pytorch3d/tests/test_render_points.py
Patrick Labatut 8219a52ccc Fix a few linting warnings
Summary: Fix a few linting warnings

Reviewed By: nikhilaravi

Differential Revision: D20720810

fbshipit-source-id: c5b6a25fdd7971cc8743b54bbe162464a874071d
2020-10-01 02:39:27 -07:00

229 lines
8.4 KiB
Python

# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
"""
Sanity checks for output images from the pointcloud renderer.
"""
import unittest
import warnings
from os import path
from pathlib import Path
import numpy as np
import torch
from common_testing import TestCaseMixin, load_rgb_image
from PIL import Image
from pytorch3d.renderer.cameras import (
FoVOrthographicCameras,
FoVPerspectiveCameras,
look_at_view_transform,
)
from pytorch3d.renderer.compositing import alpha_composite, norm_weighted_sum
from pytorch3d.renderer.points import (
AlphaCompositor,
NormWeightedCompositor,
PointsRasterizationSettings,
PointsRasterizer,
PointsRenderer,
)
from pytorch3d.structures.pointclouds import Pointclouds
from pytorch3d.utils.ico_sphere import ico_sphere
# If DEBUG=True, save out images generated in the tests for debugging.
# All saved images have prefix DEBUG_
DEBUG = False
DATA_DIR = Path(__file__).resolve().parent / "data"
class TestRenderPoints(TestCaseMixin, unittest.TestCase):
def test_simple_sphere(self):
device = torch.device("cuda:0")
sphere_mesh = ico_sphere(1, device)
verts_padded = sphere_mesh.verts_padded()
# Shift vertices to check coordinate frames are correct.
verts_padded[..., 1] += 0.2
verts_padded[..., 0] += 0.2
pointclouds = Pointclouds(
points=verts_padded, features=torch.ones_like(verts_padded)
)
R, T = look_at_view_transform(2.7, 0.0, 0.0)
cameras = FoVPerspectiveCameras(device=device, R=R, T=T)
raster_settings = PointsRasterizationSettings(
image_size=256, radius=5e-2, points_per_pixel=1
)
rasterizer = PointsRasterizer(cameras=cameras, raster_settings=raster_settings)
compositor = NormWeightedCompositor()
renderer = PointsRenderer(rasterizer=rasterizer, compositor=compositor)
# Load reference image
filename = "simple_pointcloud_sphere.png"
image_ref = load_rgb_image("test_%s" % filename, DATA_DIR)
for bin_size in [0, None]:
# Check both naive and coarse to fine produce the same output.
renderer.rasterizer.raster_settings.bin_size = bin_size
images = renderer(pointclouds)
rgb = images[0, ..., :3].squeeze().cpu()
if DEBUG:
filename = "DEBUG_%s" % filename
Image.fromarray((rgb.numpy() * 255).astype(np.uint8)).save(
DATA_DIR / filename
)
self.assertClose(rgb, image_ref)
def test_pointcloud_with_features(self):
device = torch.device("cuda:0")
file_dir = Path(__file__).resolve().parent.parent / "docs/tutorials/data"
pointcloud_filename = file_dir / "PittsburghBridge/pointcloud.npz"
# Note, this file is too large to check in to the repo.
# Download the file to run the test locally.
if not path.exists(pointcloud_filename):
url = (
"https://dl.fbaipublicfiles.com/pytorch3d/data/"
"PittsburghBridge/pointcloud.npz"
)
msg = (
"pointcloud.npz not found, download from %s, save it at the path %s, and rerun"
% (url, pointcloud_filename)
)
warnings.warn(msg)
return True
# Load point cloud
pointcloud = np.load(pointcloud_filename)
verts = torch.Tensor(pointcloud["verts"]).to(device)
rgb_feats = torch.Tensor(pointcloud["rgb"]).to(device)
verts.requires_grad = True
rgb_feats.requires_grad = True
point_cloud = Pointclouds(points=[verts], features=[rgb_feats])
R, T = look_at_view_transform(20, 10, 0)
cameras = FoVOrthographicCameras(device=device, R=R, T=T, znear=0.01)
raster_settings = PointsRasterizationSettings(
