mirror of
https://github.com/facebookresearch/pytorch3d.git
synced 2025-08-02 03:42:50 +08:00
Summary: Currently, seeds are set only inside the train loop. But this does not ensure that the model weights are initialized the same way everywhere which makes all experiments irreproducible. This diff fixes it. Reviewed By: bottler Differential Revision: D38315840 fbshipit-source-id: 3d2ecebbc36072c2b68dd3cd8c5e30708e7dd808
358 lines
13 KiB
Python
358 lines
13 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the BSD-style license found in the
|
|
# LICENSE file in the root directory of this source tree.
|
|
|
|
import logging
|
|
import time
|
|
from typing import Any, Optional
|
|
|
|
import torch
|
|
from accelerate import Accelerator
|
|
from pytorch3d.implicitron.dataset.data_source import Task
|
|
from pytorch3d.implicitron.evaluation.evaluator import EvaluatorBase
|
|
from pytorch3d.implicitron.models.base_model import ImplicitronModelBase
|
|
from pytorch3d.implicitron.models.generic_model import EvaluationMode
|
|
from pytorch3d.implicitron.tools import model_io, vis_utils
|
|
from pytorch3d.implicitron.tools.config import (
|
|
registry,
|
|
ReplaceableBase,
|
|
run_auto_creation,
|
|
)
|
|
from pytorch3d.implicitron.tools.stats import Stats
|
|
from pytorch3d.renderer.cameras import CamerasBase
|
|
from torch.utils.data import DataLoader
|
|
|
|
from .utils import seed_all_random_engines
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class TrainingLoopBase(ReplaceableBase):
|
|
def run(
|
|
self,
|
|
train_loader: DataLoader,
|
|
val_loader: Optional[DataLoader],
|
|
test_loader: Optional[DataLoader],
|
|
model: ImplicitronModelBase,
|
|
optimizer: torch.optim.Optimizer,
|
|
scheduler: Any,
|
|
**kwargs,
|
|
) -> None:
|
|
raise NotImplementedError()
|
|
|
|
|
|
@registry.register
|
|
class ImplicitronTrainingLoop(TrainingLoopBase): # pyre-ignore [13]
|
|
"""
|
|
Members:
|
|
eval_only: If True, only run evaluation using the test dataloader.
|
|
evaluator: An EvaluatorBase instance, used to evaluate training results.
|
|
max_epochs: Train for this many epochs. Note that if the model was
|
|
loaded from a checkpoint, we will restart training at the appropriate
|
|
epoch and run for (max_epochs - checkpoint_epoch) epochs.
|
|
store_checkpoints: If True, store model and optimizer state checkpoints.
|
|
store_checkpoints_purge: If >= 0, remove any checkpoints older or equal
|
|
to this many epochs.
|
|
test_interval: Evaluate on a test dataloader each `test_interval` epochs.
|
|
test_when_finished: If True, evaluate on a test dataloader when training
|
|
completes.
|
|
validation_interval: Validate each `validation_interval` epochs.
|
|
clip_grad: Optionally clip the gradient norms.
|
|
If set to a value <=0.0, no clipping
|
|
metric_print_interval: The batch interval at which the stats should be
|
|
logged.
|
|
visualize_interval: The batch interval at which the visualizations
|
|
should be plotted
|
|
"""
|
|
|
|
# Parameters of the outer training loop.
|
|
eval_only: bool = False
|
|
evaluator: EvaluatorBase
|
|
evaluator_class_type: str = "ImplicitronEvaluator"
|
|
max_epochs: int = 1000
|
|
store_checkpoints: bool = True
|
|
store_checkpoints_purge: int = 1
|
|
test_interval: int = -1
|
|
test_when_finished: bool = False
|
|
validation_interval: int = 1
|
|
|
|
# Parameters of a single training-validation step.
|
|
clip_grad: float = 0.0
|
|
metric_print_interval: int = 5
|
|
visualize_interval: int = 1000
|
|
|
|
def __post_init__(self):
|
|
run_auto_creation(self)
|
|
|
|
def run(
|
|
self,
|
|
*,
|
|
train_loader: DataLoader,
|
|
val_loader: Optional[DataLoader],
|
|
test_loader: Optional[DataLoader],
|
|
model: ImplicitronModelBase,
|
|
optimizer: torch.optim.Optimizer,
|
|
scheduler: Any,
|
|
accelerator: Optional[Accelerator],
|
|
all_train_cameras: Optional[CamerasBase],
|
|
device: torch.device,
|
|
exp_dir: str,
|
|
stats: Stats,
|
|
seed: int,
|
|
task: Task,
|
|
**kwargs,
|
|
):
|
|
"""
|
|
Entry point to run the training and validation loops
|
|
based on the specified config file.
