pytorch3d/projects/implicitron_trainer/configs/overfit_singleseq_base.yaml
Emilien Garreau 813e941de5 Add the OverfitModel
Summary:
Introduces the OverfitModel for NeRF-style training with overfitting to one scene.
It is a specific case of GenericModel. It has been disentangle to ease usage.

## General modification

1. Modularize a minimum GenericModel to introduce OverfitModel
2. Introduce OverfitModel and ensure through unit testing that it behaves like GenericModel.

## Modularization

The following methods have been extracted from GenericModel to allow modularity with ManyViewModel:
- get_objective is now a call to weighted_sum_losses
- log_loss_weights
- prepare_inputs

The generic methods have been moved to an utils.py file.

Simplify the code to introduce OverfitModel.

Private methods like chunk_generator are now public and can now be used by ManyViewModel.

Reviewed By: shapovalov

Differential Revision: D43771992

fbshipit-source-id: 6102aeb21c7fdd56aa2ff9cd1dd23fd9fbf26315
2023-03-24 07:27:39 -07:00

43 lines
1.0 KiB
YAML

defaults:
- overfit_base
- _self_
data_source_ImplicitronDataSource_args:
data_loader_map_provider_SequenceDataLoaderMapProvider_args:
batch_size: 1
dataset_length_train: 1000
dataset_length_val: 1
num_workers: 8
dataset_map_provider_JsonIndexDatasetMapProvider_args:
assert_single_seq: true
n_frames_per_sequence: -1
test_restrict_sequence_id: 0
test_on_train: false
model_factory_ImplicitronModelFactory_args:
model_class_type: "OverfitModel"
model_OverfitModel_args:
render_image_height: 800
render_image_width: 800
log_vars:
- loss_rgb_psnr_fg
- loss_rgb_psnr
- loss_eikonal
- loss_prev_stage_rgb_psnr
- loss_mask_bce
- loss_prev_stage_mask_bce
- loss_rgb_mse
- loss_prev_stage_rgb_mse
- loss_depth_abs
- loss_depth_abs_fg
- loss_kl
- loss_mask_neg_iou
- objective
- epoch
- sec/it
optimizer_factory_ImplicitronOptimizerFactory_args:
lr: 0.0005
multistep_lr_milestones:
- 200
- 300
training_loop_ImplicitronTrainingLoop_args:
max_epochs: 400