pytorch3d/tests/implicitron/test_json_index_dataset_provider_v2.py
Jeremy Reizenstein 95a2acf763 Co3Dv2 point cloud fix
Summary: Avoid certain hardcoded paths in co3dv2 data

Reviewed By: davnov134

Differential Revision: D40209309

fbshipit-source-id: 0e83a15baa47d5bd07d2d23c6048cb4522c1ccba
2022-10-09 05:06:49 -07:00

194 lines
7.1 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import json
import os
import random
import tempfile
import unittest
from typing import List
import numpy as np
import torch
import torchvision
from PIL import Image
from pytorch3d.implicitron.dataset.dataset_base import FrameData
from pytorch3d.implicitron.dataset.json_index_dataset_map_provider_v2 import (
JsonIndexDatasetMapProviderV2,
)
from pytorch3d.implicitron.dataset.types import (
dump_dataclass_jgzip,
FrameAnnotation,
ImageAnnotation,
MaskAnnotation,
SequenceAnnotation,
)
from pytorch3d.implicitron.tools.config import expand_args_fields
from tests.common_testing import interactive_testing_requested
from .common_resources import CO3DV2_MANIFOLD_PATH
class TestJsonIndexDatasetProviderV2(unittest.TestCase):
def test_random_dataset(self):
# store random frame annotations
expand_args_fields(JsonIndexDatasetMapProviderV2)
categories = ["A", "B"]
subset_name = "test"
eval_batch_size = 5
with tempfile.TemporaryDirectory() as tmpd:
_make_random_json_dataset_map_provider_v2_data(
tmpd,
categories,
eval_batch_size=eval_batch_size,
)
for n_known_frames_for_test in [0, 2]:
for category in categories:
dataset_provider = JsonIndexDatasetMapProviderV2(
category=category,
subset_name="test",
dataset_root=tmpd,
n_known_frames_for_test=n_known_frames_for_test,
)
dataset_map = dataset_provider.get_dataset_map()
for set_ in ["train", "val", "test"]:
if set_ in ["train", "val"]:
dataloader = torch.utils.data.DataLoader(
getattr(dataset_map, set_),
batch_size=3,
shuffle=True,
collate_fn=FrameData.collate,
)
else:
dataloader = torch.utils.data.DataLoader(
getattr(dataset_map, set_),
batch_sampler=dataset_map[set_].get_eval_batches(),
collate_fn=FrameData.collate,
)
for batch in dataloader:
if set_ == "test":
self.assertTrue(
batch.image_rgb.shape[0]
== n_known_frames_for_test + eval_batch_size
)
category_to_subset_list = (
dataset_provider.get_category_to_subset_name_list()
)
category_to_subset_list_ = {c: [subset_name] for c in categories}
self.assertTrue(category_to_subset_list == category_to_subset_list_)
def _make_random_json_dataset_map_provider_v2_data(
root: str,
categories: List[str],
n_frames: int = 8,
n_sequences: int = 5,
H: int = 50,
W: int = 30,
subset_name: str = "test",
eval_batch_size: int = 5,
):
os.makedirs(root, exist_ok=True)
category_to_subset_list = {}
for category in categories:
frame_annotations = []
sequence_annotations = []
frame_index = []
for seq_i in range(n_sequences):
seq_name = str(seq_i)
for i in range(n_frames):
# generate and store image
imdir = os.path.join(root, category, seq_name, "images")
os.makedirs(imdir, exist_ok=True)
img_path = os.path.join(imdir, f"frame{i:05d}.jpg")
img = torch.rand(3, H, W)
torchvision.utils.save_image(img, img_path)
# generate and store mask
maskdir = os.path.join(root, category, seq_name, "masks")
os.makedirs(maskdir, exist_ok=True)
mask_path = os.path.join(maskdir, f"frame{i:05d}.png")
mask = np.zeros((H, W))
mask[H // 2 :, W // 2 :] = 1
Image.fromarray((mask * 255.0).astype(np.uint8), mode="L",).convert(
"L"
).save(mask_path)
fa = FrameAnnotation(
sequence_name=seq_name,
frame_number=i,
frame_timestamp=float(i),
image=ImageAnnotation(
path=img_path.replace(os.path.normpath(root) + "/", ""),
size=list(img.shape[-2:]),
),
mask=MaskAnnotation(
path=mask_path.replace(os.path.normpath(root) + "/", ""),
mass=mask.sum().item(),
),
)
frame_annotations.append(fa)
frame_index.append((seq_name, i, fa.image.path))
sequence_annotations.append(
SequenceAnnotation(
sequence_name=seq_name,
category=category,
)
)
dump_dataclass_jgzip(
os.path.join(root, category, "frame_annotations.jgz"),
frame_annotations,
)
dump_dataclass_jgzip(
os.path.join(root, category, "sequence_annotations.jgz"),
sequence_annotations,
)
test_frame_index = frame_index[2::3]
set_list = {
"train": frame_index[0::3],
"val": frame_index[1::3],
"test": test_frame_index,
}
set_lists_dir = os.path.join(root, category, "set_lists")
os.makedirs(set_lists_dir, exist_ok=True)
set_list_file = os.path.join(set_lists_dir, f"set_lists_{subset_name}.json")
with open(set_list_file, "w") as f:
json.dump(set_list, f)
eval_batches = [
random.sample(test_frame_index, eval_batch_size) for _ in range(10)
]
eval_b_dir = os.path.join(root, category, "eval_batches")
os.makedirs(eval_b_dir, exist_ok=True)
eval_b_file = os.path.join(eval_b_dir, f"eval_batches_{subset_name}.json")
with open(eval_b_file, "w") as f:
json.dump(eval_batches, f)
category_to_subset_list[category] = [subset_name]
with open(os.path.join(root, "category_to_subset_name_list.json"), "w") as f:
json.dump(category_to_subset_list, f)
class TestCo3dv2(unittest.TestCase):
def test_simple(self):
if not interactive_testing_requested():
return
dataset_provider = JsonIndexDatasetMapProviderV2(
category="apple",
subset_name="manyview_dev_0",
dataset_root=CO3DV2_MANIFOLD_PATH,
dataset_JsonIndexDataset_args={"load_point_clouds": True},
)
dataset_provider.get_dataset_map().train[0]