Jeremy Reizenstein 85c396f822 avoid using torch/extension.h in cuda
Summary:
Use aten instead of torch interface in all cuda code. This allows the cuda build to work with pytorch 1.5 with GCC 5 (e.g. the compiler of ubuntu 16.04LTS). This wasn't working. It has been failing with errors like the below, perhaps due to a bug in nvcc.

```
torch/include/torch/csrc/api/include/torch/nn/cloneable.h:68:61: error: invalid static_cast from type ‘const torch::OrderedDict<std::basic_string<char>, std::shared_ptr<torch::nn::Module> >’ to type ‘torch::OrderedDict<std::basic_string<char>, std::shared_ptr<torch::nn::Module> >
```

Reviewed By: nikhilaravi

Differential Revision: D21204029

fbshipit-source-id: ca6bdbcecf42493365e1c23a33fe35e1759fe8b6
2020-04-23 10:26:17 -07:00

564 lines
21 KiB
Plaintext

// Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
#include <ATen/ATen.h>
#include <math.h>
#include <cstdio>
#include <sstream>
#include <tuple>
#include "rasterize_points/bitmask.cuh"
#include "rasterize_points/rasterization_utils.cuh"
namespace {
// A little structure for holding details about a pixel.
struct Pix {
float z; // Depth of the reference point.
int32_t idx; // Index of the reference point.
float dist2; // Euclidean distance square to the reference point.
};
__device__ inline bool operator<(const Pix& a, const Pix& b) {
return a.z < b.z;
}
// This function checks if a pixel given by xy location pxy lies within the
// point with index p and batch index n. One of the inputs is a list (q)
// which contains Pixel structs with the indices of the points which intersect
// with this pixel sorted by closest z distance. If the pixel pxy lies in the
// point, the list (q) is updated and re-orderered in place. In addition
// the auxillary variables q_size, q_max_z and q_max_idx are also modified.
// This code is shared between RasterizePointsNaiveCudaKernel and
// RasterizePointsFineCudaKernel.
template <typename PointQ>
__device__ void CheckPixelInsidePoint(
const float* points, // (P, 3)
const int p_idx,
int& q_size,
float& q_max_z,
int& q_max_idx,
PointQ& q,
const float radius2,
const float xf,
const float yf,
const int K) {
const float px = points[p_idx * 3 + 0];
const float py = points[p_idx * 3 + 1];
const float pz = points[p_idx * 3 + 2];
if (pz < 0)
return; // Don't render points behind the camera
const float dx = xf - px;
const float dy = yf - py;
const float dist2 = dx * dx + dy * dy;
if (dist2 < radius2) {
if (q_size < K) {
// Just insert it
q[q_size] = {pz, p_idx, dist2};
if (pz > q_max_z) {
q_max_z = pz;
q_max_idx = q_size;
}
q_size++;
} else if (pz < q_max_z) {
// Overwrite the old max, and find the new max
q[q_max_idx] = {pz, p_idx, dist2};
q_max_z = pz;
for (int i = 0; i < K; i++) {
if (q[i].z > q_max_z) {
q_max_z = q[i].z;
q_max_idx = i;
}
}
}
}
}
} // namespace
// ****************************************************************************
// * NAIVE RASTERIZATION *
// ****************************************************************************
__global__ void RasterizePointsNaiveCudaKernel(
const float* points, // (P, 3)
const int64_t* cloud_to_packed_first_idx, // (N)
const int64_t* num_points_per_cloud, // (N)
const float radius,
const int N,
const int S,
const int K,
int32_t* point_idxs, // (N, S, S, K)
float* zbuf, // (N, S, S, K)
float* pix_dists) { // (N, S, S, K)
// Simple version: One thread per output pixel
const int num_threads = gridDim.x * blockDim.x;
const int tid = blockDim.x * blockIdx.x + threadIdx.x;
const float radius2 = radius * radius;
for (int i = tid; i < N * S * S; i += num_threads) {
// Convert linear index to 3D index
const int n = i / (S * S); // Batch index
const int pix_idx = i % (S * S);
// Reverse ordering of the X and Y axis as the camera coordinates
// assume that +Y is pointing up and +X is pointing left.
const int yi = S - 1 - pix_idx / S;
const int xi = S - 1 - pix_idx % S;
const float xf = PixToNdc(xi, S);
const float yf = PixToNdc(yi, S);
// For keeping track of the K closest points we want a data structure
// that (1) gives O(1) access to the closest point for easy comparisons,
// and (2) allows insertion of new elements. In the CPU version we use
// std::priority_queue; then (2) is O(log K). We can't use STL
// containers in CUDA; we could roll our own max heap in an array, but
// that would likely have a lot of warp divergence so we do something
// simpler instead: keep the elements in an unsorted array, but keep
// track of the max value and the index of the max value. Then (1) is
// still O(1) time, while (2) is O(K) with a clean loop. Since K <= 8
// this should be fast enough for our purposes.