|
|
"""
|
|
start_epoch = stats.epoch + 1
|
|
assert scheduler.last_epoch == stats.epoch + 1
|
|
assert scheduler.last_epoch == start_epoch
|
|
|
|
# only run evaluation on the test dataloader
|
|
if self.eval_only:
|
|
if test_loader is not None:
|
|
self.evaluator.run(
|
|
all_train_cameras=all_train_cameras,
|
|
dataloader=test_loader,
|
|
device=device,
|
|
dump_to_json=True,
|
|
epoch=stats.epoch,
|
|
exp_dir=exp_dir,
|
|
model=model,
|
|
task=task,
|
|
)
|
|
return
|
|
else:
|
|
raise ValueError(
|
|
"Cannot evaluate and dump results to json, no test data provided."
|
|
)
|
|
|
|
# loop through epochs
|
|
for epoch in range(start_epoch, self.max_epochs):
|
|
# automatic new_epoch and plotting of stats at every epoch start
|
|
with stats:
|
|
|
|
# Make sure to re-seed random generators to ensure reproducibility
|
|
# even after restart.
|
|
seed_all_random_engines(seed + epoch)
|
|
|
|
cur_lr = float(scheduler.get_last_lr()[-1])
|
|
logger.debug(f"scheduler lr = {cur_lr:1.2e}")
|
|
|
|
# train loop
|
|
self._training_or_validation_epoch(
|
|
accelerator=accelerator,
|
|
device=device,
|
|
epoch=epoch,
|
|
loader=train_loader,
|
|
model=model,
|
|
optimizer=optimizer,
|
|
stats=stats,
|
|
validation=False,
|
|
)
|
|
|
|
# val loop (optional)
|
|
if val_loader is not None and epoch % self.validation_interval == 0:
|
|
self._training_or_validation_epoch(
|
|
accelerator=accelerator,
|
|
device=device,
|
|
epoch=epoch,
|
|
loader=val_loader,
|
|
model=model,
|
|
optimizer=optimizer,
|
|
stats=stats,
|
|
validation=True,
|
|
)
|
|
|
|
# eval loop (optional)
|
|
if (
|
|
test_loader is not None
|
|
and self.test_interval > 0
|
|
and epoch % self.test_interval == 0
|
|
):
|
|
self.evaluator.run(
|
|
all_train_cameras=all_train_cameras,
|
|
device=device,
|
|
dataloader=test_loader,
|
|
model=model,
|
|
task=task,
|
|
)
|
|
|
|
assert stats.epoch == epoch, "inconsistent stats!"
|
|
self._checkpoint(accelerator, epoch, exp_dir, model, optimizer, stats)
|
|
|
|
scheduler.step()
|
|
new_lr = float(scheduler.get_last_lr()[-1])
|
|
if new_lr != cur_lr:
|
|
logger.info(f"LR change! {cur_lr} -> {new_lr}")
|
|
|
|
if self.test_when_finished:
|
|
if test_loader is not None:
|
|
self.evaluator.run(
|
|
all_train_cameras=all_train_cameras,
|
|
device=device,
|
|
dump_to_json=True,
|
|
epoch=stats.epoch,
|
|
exp_dir=exp_dir,
|
|
dataloader=test_loader,
|
|
model=model,
|
|
task=task,
|
|
)
|
|
else:
|
|
raise ValueError(
|
|
"Cannot evaluate and dump results to json, no test data provided."
|
|
)
|
|
|
|
def _training_or_validation_epoch(
|
|
self,
|
|
epoch: int,
|
|
loader: DataLoader,
|
|
model: ImplicitronModelBase,
|
|
optimizer: torch.optim.Optimizer,
|
|
stats: Stats,
|
|
validation: bool,
|
|
*,
|
|
accelerator: Optional[Accelerator],
|
|
bp_var: str = "objective",
|
|
device: torch.device,
|
|
**kwargs,
|
|
) -> None:
|
|
"""
|
|
This is the main loop for training and evaluation including:
|
|
model forward pass, loss computation, backward pass and visualization.
|
|
|
|
Args:
|
|
epoch: The index of the current epoch
|
|
loader: The dataloader to use for the loop
|
|
model: The model module optionally loaded from checkpoint
|
|
optimizer: The optimizer module optionally loaded from checkpoint
|
|
stats: The stats struct, also optionally loaded from checkpoint
|
|
validation: If true, run the loop with the model in eval mode
|
|
and skip the backward pass
|
|
accelerator: An optional Accelerator instance.