# Set image_size so it is not a multiple of 16 (min bin_size)
# in order to confirm that there are no errors in coarse rasterization.
image_size=500,
radius=0.003,
points_per_pixel=10,
)
renderer = PointsRenderer(
rasterizer=PointsRasterizer(
cameras=cameras, raster_settings=raster_settings
),
compositor=AlphaCompositor(),
)
images = renderer(point_cloud)
# Load reference image
filename = "bridge_pointcloud.png"
image_ref = load_rgb_image("test_%s" % filename, DATA_DIR)
for bin_size in [0, None]:
# Check both naive and coarse to fine produce the same output.
renderer.rasterizer.raster_settings.bin_size = bin_size
images = renderer(point_cloud)
rgb = images[0, ..., :3].squeeze().cpu()
if DEBUG:
filename = "DEBUG_%s" % filename
Image.fromarray((rgb.detach().numpy() * 255).astype(np.uint8)).save(
DATA_DIR / filename
)
self.assertClose(rgb, image_ref, atol=0.015)
# Check grad exists.
grad_images = torch.randn_like(images)
images.backward(grad_images)
self.assertIsNotNone(verts.grad)
self.assertIsNotNone(rgb_feats.grad)
def test_simple_sphere_batched(self):
device = torch.device("cuda:0")
sphere_mesh = ico_sphere(1, device)
verts_padded = sphere_mesh.verts_padded()
verts_padded[..., 1] += 0.2
verts_padded[..., 0] += 0.2
pointclouds = Pointclouds(
points=verts_padded, features=torch.ones_like(verts_padded)
)
batch_size = 20
pointclouds = pointclouds.extend(batch_size)
R, T = look_at_view_transform(2.7, 0.0, 0.0)
cameras = FoVPerspectiveCameras(device=device, R=R, T=T)
raster_settings = PointsRasterizationSettings(
image_size=256, radius=5e-2, points_per_pixel=1
)
rasterizer = PointsRasterizer(cameras=cameras, raster_settings=raster_settings)
compositor = NormWeightedCompositor()
renderer = PointsRenderer(rasterizer=rasterizer, compositor=compositor)
# Load reference image
filename = "simple_pointcloud_sphere.png"
image_ref = load_rgb_image("test_%s" % filename, DATA_DIR)
images = renderer(pointclouds)
for i in range(batch_size):
rgb = images[i, ..., :3].squeeze().cpu()
if i == 0 and DEBUG:
filename = "DEBUG_%s" % filename
Image.fromarray((rgb.numpy() * 255).astype(np.uint8)).save(
DATA_DIR / filename
)
self.assertClose(rgb, image_ref)
def test_compositor_background_color(self):
N, H, W, K, C, P = 1, 15, 15, 20, 4, 225
ptclds = torch.randn((C, P))
alphas = torch.rand((N, K, H, W))
pix_idxs = torch.randint(-1, 20, (N, K, H, W)) # 20 < P, large amount of -1
background_color = [0.5, 0, 1]
compositor_funcs = [
(NormWeightedCompositor, norm_weighted_sum),
(AlphaCompositor, alpha_composite),
]
for (compositor_class, composite_func) in compositor_funcs:
compositor = compositor_class(background_color)
# run the forward method to generate masked images
masked_images = compositor.forward(pix_idxs, alphas, ptclds)
# generate unmasked images for testing purposes
images = composite_func(pix_idxs, alphas, ptclds)
is_foreground = pix_idxs[:, 0] >= 0
# make sure foreground values are unchanged
self.assertClose(
torch.masked_select(masked_images, is_foreground[:, None]),
torch.masked_select(images, is_foreground[:, None]),
)
is_background = ~is_foreground[..., None].expand(-1, -1, -1, 4)
# permute masked_images to correctly get rgb values
masked_images = masked_images.permute(0, 2, 3, 1)
for i in range(3):
channel_color = background_color[i]
# check if background colors are properly changed
self.assertTrue(
masked_images[is_background]
.view(-1, 4)[..., i]
.eq(channel_color)
.all()
)
# check background color alpha values
self.assertTrue(
masked_images[is_background].view(-1, 4)[..., 3].eq(1).all()
)