// TODO(jcjohns) Abstract this out into a standalone data structure
Pix q[kMaxPointsPerPixel];
int q_size = 0;
float q_max_z = -1000;
int q_max_idx = -1;
// Using the batch index of the thread get the start and stop
// indices for the points.
const int64_t point_start_idx = cloud_to_packed_first_idx[n];
const int64_t point_stop_idx = point_start_idx + num_points_per_cloud[n];
for (int p_idx = point_start_idx; p_idx < point_stop_idx; ++p_idx) {
CheckPixelInsidePoint(
points, p_idx, q_size, q_max_z, q_max_idx, q, radius2, xf, yf, K);
}
BubbleSort(q, q_size);
int idx = n * S * S * K + pix_idx * K;
for (int k = 0; k < q_size; ++k) {
point_idxs[idx + k] = q[k].idx;
zbuf[idx + k] = q[k].z;
pix_dists[idx + k] = q[k].dist2;
}
}
}
std::tuple<at::Tensor, at::Tensor, at::Tensor> RasterizePointsNaiveCuda(
const at::Tensor& points, // (P. 3)
const at::Tensor& cloud_to_packed_first_idx, // (N)
const at::Tensor& num_points_per_cloud, // (N)
const int image_size,
const float radius,
const int points_per_pixel) {
if (points.ndimension() != 2 || points.size(1) != 3) {
AT_ERROR("points must have dimensions (num_points, 3)");
}
if (num_points_per_cloud.size(0) != cloud_to_packed_first_idx.size(0)) {
AT_ERROR(
"num_points_per_cloud must have same size first dimension as cloud_to_packed_first_idx");
}
const int N = num_points_per_cloud.size(0); // batch size.
const int S = image_size;
const int K = points_per_pixel;
if (K > kMaxPointsPerPixel) {
std::stringstream ss;
ss << "Must have points_per_pixel <= " << kMaxPointsPerPixel;
AT_ERROR(ss.str());
}
auto int_opts = points.options().dtype(at::kInt);
auto float_opts = points.options().dtype(at::kFloat);
at::Tensor point_idxs = at::full({N, S, S, K}, -1, int_opts);
at::Tensor zbuf = at::full({N, S, S, K}, -1, float_opts);
at::Tensor pix_dists = at::full({N, S, S, K}, -1, float_opts);
const size_t blocks = 1024;
const size_t threads = 64;
RasterizePointsNaiveCudaKernel<<<blocks, threads>>>(
points.contiguous().data_ptr<float>(),
cloud_to_packed_first_idx.contiguous().data_ptr<int64_t>(),
num_points_per_cloud.contiguous().data_ptr<int64_t>(),
radius,
N,
S,
K,
point_idxs.contiguous().data_ptr<int32_t>(),
zbuf.contiguous().data_ptr<float>(),
pix_dists.contiguous().data_ptr<float>());
return std::make_tuple(point_idxs, zbuf, pix_dists);
}
// ****************************************************************************
// * COARSE RASTERIZATION *
// ****************************************************************************
__global__ void RasterizePointsCoarseCudaKernel(
const float* points, // (P, 3)
const int64_t* cloud_to_packed_first_idx, // (N)
const int64_t* num_points_per_cloud, // (N)
const float radius,
const int N,
const int P,
const int S,
const int bin_size,
const int chunk_size,
const int max_points_per_bin,
int* points_per_bin,
int* bin_points) {
extern __shared__ char sbuf[];
const int M = max_points_per_bin;
const int num_bins = 1 + (S - 1) / bin_size; // Integer divide round up
const float half_pix = 1.0f / S; // Size of half a pixel in NDC units
// This is a boolean array of shape (num_bins, num_bins, chunk_size)
// stored in shared memory that will track whether each point in the chunk
// falls into each bin of the image.
