pytorch3d/tests/bm_rasterize_meshes.py
Patrick Labatut 3c71ab64cc Remove shebang line when not strictly required
Summary: The shebang line `#!<path to interpreter>` is only required for Python scripts, so remove it on source files for class or function definitions. Additionally explicitly mark as executable the actual Python scripts in the codebase.

Reviewed By: nikhilaravi

Differential Revision: D20095778

fbshipit-source-id: d312599fba485e978a243292f88a180d71e1b55a
2020-03-12 10:39:44 -07:00

88 lines
2.4 KiB
Python

# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
from itertools import product
import torch
from fvcore.common.benchmark import benchmark
from test_rasterize_meshes import TestRasterizeMeshes
# ico levels:
# 0: (12 verts, 20 faces)
# 1: (42 verts, 80 faces)
# 3: (642 verts, 1280 faces)
# 4: (2562 verts, 5120 faces)
def bm_rasterize_meshes() -> None:
kwargs_list = [
{
"num_meshes": 1,
"ico_level": 0,
"image_size": 10, # very slow with large image size
"blur_radius": 0.0,
}
]
benchmark(
TestRasterizeMeshes.rasterize_meshes_python_with_init,
"RASTERIZE_MESHES",
kwargs_list,
warmup_iters=1,
)
kwargs_list = []
num_meshes = [1]
ico_level = [1]
image_size = [64, 128]
blur = [0.0, 1e-8, 1e-4]
test_cases = product(num_meshes, ico_level, image_size, blur)
for case in test_cases:
n, ic, im, b = case
kwargs_list.append(
{
"num_meshes": n,
"ico_level": ic,
"image_size": im,
"blur_radius": b,
}
)
benchmark(
TestRasterizeMeshes.rasterize_meshes_cpu_with_init,
"RASTERIZE_MESHES",
kwargs_list,
warmup_iters=1,
)
if torch.cuda.is_available():
kwargs_list = []
num_meshes = [1, 8]
ico_level = [0, 1, 3, 4]
image_size = [64, 128, 512]
blur = [0.0, 1e-8, 1e-4]
bin_size = [0, 8, 32]
test_cases = product(num_meshes, ico_level, image_size, blur, bin_size)
# only keep cases where bin_size == 0 or image_size / bin_size < 16
test_cases = [
elem
for elem in test_cases
if (elem[-1] == 0 or elem[-3] / elem[-1] < 16)
]
for case in test_cases:
n, ic, im, b, bn = case
kwargs_list.append(
{
"num_meshes": n,
"ico_level": ic,
"image_size": im,
"blur_radius": b,
"bin_size": bn,
"max_faces_per_bin": 200,
}
)
benchmark(
TestRasterizeMeshes.rasterize_meshes_cuda_with_init,
"RASTERIZE_MESHES_CUDA",
kwargs_list,
warmup_iters=1,
)