David Novotny 80fc0ee0b6 Better seeding of random engines
Summary: Currently, seeds are set only inside the train loop. But this does not ensure that the model weights are initialized the same way everywhere which makes all experiments irreproducible. This diff fixes it.

Reviewed By: bottler

Differential Revision: D38315840

fbshipit-source-id: 3d2ecebbc36072c2b68dd3cd8c5e30708e7dd808
2022-08-01 10:03:09 -07:00

358 lines
13 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import logging
import time
from typing import Any, Optional
import torch
from accelerate import Accelerator
from pytorch3d.implicitron.dataset.data_source import Task
from pytorch3d.implicitron.evaluation.evaluator import EvaluatorBase
from pytorch3d.implicitron.models.base_model import ImplicitronModelBase
from pytorch3d.implicitron.models.generic_model import EvaluationMode
from pytorch3d.implicitron.tools import model_io, vis_utils
from pytorch3d.implicitron.tools.config import (
registry,
ReplaceableBase,
run_auto_creation,
)
from pytorch3d.implicitron.tools.stats import Stats
from pytorch3d.renderer.cameras import CamerasBase
from torch.utils.data import DataLoader
from .utils import seed_all_random_engines
logger = logging.getLogger(__name__)
class TrainingLoopBase(ReplaceableBase):
def run(
self,
train_loader: DataLoader,
val_loader: Optional[DataLoader],
test_loader: Optional[DataLoader],
model: ImplicitronModelBase,
optimizer: torch.optim.Optimizer,
scheduler: Any,
**kwargs,
) -> None:
raise NotImplementedError()
@registry.register
class ImplicitronTrainingLoop(TrainingLoopBase): # pyre-ignore [13]
"""
Members:
eval_only: If True, only run evaluation using the test dataloader.
evaluator: An EvaluatorBase instance, used to evaluate training results.
max_epochs: Train for this many epochs. Note that if the model was
loaded from a checkpoint, we will restart training at the appropriate
epoch and run for (max_epochs - checkpoint_epoch) epochs.
store_checkpoints: If True, store model and optimizer state checkpoints.
store_checkpoints_purge: If >= 0, remove any checkpoints older or equal
to this many epochs.
test_interval: Evaluate on a test dataloader each `test_interval` epochs.
test_when_finished: If True, evaluate on a test dataloader when training
completes.
validation_interval: Validate each `validation_interval` epochs.
clip_grad: Optionally clip the gradient norms.
If set to a value <=0.0, no clipping
metric_print_interval: The batch interval at which the stats should be
logged.
visualize_interval: The batch interval at which the visualizations
should be plotted
"""
# Parameters of the outer training loop.
eval_only: bool = False
evaluator: EvaluatorBase
evaluator_class_type: str = "ImplicitronEvaluator"
max_epochs: int = 1000
store_checkpoints: bool = True
store_checkpoints_purge: int = 1
test_interval: int = -1
test_when_finished: bool = False
validation_interval: int = 1
# Parameters of a single training-validation step.
clip_grad: float = 0.0
metric_print_interval: int = 5
visualize_interval: int = 1000
def __post_init__(self):
run_auto_creation(self)
def run(
self,
*,
train_loader: DataLoader,
val_loader: Optional[DataLoader],
test_loader: Optional[DataLoader],
model: ImplicitronModelBase,
optimizer: torch.optim.Optimizer,
scheduler: Any,
accelerator: Optional[Accelerator],
all_train_cameras: Optional[CamerasBase],
device: torch.device,
exp_dir: str,
stats: Stats,
seed: int,
task: Task,
**kwargs,
):
"""
Entry point to run the training and validation loops
based on the specified config file.
"""
start_epoch = stats.epoch + 1
assert scheduler.last_epoch == stats.epoch + 1
assert scheduler.last_epoch == start_epoch
# only run evaluation on the test dataloader
if self.eval_only:
if test_loader is not None:
self.evaluator.run(
all_train_cameras=all_train_cameras,
dataloader=test_loader,
device=device,
dump_to_json=True,
epoch=stats.epoch,
exp_dir=exp_dir,
model=model,
task=task,
)
return
else:
raise ValueError(
"Cannot evaluate and dump results to json, no test data provided."
)
# loop through epochs
for epoch in range(start_epoch, self.max_epochs):
# automatic new_epoch and plotting of stats at every epoch start
with stats:
# Make sure to re-seed random generators to ensure reproducibility
# even after restart.
seed_all_random_engines(seed + epoch)
cur_lr = float(scheduler.get_last_lr()[-1])
logger.debug(f"scheduler lr = {cur_lr:1.2e}")
# train loop
self._training_or_validation_epoch(
accelerator=accelerator,
device=device,
epoch=epoch,
loader=train_loader,
model=model,
optimizer=optimizer,
stats=stats,
validation=False,
)
# val loop (optional)
if val_loader is not None and epoch % self.validation_interval == 0:
self._training_or_validation_epoch(
accelerator=accelerator,
device=device,