BitMask binmask((unsigned int*)sbuf, num_bins, num_bins, chunk_size);
// Have each block handle a chunk of points and build a 3D bitmask in
// shared memory to mark which points hit which bins. In this first phase,
// each thread processes one point at a time. After processing the chunk,
// one thread is assigned per bin, and the thread counts and writes the
// points for the bin out to global memory.
const int chunks_per_batch = 1 + (P - 1) / chunk_size;
const int num_chunks = N * chunks_per_batch;
for (int chunk = blockIdx.x; chunk < num_chunks; chunk += gridDim.x) {
const int batch_idx = chunk / chunks_per_batch;
const int chunk_idx = chunk % chunks_per_batch;
const int point_start_idx = chunk_idx * chunk_size;
binmask.block_clear();
// Using the batch index of the thread get the start and stop
// indices for the points.
const int64_t cloud_point_start_idx = cloud_to_packed_first_idx[batch_idx];
const int64_t cloud_point_stop_idx =
cloud_point_start_idx + num_points_per_cloud[batch_idx];
// Have each thread handle a different point within the chunk
for (int p = threadIdx.x; p < chunk_size; p += blockDim.x) {
const int p_idx = point_start_idx + p;
// Check if point index corresponds to the cloud in the batch given by
// batch_idx.
if (p_idx >= cloud_point_stop_idx || p_idx < cloud_point_start_idx) {
continue;
}
const float px = points[p_idx * 3 + 0];
const float py = points[p_idx * 3 + 1];
const float pz = points[p_idx * 3 + 2];
if (pz < 0)
continue; // Don't render points behind the camera.
const float px0 = px - radius;
const float px1 = px + radius;
const float py0 = py - radius;
const float py1 = py + radius;
// Brute-force search over all bins; TODO something smarter?
// For example we could compute the exact bin where the point falls,
// then check neighboring bins. This way we wouldn't have to check
// all bins (however then we might have more warp divergence?)
for (int by = 0; by < num_bins; ++by) {
// Get y extent for the bin. PixToNdc gives us the location of
// the center of each pixel, so we need to add/subtract a half
// pixel to get the true extent of the bin.
const float by0 = PixToNdc(by * bin_size, S) - half_pix;
const float by1 = PixToNdc((by + 1) * bin_size - 1, S) + half_pix;
const bool y_overlap = (py0 <= by1) && (by0 <= py1);
if (!y_overlap) {
continue;
}
for (int bx = 0; bx < num_bins; ++bx) {
// Get x extent for the bin; again we need to adjust the
// output of PixToNdc by half a pixel.
const float bx0 = PixToNdc(bx * bin_size, S) - half_pix;
const float bx1 = PixToNdc((bx + 1) * bin_size - 1, S) + half_pix;
const bool x_overlap = (px0 <= bx1) && (bx0 <= px1);
if (x_overlap) {
binmask.set(by, bx, p);
}
}
}
}
__syncthreads();
// Now we have processed every point in the current chunk. We need to
// count the number of points in each bin so we can write the indices
// out to global memory. We have each thread handle a different bin.
for (int byx = threadIdx.x; byx < num_bins * num_bins; byx += blockDim.x) {
const int by = byx / num_bins;
const int bx = byx % num_bins;
const int count = binmask.count(by, bx);
const int points_per_bin_idx =
batch_idx * num_bins * num_bins + by * num_bins + bx;
// This atomically increments the (global) number of points found
// in the current bin, and gets the previous value of the counter;
// this effectively allocates space in the bin_points array for the
// points in the current chunk that fall into this bin.
const int start = atomicAdd(points_per_bin + points_per_bin_idx, count);
// Now loop over the binmask and write the active bits for this bin
// out to bin_points.
int next_idx = batch_idx * num_bins * num_bins * M + by * num_bins * M +
bx * M + start;
for (int p = 0; p < chunk_size; ++p) {
if (binmask.get(by, bx, p)) {
// TODO: Throw an error if next_idx >= M -- this means that
// we got more than max_points_per_bin in this bin
// TODO: check if atomicAdd is needed in line 265.
