pytorch3d/tests/implicitron/test_models_renderer_ray_sampler.py
Emilien Garreau 29b8ebd802 Add utils to approximate the conical frustums as multivariate gaussians.
Summary:
Introduce methods to approximate the radii of conical frustums along rays as described in [MipNerf](https://arxiv.org/abs/2103.13415):

- Two new attributes are added to ImplicitronRayBundle: bins and radii. Bins is of size n_pts_per_ray + 1. It allows us to manipulate easily and n_pts_per_ray intervals. For example we need the intervals coordinates in the radii computation for \(t_{\mu}, t_{\delta}\). Radii are used to store the radii of the conical frustums.

- Add 3 new methods to compute the radii:
   - approximate_conical_frustum_as_gaussians: It computes the mean along the ray direction, the variance of the
      conical frustum  with respect to t and variance of the conical frustum with respect to its radius. This
      implementation follows the stable computation defined in the paper.
   - compute_3d_diagonal_covariance_gaussian: Will leverage the two previously computed variances to find the
     diagonal covariance of the Gaussian.
   - conical_frustum_to_gaussian: Mix everything together to compute the means and the diagonal covariances along
     the ray of the Gaussians.

- In AbstractMaskRaySampler, introduces the attribute `cast_ray_bundle_as_cone`. If False it won't change the previous behaviour of the RaySampler. However if True, the samplers will sample `n_pts_per_ray +1` instead of `n_pts_per_ray`. This points are then used to set the bins attribute of ImplicitronRayBundle. The support of HeterogeneousRayBundle has not been added since the current code does not allow it. A safeguard has been added to avoid a silent bug in the future.

Reviewed By: shapovalov

Differential Revision: D45269190

fbshipit-source-id: bf22fad12d71d55392f054e3f680013aa0d59b78
2023-07-06 01:55:41 -07:00

