pytorch3d/tests/benchmarks/bm_marching_cubes.py
Jiali Duan 8b8291830e Marching Cubes cuda extension
Summary:
Torch CUDA extension for Marching Cubes
- MC involving 3 steps:
  - 1st forward pass to collect vertices and occupied state for each voxel
  - Compute compactVoxelArray to skip non-empty voxels
  - 2nd pass to genereate interpolated vertex positions and faces by marching through the grid
- In contrast to existing MC:
   - Bind each interpolated vertex with a global edge_id to address floating-point precision
   - Added deduplication process to remove redundant vertices and faces

Benchmarks (ms):

| N / V(^3)      | python          | C++             |   CUDA   | Speedup |
| 2 / 20          |    12176873  |       24338     |     4363   | 2790x/5x|
| 1 / 100          |     -             |    3070511     |   27126   |    113x    |
| 2 / 100          |     -             |    5968934     |   53129   |    112x    |
| 1 / 256          |     -             |  61278092     | 430900   |    142x    |
| 2 / 256          |     -             |125687930     | 856941   |    146x   |

Reviewed By: kjchalup

Differential Revision: D39644248

fbshipit-source-id: d679c0c79d67b98b235d12296f383d760a00042a
2022-11-15 19:42:04 -08:00

36 lines
902 B
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import itertools
from fvcore.common.benchmark import benchmark
from tests.test_marching_cubes import TestMarchingCubes
def bm_marching_cubes() -> None:
case_grid = {
"algo_type": [
"naive",
"extension",
],
"batch_size": [1, 2],
"V": [5, 10, 20, 100, 512],
"device": ["cpu", "cuda:0"],
}
test_cases = itertools.product(*case_grid.values())
kwargs_list = [dict(zip(case_grid.keys(), case)) for case in test_cases]
benchmark(
TestMarchingCubes.marching_cubes_with_init,
"MARCHING_CUBES",
kwargs_list,
warmup_iters=1,
)
if __name__ == "__main__":
bm_marching_cubes()