bin_points[next_idx] = point_start_idx + p;
next_idx++;
}
}
}
__syncthreads();
}
}
at::Tensor RasterizePointsCoarseCuda(
const at::Tensor& points, // (P, 3)
const at::Tensor& cloud_to_packed_first_idx, // (N)
const at::Tensor& num_points_per_cloud, // (N)
const int image_size,
const float radius,
const int bin_size,
const int max_points_per_bin) {
const int P = points.size(0);
const int N = num_points_per_cloud.size(0);
const int num_bins = 1 + (image_size - 1) / bin_size; // divide round up
const int M = max_points_per_bin;
if (points.ndimension() != 2 || points.size(1) != 3) {
AT_ERROR("points must have dimensions (num_points, 3)");
}
if (num_bins >= 22) {
// Make sure we do not use too much shared memory.
std::stringstream ss;
ss << "Got " << num_bins << "; that's too many!";
AT_ERROR(ss.str());
}
auto opts = points.options().dtype(at::kInt);
at::Tensor points_per_bin = at::zeros({N, num_bins, num_bins}, opts);
at::Tensor bin_points = at::full({N, num_bins, num_bins, M}, -1, opts);
const int chunk_size = 512;
const size_t shared_size = num_bins * num_bins * chunk_size / 8;
const size_t blocks = 64;
const size_t threads = 512;
RasterizePointsCoarseCudaKernel<<<blocks, threads, shared_size>>>(
points.contiguous().data_ptr<float>(),
cloud_to_packed_first_idx.contiguous().data_ptr<int64_t>(),
num_points_per_cloud.contiguous().data_ptr<int64_t>(),
radius,
N,
P,
image_size,
bin_size,
chunk_size,
M,
points_per_bin.contiguous().data_ptr<int32_t>(),
bin_points.contiguous().data_ptr<int32_t>());
return bin_points;
}
// ****************************************************************************
// * FINE RASTERIZATION *
// ****************************************************************************
__global__ void RasterizePointsFineCudaKernel(
const float* points, // (P, 3)
const int32_t* bin_points, // (N, B, B, T)
const float radius,
const int bin_size,
const int N,
const int B, // num_bins
const int M,
const int S,
const int K,
int32_t* point_idxs, // (N, S, S, K)
float* zbuf, // (N, S, S, K)
float* pix_dists) { // (N, S, S, K)
// This can be more than S^2 if S is not dividable by bin_size.
const int num_pixels = N * B * B * bin_size * bin_size;
const int num_threads = gridDim.x * blockDim.x;
const int tid = blockIdx.x * blockDim.x + threadIdx.x;
const float radius2 = radius * radius;
for (int pid = tid; pid < num_pixels; pid += num_threads) {
// Convert linear index into bin and pixel indices. We make the within
// block pixel ids move the fastest, so that adjacent threads will fall
// into the same bin; this should give them coalesced memory reads when
// they read from points and bin_points.
int i = pid;
const int n = i / (B * B * bin_size * bin_size);
i %= B * B * bin_size * bin_size;
const int by = i / (B * bin_size * bin_size);
i %= B * bin_size * bin_size;
const int bx = i / (bin_size * bin_size);
i %= bin_size * bin_size;
const int yi = i / bin_size + by * bin_size;
const int xi = i % bin_size + bx * bin_size;
if (yi >= S || xi >= S)
continue;
const float xf = PixToNdc(xi, S);
const float yf = PixToNdc(yi, S);
// This part looks like the naive rasterization kernel, except we use
// bin_points to only look at a subset of points already known to fall
// in this bin. TODO abstract out this logic into some data structure
// that is shared by both kernels?
Pix q[kMaxPointsPerPixel];
int q_size = 0;
float q_max_z = -1000;
int q_max_idx = -1;
for (int m = 0; m < M; ++m) {
const int p = bin_points[n * B * B * M + by * B * M + bx * M + m];
if (p < 0) {
// bin_points uses -1 as a sentinal value
continue;
}
CheckPixelInsidePoint(
points, p, q_size, q_max_z, q_max_idx, q, radius2, xf, yf, K);
}
// Now we've looked at all the points for this bin, so we can write
// output for the current pixel.