291 lines
11 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import unittest
from itertools import product
from typing import Tuple
from unittest.mock import patch
import torch
from pytorch3d.common.compat import meshgrid_ij
from pytorch3d.implicitron.models.renderer.base import EvaluationMode
from pytorch3d.implicitron.models.renderer.ray_sampler import (
AdaptiveRaySampler,
compute_radii,
NearFarRaySampler,
)
from pytorch3d.renderer.cameras import (
CamerasBase,
FoVOrthographicCameras,
FoVPerspectiveCameras,
OrthographicCameras,
PerspectiveCameras,
)
from pytorch3d.renderer.implicit.utils import HeterogeneousRayBundle
from tests.common_camera_utils import init_random_cameras
from tests.common_testing import TestCaseMixin
CAMERA_TYPES = (
FoVPerspectiveCameras,
FoVOrthographicCameras,
OrthographicCameras,
PerspectiveCameras,
)
def unproject_xy_grid_from_ndc_to_world_coord(
cameras: CamerasBase, xy_grid: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Unproject a xy_grid from NDC coordinates to world coordinates.
Args:
cameras: CamerasBase.
xy_grid: A tensor of shape `(..., H*W, 2)` representing the
x, y coords.
Returns:
A tensor of shape `(..., H*W, 3)` representing the
"""
batch_size = xy_grid.shape[0]
n_rays_per_image = xy_grid.shape[1:-1].numel()
xy = xy_grid.view(batch_size, -1, 2)
xyz = torch.cat([xy, xy_grid.new_ones(batch_size, n_rays_per_image, 1)], dim=-1)
plane_at_depth1 = cameras.unproject_points(xyz, from_ndc=True)
return plane_at_depth1.view(*xy_grid.shape[:-1], 3)
class TestRaysampler(TestCaseMixin, unittest.TestCase):
def test_ndc_raysampler_n_ray_total_is_none(self):
sampler = NearFarRaySampler()
message = (
"If you introduce the support of `n_rays_total` for {0}, please handle the "
"packing and unpacking logic for the radii and lengths computation."
)
self.assertIsNone(
sampler._training_raysampler._n_rays_total, message.format(type(sampler))
)
self.assertIsNone(
sampler._evaluation_raysampler._n_rays_total, message.format(type(sampler))
)
sampler = AdaptiveRaySampler()
self.assertIsNone(
sampler._training_raysampler._n_rays_total, message.format(type(sampler))
)
self.assertIsNone(
sampler._evaluation_raysampler._n_rays_total, message.format(type(sampler))
)
def test_catch_heterogeneous_exception(self):
cameras = init_random_cameras(FoVPerspectiveCameras, 1, random_z=True)
class FakeSampler:
def __init__(self):
self.min_x, self.max_x = 1, 2
self.min_y, self.max_y = 1, 2
def __call__(self, **kwargs):
return HeterogeneousRayBundle(
torch.rand(3), torch.rand(3), torch.rand(3), torch.rand(1)
)
with patch(
"pytorch3d.implicitron.models.renderer.ray_sampler.NDCMultinomialRaysampler",
return_value=FakeSampler(),
):
for sampler in [
AdaptiveRaySampler(cast_ray_bundle_as_cone=True),
NearFarRaySampler(cast_ray_bundle_as_cone=True),
]:
with self.assertRaises(TypeError):
_ = sampler(cameras, EvaluationMode.TRAINING)
for sampler in [
AdaptiveRaySampler(cast_ray_bundle_as_cone=False),
NearFarRaySampler(cast_ray_bundle_as_cone=False),
]:
_ = sampler(cameras, EvaluationMode.TRAINING)
def test_compute_radii(self):
batch_size = 1
image_height, image_width = 20, 10
min_y, max_y, min_x, max_x = -1.0, 1.0, -1.0, 1.0
y, x = meshgrid_ij(
torch.linspace(min_y, max_y, image_height, dtype=torch.float32),
torch.linspace(min_x, max_x, image_width, dtype=torch.float32),
)
xy_grid = torch.stack([x, y], dim=-1).view(-1, 2)
pixel_width = (max_x - min_x) / (image_width - 1)
pixel_height = (max_y - min_y) / (image_height - 1)
for cam_type in CAMERA_TYPES:
# init a batch of random cameras
cameras = init_random_cameras(cam_type, batch_size, random_z=True)
# This method allow us to compute the radii whithout having
# access to the full grid. Raysamplers during the training
# will sample random rays from the grid.
radii = compute_radii(
cameras, xy_grid, pixel_hw_ndc=(pixel_height, pixel_width)
)
plane_at_depth1 = unproject_xy_grid_from_ndc_to_world_coord(
cameras, xy_grid
)
# This method absolutely needs the full grid to work.
expected_radii = compute_pixel_radii_from_grid(
plane_at_depth1.reshape(1, image_height, image_width, 3)
)
self.assertClose(expected_radii.reshape(-1, 1), radii)
def test_forward(self):
n_rays_per_image = 16
image_height, image_width = 20, 20
kwargs = {
"image_width": image_width,
"image_height": image_height,
