouds=True,
|
|
path_manager=path_manager,
|
|
),
|
|
"nocrop": ImplicitronDataset(
|
|
frame_annotations_file=frame_file,
|
|
sequence_annotations_file=sequence_file,
|
|
dataset_root=dataset_root,
|
|
image_height=self.image_size,
|
|
image_width=self.image_size // 2,
|
|
box_crop=False,
|
|
load_point_clouds=True,
|
|
path_manager=path_manager,
|
|
),
|
|
}
|
|
self.datasets.update(
|
|
{
|
|
k + "_newndc": _change_annotations_to_new_ndc(dataset)
|
|
for k, dataset in self.datasets.items()
|
|
}
|
|
)
|
|
self.visdom = Visdom()
|
|
if not self.visdom.check_connection():
|
|
print("Visdom server not running! Disabling visdom visualizations.")
|
|
self.visdom = None
|
|
|
|
def _render_one_pointcloud(self, point_cloud, cameras, render_size):
|
|
(_image_render, _, _) = render_point_cloud_pytorch3d(
|
|
cameras,
|
|
point_cloud,
|
|
render_size=render_size,
|
|
point_radius=1e-2,
|
|
topk=10,
|
|
bg_color=0.0,
|
|
)
|
|
return _image_render.clamp(0.0, 1.0)
|
|
|
|
def test_one(self):
|
|
"""Test dataset visualization."""
|
|
if os.environ.get("INSIDE_RE_WORKER") is not None:
|
|
raise unittest.SkipTest("Visdom not available")
|
|
for max_frames in (16, -1):
|
|
for load_dataset_point_cloud in (True, False):
|
|
for dataset_key in self.datasets:
|
|
self._gen_and_render_pointcloud(
|
|
max_frames, load_dataset_point_cloud, dataset_key
|
|
)
|
|
|
|
def _gen_and_render_pointcloud(
|
|
self, max_frames, load_dataset_point_cloud, dataset_key
|
|
):
|
|
dataset = self.datasets[dataset_key]
|
|
# load the point cloud of the first sequence
|
|
sequence_show = list(dataset.seq_annots.keys())[0]
|
|
device = torch.device("cuda:0")
|
|
|
|
point_cloud, sequence_frame_data = get_implicitron_sequence_pointcloud(
|
|
dataset,
|
|
sequence_name=sequence_show,
|
|
mask_points=True,
|
|
max_frames=max_frames,
|
|
num_workers=10,
|
|
load_dataset_point_cloud=load_dataset_point_cloud,
|
|
)
|
|
|
|
# render on gpu
|
|
point_cloud = point_cloud.to(device)
|
|
cameras = sequence_frame_data.camera.to(device)
|
|
|
|
# render the point_cloud from the viewpoint of loaded cameras
|
|
images_render = torch.cat(
|
|
[
|
|
self._render_one_pointcloud(
|
|
point_cloud,
|
|
cameras[frame_i],
|
|
(
|
|
dataset.image_height,
|
|
dataset.image_width,
|
|
),
|
|
)
|
|
for frame_i in range(len(cameras))
|
|
]
|
|
).cpu()
|
|
images_gt_and_render = torch.cat(
|
|
[sequence_frame_data.image_rgb, images_render], dim=3
|
|
)
|
|
|
|
imfile = os.path.join(
|
|
os.path.split(os.path.abspath(__file__))[0],
|
|
"test_dataset_visualize"
|
|
+ f"_max_frames={max_frames}"
|
|
+ f"_load_pcl={load_dataset_point_cloud}.png",
|
|
)
|
|
print(f"Exporting image {imfile}.")
|
|
torchvision.utils.save_image(images_gt_and_render, imfile, nrow=2)
|
|
|
|
if self.visdom is not None:
|
|
test_name = f"{max_frames}_{load_dataset_point_cloud}_{dataset_key}"
|
|
self.visdom.images(
|
|
images_gt_and_render,
|
|
env="test_dataset_visualize",
|
|
win=f"pcl_renders_{test_name}",
|
|
opts={"title": f"pcl_renders_{test_name}"},
|
|
)
|
|
plotlyplot = plot_scene(
|
|
{
|
|
"scene_batch": {
|
|
"cameras": cameras,
|
|
"point_cloud": point_cloud,
|
|
}
|
|
},
|
|
camera_scale=1.0,
|
|
pointcloud_max_points=10000,
|
|
pointcloud_marker_size=1.0,
|
|
)
|
|
self.visdom.plotlyplot(
|
|
plotlyplot,
|
|
env="test_dataset_visualize",
|
|
win=f"pcl_{test_name}",
|
|
)
|
|
|
|
|
|
def _change_annotations_to_new_ndc(dataset):
|
|
dataset = copy.deepcopy(dataset)
|
|
for frame in dataset.frame_annots:
|
|
vp = frame["frame_annotation"].viewpoint
|
|
vp.intrinsics_format = "ndc_isotropic"
|
|
# this assume the focal length to be equal on x and y (ok for a test)
|
|
max_flength = max(vp.focal_length)
|
|
vp.principal_point = (
|
|
vp.principal_point[0] * max_flength / vp.focal_length[0],
|
|
vp.principal_point[1] * max_flength / vp.focal_length[1],
|
|
)
|
|
vp.focal_length = (
|
|
max_flength,
|
|
max_flength,
|
|
)
|
|
|
|
return dataset
|