BubbleSort(q, q_size);
// Reverse ordering of the X and Y axis as the camera coordinates
// assume that +Y is pointing up and +X is pointing left.
const int yidx = S - 1 - yi;
const int xidx = S - 1 - xi;
const int pix_idx = n * S * S * K + yidx * S * K + xidx * K;
for (int k = 0; k < q_size; ++k) {
point_idxs[pix_idx + k] = q[k].idx;
zbuf[pix_idx + k] = q[k].z;
pix_dists[pix_idx + k] = q[k].dist2;
}
}
}
std::tuple<at::Tensor, at::Tensor, at::Tensor> RasterizePointsFineCuda(
const at::Tensor& points, // (P, 3)
const at::Tensor& bin_points,
const int image_size,
const float radius,
const int bin_size,
const int points_per_pixel) {
const int N = bin_points.size(0);
const int B = bin_points.size(1); // num_bins
const int M = bin_points.size(3);
const int S = image_size;
const int K = points_per_pixel;
if (K > kMaxPointsPerPixel) {
AT_ERROR("Must have num_closest <= 8");
}
auto int_opts = points.options().dtype(at::kInt);
auto float_opts = points.options().dtype(at::kFloat);
at::Tensor point_idxs = at::full({N, S, S, K}, -1, int_opts);
at::Tensor zbuf = at::full({N, S, S, K}, -1, float_opts);
at::Tensor pix_dists = at::full({N, S, S, K}, -1, float_opts);
const size_t blocks = 1024;
const size_t threads = 64;
RasterizePointsFineCudaKernel<<<blocks, threads>>>(
points.contiguous().data_ptr<float>(),
bin_points.contiguous().data_ptr<int32_t>(),
radius,
bin_size,
N,
B,
M,
S,
K,
point_idxs.contiguous().data_ptr<int32_t>(),
zbuf.contiguous().data_ptr<float>(),
pix_dists.contiguous().data_ptr<float>());
return std::make_tuple(point_idxs, zbuf, pix_dists);
}
// ****************************************************************************
// * BACKWARD PASS *
// ****************************************************************************
// TODO(T55115174) Add more documentation for backward kernel.
__global__ void RasterizePointsBackwardCudaKernel(
const float* points, // (P, 3)
const int32_t* idxs, // (N, H, W, K)
const int N,
const int P,
const int H,
const int W,
const int K,
const float* grad_zbuf, // (N, H, W, K)
const float* grad_dists, // (N, H, W, K)
float* grad_points) { // (P, 3)
// Parallelized over each of K points per pixel, for each pixel in images of
// size H * W, for each image in the batch of size N.
int num_threads = gridDim.x * blockDim.x;
int tid = blockIdx.x * blockDim.x + threadIdx.x;
for (int i = tid; i < N * H * W * K; i += num_threads) {
// const int n = i / (H * W * K); // batch index (not needed).
const int yxk = i % (H * W * K);
const int yi = yxk / (W * K);
const int xk = yxk % (W * K);
const int xi = xk / K;
// k = xk % K (We don't actually need k, but this would be it.)
// Reverse ordering of X and Y axes.
const int yidx = H - 1 - yi;
const int xidx = W - 1 - xi;
const float xf = PixToNdc(xidx, W);
const float yf = PixToNdc(yidx, H);
const int p = idxs[i];
if (p < 0)
continue;
const float grad_dist2 = grad_dists[i];
const int p_ind = p * 3; // index into packed points tensor
const float px = points[p_ind + 0];
const float py = points[p_ind + 1];
const float dx = px - xf;
const float dy = py - yf;
const float grad_px = 2.0f * grad_dist2 * dx;
const float grad_py = 2.0f * grad_dist2 * dy;
const float grad_pz = grad_zbuf[i];
atomicAdd(grad_points + p_ind + 0, grad_px);
atomicAdd(grad_points + p_ind + 1, grad_py);
atomicAdd(grad_points + p_ind + 2, grad_pz);
}
}
at::Tensor RasterizePointsBackwardCuda(
const at::Tensor& points, // (N, P, 3)
const at::Tensor& idxs, // (N, H, W, K)
const at::Tensor& grad_zbuf, // (N, H, W, K)
const at::Tensor& grad_dists) { // (N, H, W, K)
const int P = points.size(0);
const int N = idxs.size(0);
const int H = idxs.size(1);
const int W = idxs.size(2);
const int K = idxs.size(3);
at::Tensor grad_points = at::zeros({P, 3}, points.options());
const size_t blocks = 1024;
const size_t threads = 64;
RasterizePointsBackwardCudaKernel<<<blocks, threads>>>(
points.contiguous().data_ptr<float>(),
idxs.contiguous().data_ptr<int32_t>(),
N,
P,
H,
W,
K,
grad_zbuf.contiguous().data_ptr<float>(),
grad_dists.contiguous().data_ptr<float>(),
grad_points.contiguous().data_ptr<float>());
return grad_points;
}