epoch=epoch,
loader=val_loader,
model=model,
optimizer=optimizer,
stats=stats,
validation=True,
)
# eval loop (optional)
if (
test_loader is not None
and self.test_interval > 0
and epoch % self.test_interval == 0
):
self.evaluator.run(
all_train_cameras=all_train_cameras,
device=device,
dataloader=test_loader,
model=model,
task=task,
)
assert stats.epoch == epoch, "inconsistent stats!"
self._checkpoint(accelerator, epoch, exp_dir, model, optimizer, stats)
scheduler.step()
new_lr = float(scheduler.get_last_lr()[-1])
if new_lr != cur_lr:
logger.info(f"LR change! {cur_lr} -> {new_lr}")
if self.test_when_finished:
if test_loader is not None:
self.evaluator.run(
all_train_cameras=all_train_cameras,
device=device,
dump_to_json=True,
epoch=stats.epoch,
exp_dir=exp_dir,
dataloader=test_loader,
model=model,
task=task,
)
else:
raise ValueError(
"Cannot evaluate and dump results to json, no test data provided."
)
def _training_or_validation_epoch(
self,
epoch: int,
loader: DataLoader,
model: ImplicitronModelBase,
optimizer: torch.optim.Optimizer,
stats: Stats,
validation: bool,
*,
accelerator: Optional[Accelerator],
bp_var: str = "objective",
device: torch.device,
**kwargs,
) -> None:
"""
This is the main loop for training and evaluation including:
model forward pass, loss computation, backward pass and visualization.
Args:
epoch: The index of the current epoch
loader: The dataloader to use for the loop
model: The model module optionally loaded from checkpoint
optimizer: The optimizer module optionally loaded from checkpoint
stats: The stats struct, also optionally loaded from checkpoint
validation: If true, run the loop with the model in eval mode
and skip the backward pass
accelerator: An optional Accelerator instance.
bp_var: The name of the key in the model output `preds` dict which
should be used as the loss for the backward pass.
device: The device on which to run the model.
"""
if validation:
model.eval()
trainmode = "val"
else:
model.train()
trainmode = "train"
t_start = time.time()
# get the visdom env name
visdom_env_imgs = stats.visdom_env + "_images_" + trainmode
viz = vis_utils.get_visdom_connection(
server=stats.visdom_server,
port=stats.visdom_port,
)
# Iterate through the batches
n_batches = len(loader)
for it, net_input in enumerate(loader):
last_iter = it == n_batches - 1
# move to gpu where possible (in place)
net_input = net_input.to(device)
# run the forward pass
if not validation:
optimizer.zero_grad()
preds = model(
**{**net_input, "evaluation_mode": EvaluationMode.TRAINING}
)
else:
with torch.no_grad():
preds = model(
**{**net_input, "evaluation_mode": EvaluationMode.EVALUATION}
)
# make sure we dont overwrite something
assert all(k not in preds for k in net_input.keys())
# merge everything into one big dict
preds.update(net_input)
# update the stats logger
stats.update(preds, time_start=t_start, stat_set=trainmode)
# pyre-ignore [16]
assert stats.it[trainmode] == it, "inconsistent stat iteration number!"
# print textual status update
if it % self.metric_print_interval == 0 or last_iter:
stats.print(stat_set=trainmode, max_it=n_batches)
# visualize results
if (
(accelerator is None or accelerator.is_local_main_process)
and self.visualize_interval > 0
and it % self.visualize_interval == 0
):
prefix = f"e{stats.epoch}_it{stats.it[trainmode]}"
if hasattr(model, "visualize"):
# pyre-ignore [29]
model.visualize(
viz,
visdom_env_imgs,
preds,
prefix,
)
# optimizer step
if not validation:
loss = preds[bp_var]
assert torch.isfinite(loss).all(), "Non-finite loss!"
# backprop
if accelerator is None:
loss.backward()
else:
accelerator.backward(loss)
if self.clip_grad > 0.0:
# Optionally clip the gradient norms.
total_norm = torch.nn.utils.clip_grad_norm(
model.parameters(), self.clip_grad
)
if total_norm > self.clip_grad:
logger.debug(
f"Clipping gradient: {total_norm}"
+ f" with coef {self.clip_grad / float(total_norm)}."
)
optimizer.step()
def _checkpoint(
self,
accelerator: Optional[Accelerator],
epoch: int,
exp_dir: str,
model: ImplicitronModelBase,
optimizer: torch.optim.Optimizer,
stats: Stats,
):
"""
Save a model and its corresponding Stats object to a file, if
`self.store_checkpoints` is True. In addition, if
`self.store_checkpoints_purge` is True, remove any checkpoints older
than `self.store_checkpoints_purge` epochs old.
"""
if self.store_checkpoints and (
accelerator is None or accelerator.is_local_main_process
):
if self.store_checkpoints_purge > 0:
for prev_epoch in range(epoch - self.store_checkpoints_purge):
model_io.purge_epoch(exp_dir, prev_epoch)
outfile = model_io.get_checkpoint(exp_dir, epoch)
unwrapped_model = (
model if accelerator is None else accelerator.unwrap_model(model)
)
model_io.safe_save_model(
unwrapped_model, stats, outfile, optimizer=optimizer
)