pytorch3d/tests/benchmarks/bm_raysampling.py
Jeremy Reizenstein 3eb4233844 New raysamplers
Summary: New MultinomialRaysampler succeeds GridRaysampler bringing masking and subsampling. Correspondingly, NDCMultinomialRaysampler succeeds NDCGridRaysampler.

Reviewed By: nikhilaravi, shapovalov

Differential Revision: D33256897

fbshipit-source-id: cd80ec6f35b110d1d20a75c62f4e889ba8fa5d45
2022-01-24 10:52:23 -08:00

48 lines
1.3 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import itertools
from fvcore.common.benchmark import benchmark
from pytorch3d.renderer import (
FoVOrthographicCameras,
FoVPerspectiveCameras,
MonteCarloRaysampler,
MultinomialRaysampler,
NDCMultinomialRaysampler,
OrthographicCameras,
PerspectiveCameras,
)
from test_raysampling import TestRaysampling
def bm_raysampling() -> None:
case_grid = {
"raysampler_type": [
MultinomialRaysampler,
NDCMultinomialRaysampler,
MonteCarloRaysampler,
],
"camera_type": [
PerspectiveCameras,
OrthographicCameras,
FoVPerspectiveCameras,
FoVOrthographicCameras,
],
"batch_size": [1, 10],
"n_pts_per_ray": [10, 1000, 10000],
"image_width": [10, 300],
"image_height": [10, 300],
}
test_cases = itertools.product(*case_grid.values())
kwargs_list = [dict(zip(case_grid.keys(), case)) for case in test_cases]
benchmark(TestRaysampling.raysampler, "RAYSAMPLER", kwargs_list, warmup_iters=1)
if __name__ == "__main__":
bm_raysampling()