|
|
bp_var: The name of the key in the model output `preds` dict which
|
|
should be used as the loss for the backward pass.
|
|
device: The device on which to run the model.
|
|
"""
|
|
|
|
if validation:
|
|
model.eval()
|
|
trainmode = "val"
|
|
else:
|
|
model.train()
|
|
trainmode = "train"
|
|
|
|
t_start = time.time()
|
|
|
|
# get the visdom env name
|
|
visdom_env_imgs = stats.visdom_env + "_images_" + trainmode
|
|
viz = vis_utils.get_visdom_connection(
|
|
server=stats.visdom_server,
|
|
port=stats.visdom_port,
|
|
)
|
|
|
|
# Iterate through the batches
|
|
n_batches = len(loader)
|
|
for it, net_input in enumerate(loader):
|
|
last_iter = it == n_batches - 1
|
|
|
|
# move to gpu where possible (in place)
|
|
net_input = net_input.to(device)
|
|
|
|
# run the forward pass
|
|
if not validation:
|
|
optimizer.zero_grad()
|
|
preds = model(
|
|
**{**net_input, "evaluation_mode": EvaluationMode.TRAINING}
|
|
)
|
|
else:
|
|
with torch.no_grad():
|
|
preds = model(
|
|
**{**net_input, "evaluation_mode": EvaluationMode.EVALUATION}
|
|
)
|
|
|
|
# make sure we dont overwrite something
|
|
assert all(k not in preds for k in net_input.keys())
|
|
# merge everything into one big dict
|
|
preds.update(net_input)
|
|
|
|
# update the stats logger
|
|
stats.update(preds, time_start=t_start, stat_set=trainmode)
|
|
# pyre-ignore [16]
|
|
assert stats.it[trainmode] == it, "inconsistent stat iteration number!"
|
|
|
|
# print textual status update
|
|
if it % self.metric_print_interval == 0 or last_iter:
|
|
stats.print(stat_set=trainmode, max_it=n_batches)
|
|
|
|
# visualize results
|
|
if (
|
|
(accelerator is None or accelerator.is_local_main_process)
|
|
and self.visualize_interval > 0
|
|
and it % self.visualize_interval == 0
|
|
):
|
|
prefix = f"e{stats.epoch}_it{stats.it[trainmode]}"
|
|
if hasattr(model, "visualize"):
|
|
# pyre-ignore [29]
|
|
model.visualize(
|
|
viz,
|
|
visdom_env_imgs,
|
|
preds,
|
|
prefix,
|
|
)
|
|
|
|
# optimizer step
|
|
if not validation:
|
|
loss = preds[bp_var]
|
|
assert torch.isfinite(loss).all(), "Non-finite loss!"
|
|
# backprop
|
|
if accelerator is None:
|
|
loss.backward()
|
|
else:
|
|
accelerator.backward(loss)
|
|
if self.clip_grad > 0.0:
|
|
# Optionally clip the gradient norms.
|
|
total_norm = torch.nn.utils.clip_grad_norm(
|
|
model.parameters(), self.clip_grad
|
|
)
|
|
if total_norm > self.clip_grad:
|
|
logger.debug(
|
|
f"Clipping gradient: {total_norm}"
|
|
+ f" with coef {self.clip_grad / float(total_norm)}."
|
|
)
|
|
|
|
optimizer.step()
|
|
|
|
def _checkpoint(
|
|
self,
|
|
accelerator: Optional[Accelerator],
|
|
epoch: int,
|
|
exp_dir: str,
|
|
model: ImplicitronModelBase,
|
|
optimizer: torch.optim.Optimizer,
|
|
stats: Stats,
|
|
):
|
|
"""
|
|
Save a model and its corresponding Stats object to a file, if
|
|
`self.store_checkpoints` is True. In addition, if
|
|
`self.store_checkpoints_purge` is True, remove any checkpoints older
|
|
than `self.store_checkpoints_purge` epochs old.
|
|
"""
|
|
if self.store_checkpoints and (
|
|
accelerator is None or accelerator.is_local_main_process
|
|
):
|
|
if self.store_checkpoints_purge > 0:
|
|
for prev_epoch in range(epoch - self.store_checkpoints_purge):
|
|
model_io.purge_epoch(exp_dir, prev_epoch)
|
|
outfile = model_io.get_checkpoint(exp_dir, epoch)
|
|
unwrapped_model = (
|
|
model if accelerator is None else accelerator.unwrap_model(model)
|
|
)
|
|
model_io.safe_save_model(
|
|
unwrapped_model, stats, outfile, optimizer=optimizer
|
|
)
|