mirror of
https://github.com/facebookresearch/pytorch3d.git
synced 2025-08-02 11:52:50 +08:00
Summary: Implements K-Nearest Neighbors with C++ and CUDA versions. KNN in CUDA is highly nontrivial. I've implemented a few different versions of the kernel, and we heuristically dispatch to different kernels based on the problem size. Some of the kernels rely on template specialization on either D or K, so we use template metaprogramming to compile specialized versions for ranges of D and K. These kernels are up to 3x faster than our existing 1-nearest-neighbor kernels, so we should also consider swapping out `nn_points_idx` to use these kernels in the backend. I've been working mostly on the CUDA kernels, and haven't converged on the correct Python API. I still want to benchmark against FAISS to see how far away we are from their performance. Reviewed By: bottler Differential Revision: D19729286 fbshipit-source-id: 608ffbb7030c21fe4008f330522f4890f0c3c21a
175 lines
4.1 KiB
Python
175 lines
4.1 KiB
Python
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
|
|
|
|
from itertools import product
|
|
|
|
import torch
|
|
from fvcore.common.benchmark import benchmark
|
|
|
|
from pytorch3d import _C
|
|
from pytorch3d.ops.knn import _knn_points_idx_naive
|
|
|
|
|
|
def bm_knn() -> None:
|
|
""" Entry point for the benchmark """
|
|
benchmark_knn_cpu()
|
|
benchmark_knn_cuda_vs_naive()
|
|
benchmark_knn_cuda_versions()
|
|
|
|
|
|
def benchmark_knn_cuda_versions() -> None:
|
|
# Compare our different KNN implementations,
|
|
# and also compare against our existing 1-NN
|
|
Ns = [1, 2]
|
|
Ps = [4096, 16384]
|
|
Ds = [3]
|
|
Ks = [1, 4, 16, 64]
|
|
versions = [0, 1, 2, 3]
|
|
knn_kwargs, nn_kwargs = [], []
|
|
for N, P, D, K, version in product(Ns, Ps, Ds, Ks, versions):
|
|
if version == 2 and K > 32:
|
|
continue
|
|
if version == 3 and K > 4:
|
|
continue
|
|
knn_kwargs.append({'N': N, 'D': D, 'P': P, 'K': K, 'v': version})
|
|
for N, P, D in product(Ns, Ps, Ds):
|
|
nn_kwargs.append({'N': N, 'D': D, 'P': P})
|
|
benchmark(
|
|
knn_cuda_with_init,
|
|
'KNN_CUDA_VERSIONS',
|
|
knn_kwargs,
|
|
warmup_iters=1,
|
|
)
|
|
benchmark(
|
|
nn_cuda_with_init,
|
|
'NN_CUDA',
|
|
nn_kwargs,
|
|
warmup_iters=1,
|
|
)
|
|
|
|
|
|
def benchmark_knn_cuda_vs_naive() -> None:
|
|
# Compare against naive pytorch version of KNN
|
|
Ns = [1, 2, 4]
|
|
Ps = [1024, 4096, 16384, 65536]
|
|
Ds = [3]
|
|
Ks = [1, 2, 4, 8, 16]
|
|
knn_kwargs, naive_kwargs = [], []
|
|
for N, P, D, K in product(Ns, Ps, Ds, Ks):
|
|
knn_kwargs.append({'N': N, 'D': D, 'P': P, 'K': K})
|
|
if P <= 4096:
|
|
naive_kwargs.append({'N': N, 'D': D, 'P': P, 'K': K})
|
|
benchmark(
|
|
knn_python_cuda_with_init,
|
|
'KNN_CUDA_PYTHON',
|
|
naive_kwargs,
|
|
warmup_iters=1,
|
|
)
|
|
benchmark(
|
|
knn_cuda_with_init,
|
|
'KNN_CUDA',
|
|
knn_kwargs,
|
|
warmup_iters=1,
|
|
)
|
|
|
|
|
|
def benchmark_knn_cpu() -> None:
|
|
Ns = [1, 2]
|
|
Ps = [256, 512]
|
|
Ds = [3]
|
|
Ks = [1, 2, 4]
|
|
knn_kwargs, nn_kwargs = [], []
|
|
for N, P, D, K in product(Ns, Ps, Ds, Ks):
|
|
knn_kwargs.append({'N': N, 'D': D, 'P': P, 'K': K})
|
|
for N, P, D in product(Ns, Ps, Ds):
|
|
nn_kwargs.append({'N': N, 'D': D, 'P': P})
|
|
benchmark(
|
|
knn_python_cpu_with_init,
|
|
'KNN_CPU_PYTHON',
|
|
knn_kwargs,
|
|
warmup_iters=1,
|
|
)
|
|
benchmark(
|
|
knn_cpu_with_init,
|
|
'KNN_CPU_CPP',
|
|
knn_kwargs,
|
|
warmup_iters=1,
|
|
)
|
|
benchmark(
|
|
nn_cpu_with_init,
|
|
'NN_CPU_CPP',
|
|
nn_kwargs,
|
|
warmup_iters=1,
|
|
)
|
|
|
|
|
|
def knn_cuda_with_init(N, D, P, K, v=-1):
|
|
device = torch.device('cuda:0')
|
|
x = torch.randn(N, P, D, device=device)
|
|
y = torch.randn(N, P, D, device=device)
|
|
torch.cuda.synchronize()
|
|
|
|
def knn():
|
|
_C.knn_points_idx(x, y, K, v)
|
|
torch.cuda.synchronize()
|
|
|
|
return knn
|
|
|
|
|
|
def knn_cpu_with_init(N, D, P, K):
|
|
device = torch.device('cpu')
|
|
x = torch.randn(N, P, D, device=device)
|
|
y = torch.randn(N, P, D, device=device)
|
|
|
|
def knn():
|
|
_C.knn_points_idx(x, y, K, 0)
|
|
|
|
return knn
|
|
|
|
|
|
def knn_python_cuda_with_init(N, D, P, K):
|
|
device = torch.device('cuda')
|
|
x = torch.randn(N, P, D, device=device)
|
|
y = torch.randn(N, P, D, device=device)
|
|
torch.cuda.synchronize()
|
|
|
|
def knn():
|
|
_knn_points_idx_naive(x, y, K)
|
|
torch.cuda.synchronize()
|
|
|
|
return knn
|
|
|
|
|
|
def knn_python_cpu_with_init(N, D, P, K):
|
|
device = torch.device('cpu')
|
|
x = torch.randn(N, P, D, device=device)
|
|
y = torch.randn(N, P, D, device=device)
|
|
|
|
def knn():
|
|
_knn_points_idx_naive(x, y, K)
|
|
|
|
return knn
|
|
|
|
|
|
def nn_cuda_with_init(N, D, P):
|
|
device = torch.device('cuda')
|
|
x = torch.randn(N, P, D, device=device)
|
|
y = torch.randn(N, P, D, device=device)
|
|
torch.cuda.synchronize()
|
|
|
|
def knn():
|
|
_C.nn_points_idx(x, y)
|
|
torch.cuda.synchronize()
|
|
|
|
return knn
|
|
|
|
|
|
def nn_cpu_with_init(N, D, P):
|
|
device = torch.device('cpu')
|
|
x = torch.randn(N, P, D, device=device)
|
|
y = torch.randn(N, P, D, device=device)
|
|
|
|
def knn():
|
|
_C.nn_points_idx(x, y)
|
|
|
|
return knn
|