"n_pts_per_ray_training": 32,
"n_pts_per_ray_evaluation": 32,
"n_rays_per_image_sampled_from_mask": n_rays_per_image,
"cast_ray_bundle_as_cone": False,
}
batch_size = 2
samplers = [NearFarRaySampler(**kwargs), AdaptiveRaySampler(**kwargs)]
evaluation_modes = [EvaluationMode.TRAINING, EvaluationMode.EVALUATION]
for cam_type, sampler, evaluation_mode in product(
CAMERA_TYPES, samplers, evaluation_modes
):
cameras = init_random_cameras(cam_type, batch_size, random_z=True)
ray_bundle = sampler(cameras, evaluation_mode)
shape_out = (
(batch_size, image_width, image_height)
if evaluation_mode == EvaluationMode.EVALUATION
else (batch_size, n_rays_per_image, 1)
)
n_pts_per_ray = (
kwargs["n_pts_per_ray_evaluation"]
if evaluation_mode == EvaluationMode.EVALUATION
else kwargs["n_pts_per_ray_training"]
)
self.assertIsNone(ray_bundle.bins)
self.assertIsNone(ray_bundle.pixel_radii_2d)
self.assertEqual(
ray_bundle.lengths.shape,
(*shape_out, n_pts_per_ray),
)
self.assertEqual(ray_bundle.directions.shape, (*shape_out, 3))
self.assertEqual(ray_bundle.origins.shape, (*shape_out, 3))
def test_forward_with_use_bins(self):
n_rays_per_image = 16
image_height, image_width = 20, 20
kwargs = {
"image_width": image_width,
"image_height": image_height,
"n_pts_per_ray_training": 32,
"n_pts_per_ray_evaluation": 32,
"n_rays_per_image_sampled_from_mask": n_rays_per_image,
"cast_ray_bundle_as_cone": True,
}
batch_size = 1
samplers = [NearFarRaySampler(**kwargs), AdaptiveRaySampler(**kwargs)]
evaluation_modes = [EvaluationMode.TRAINING, EvaluationMode.EVALUATION]
for cam_type, sampler, evaluation_mode in product(
CAMERA_TYPES, samplers, evaluation_modes
):
cameras = init_random_cameras(cam_type, batch_size, random_z=True)
ray_bundle = sampler(cameras, evaluation_mode)
lengths = 0.5 * (ray_bundle.bins[..., :-1] + ray_bundle.bins[..., 1:])
self.assertClose(ray_bundle.lengths, lengths)
shape_out = (
(batch_size, image_width, image_height)
if evaluation_mode == EvaluationMode.EVALUATION
else (batch_size, n_rays_per_image, 1)
)
self.assertEqual(ray_bundle.pixel_radii_2d.shape, (*shape_out, 1))
self.assertEqual(ray_bundle.directions.shape, (*shape_out, 3))
self.assertEqual(ray_bundle.origins.shape, (*shape_out, 3))
# Helper to test compute_radii
def compute_pixel_radii_from_grid(pixel_grid: torch.Tensor) -> torch.Tensor:
"""
Compute the radii of a conical frustum given the pixel grid.
To compute the radii we first compute the translation from a pixel
to its neighbors along the x and y axis. Then, we compute the norm
of each translation along the x and y axis.
The radii are then obtained by the following formula:
(dx_norm + dy_norm) * 0.5 * 2 / 12**0.5
where 2/12**0.5 is a scaling factor to match
the variance of the pixels footprint.
Args:
pixel_grid: A tensor of shape `(..., H, W, dim)` representing the
full grid of rays pixel_grid.
Returns:
The radiis for each pixels and shape `(..., H, W, 1)`.
"""
# [B, H, W - 1, 3]
x_translation = torch.diff(pixel_grid, dim=-2)
# [B, H - 1, W, 3]
y_translation = torch.diff(pixel_grid, dim=-3)
# [B, H, W - 1, 1]
dx_norm = torch.linalg.norm(x_translation, dim=-1, keepdim=True)
# [B, H - 1, W, 1]
dy_norm = torch.linalg.norm(y_translation, dim=-1, keepdim=True)
# Fill the missing value [B, H, W, 1]
dx_norm = torch.concatenate([dx_norm, dx_norm[..., -1:, :]], -2)
dy_norm = torch.concatenate([dy_norm, dy_norm[..., -1:, :, :]], -3)
# Cut the distance in half to obtain the base radius: (dx_norm + dy_norm) * 0.5
# and multiply it by the scaling factor: * 2 / 12**0.5
radii = (dx_norm + dy_norm) / 12**0.5
return radii
class TestRadiiComputationOnFullGrid(TestCaseMixin, unittest.TestCase):
def test_compute_pixel_radii_from_grid(self):
pixel_grid = torch.tensor(
[
[[0.0, 0, 0], [1.0, 0.0, 0], [3.0, 0.0, 0.0]],
[[0.0, 0.25, 0], [1.0, 0.25, 0], [3.0, 0.25, 0]],
[[0.0, 1, 0], [1.0, 1.0, 0], [3.0000, 1.0, 0]],
]
)
expected_y_norm = torch.tensor(
[
[0.25, 0.25, 0.25],
[0.75, 0.75, 0.75],
[0.75, 0.75, 0.75], # duplicated from previous row
]
)
expected_x_norm = torch.tensor(
[
# 3rd column is duplicated from 2nd
[1.0, 2.0, 2.0],
[1.0, 2.0, 2.0],
[1.0, 2.0, 2.0],
]
)
expected_radii = (expected_x_norm + expected_y_norm) / 12**0.5
radii = compute_pixel_radii_from_grid(pixel_grid)
self.assertClose(radii, expected_radii[..., None])