pytorch3d/tests/implicitron/test_frame_data_builder.py
Roman Shapovalov 7aeedd17a4 When bounding boxes are cached in metadata, don’t crash on load_masks=False
Summary:
We currently support caching bounding boxes in MaskAnnotation. If present, they are not re-computed from the mask. However, the masks need to be loaded for the bbox to be set.

This diff fixes that. Even if load_masks / load_blobs are unset, the bounding box can be picked up from the metadata.

Reviewed By: bottler

Differential Revision: D45144918

fbshipit-source-id: 8a2e2c115e96070b6fcdc29cbe57e1cee606ddcd
2023-04-20 07:28:45 -07:00

229 lines
8.8 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import contextlib
import gzip
import os
import unittest
from typing import List
import numpy as np
import torch
from pytorch3d.implicitron.dataset import types
from pytorch3d.implicitron.dataset.dataset_base import FrameData
from pytorch3d.implicitron.dataset.frame_data import FrameDataBuilder
from pytorch3d.implicitron.dataset.utils import (
get_bbox_from_mask,
load_16big_png_depth,
load_1bit_png_mask,
load_depth,
load_depth_mask,
load_image,
load_mask,
safe_as_tensor,
)
from pytorch3d.implicitron.tools.config import get_default_args
from pytorch3d.renderer.cameras import PerspectiveCameras
from tests.common_testing import TestCaseMixin
from tests.implicitron.common_resources import get_skateboard_data
class TestFrameDataBuilder(TestCaseMixin, unittest.TestCase):
def setUp(self):
torch.manual_seed(42)
category = "skateboard"
stack = contextlib.ExitStack()
self.dataset_root, self.path_manager = stack.enter_context(
get_skateboard_data()
)
self.addCleanup(stack.close)
self.image_height = 768
self.image_width = 512
self.frame_data_builder = FrameDataBuilder(
image_height=self.image_height,
image_width=self.image_width,
dataset_root=self.dataset_root,
path_manager=self.path_manager,
)
# loading single frame annotation of dataset (see JsonIndexDataset._load_frames())
frame_file = os.path.join(self.dataset_root, category, "frame_annotations.jgz")
local_file = self.path_manager.get_local_path(frame_file)
with gzip.open(local_file, "rt", encoding="utf8") as zipfile:
frame_annots_list = types.load_dataclass(
zipfile, List[types.FrameAnnotation]
)
self.frame_annotation = frame_annots_list[0]
sequence_annotations_file = os.path.join(
self.dataset_root, category, "sequence_annotations.jgz"
)
local_file = self.path_manager.get_local_path(sequence_annotations_file)
with gzip.open(local_file, "rt", encoding="utf8") as zipfile:
seq_annots_list = types.load_dataclass(
zipfile, List[types.SequenceAnnotation]
)
seq_annots = {entry.sequence_name: entry for entry in seq_annots_list}
self.seq_annotation = seq_annots[self.frame_annotation.sequence_name]
point_cloud = self.seq_annotation.point_cloud
self.frame_data = FrameData(
frame_number=safe_as_tensor(self.frame_annotation.frame_number, torch.long),
frame_timestamp=safe_as_tensor(
self.frame_annotation.frame_timestamp, torch.float
),
sequence_name=self.frame_annotation.sequence_name,
sequence_category=self.seq_annotation.category,
camera_quality_score=safe_as_tensor(
self.seq_annotation.viewpoint_quality_score, torch.float
),
point_cloud_quality_score=safe_as_tensor(
point_cloud.quality_score, torch.float
)
if point_cloud is not None
else None,
)
def test_frame_data_builder_args(self):
# test that FrameDataBuilder works with get_default_args
get_default_args(FrameDataBuilder)
def test_fix_point_cloud_path(self):
"""Some files in Co3Dv2 have an accidental absolute path stored."""
original_path = "some_file_path"
modified_path = self.frame_data_builder._fix_point_cloud_path(original_path)
self.assertIn(original_path, modified_path)
self.assertIn(self.frame_data_builder.dataset_root, modified_path)
def test_load_and_adjust_frame_data(self):
self.frame_data.image_size_hw = safe_as_tensor(
self.frame_annotation.image.size, torch.long
)
self.frame_data.effective_image_size_hw = self.frame_data.image_size_hw
fg_mask_np, mask_path = self.frame_data_builder._load_fg_probability(
self.frame_annotation
)
self.frame_data.mask_path = mask_path
self.frame_data.fg_probability = safe_as_tensor(fg_mask_np, torch.float)
mask_thr = self.frame_data_builder.box_crop_mask_thr
bbox_xywh = get_bbox_from_mask(fg_mask_np, mask_thr)
self.frame_data.bbox_xywh = safe_as_tensor(bbox_xywh, torch.long)
self.assertIsNotNone(self.frame_data.mask_path)
self.assertTrue(torch.is_tensor(self.frame_data.fg_probability))
self.assertTrue(torch.is_tensor(self.frame_data.bbox_xywh))
# assert bboxes shape
self.assertEqual(self.frame_data.bbox_xywh.shape, torch.Size([4]))
(
self.frame_data.image_rgb,
self.frame_data.image_path,
) = self.frame_data_builder._load_images(
self.frame_annotation, self.frame_data.fg_probability
)
self.assertEqual(type(self.frame_data.image_rgb), np.ndarray)
self.assertIsNotNone(self.frame_data.image_path)
(
self.frame_data.depth_map,
depth_path,
self.frame_data.depth_mask,
) = self.frame_data_builder._load_mask_depth(
self.frame_annotation,
self.frame_data.fg_probability,
)
self.assertTrue(torch.is_tensor(self.frame_data.depth_map))
self.assertIsNotNone(depth_path)
self.assertTrue(torch.is_tensor(self.frame_data.depth_mask))
new_size = (self.image_height, self.image_width)
if self.frame_data_builder.box_crop:
self.frame_data.crop_by_metadata_bbox_(
self.frame_data_builder.box_crop_context,
)
# assert image and mask shapes after resize
self.frame_data.resize_frame_(
new_size_hw=torch.tensor(new_size, dtype=torch.long),
)
self.assertEqual(
self.frame_data.mask_crop.shape,
torch.Size([1, self.image_height, self.image_width]),
)
self.assertEqual(
self.frame_data.image_rgb.shape,
torch.Size([3, self.image_height, self.image_width]),
)
self.assertEqual(
self.frame_data.mask_crop.shape,
torch.Size([1, self.image_height, self.image_width]),
)
self.assertEqual(
self.frame_data.fg_probability.shape,
torch.Size([1, self.image_height, self.image_width]),
)
self.assertEqual(
self.frame_data.depth_map.shape,
torch.Size([1, self.image_height, self.image_width]),
)
self.assertEqual(
self.frame_data.depth_mask.shape,
torch.Size([1, self.image_height, self.image_width]),
)
self.frame_data.camera = self.frame_data_builder._get_pytorch3d_camera(
self.frame_annotation,
)
self.assertEqual(type(self.frame_data.camera), PerspectiveCameras)
def test_load_image(self):
path = os.path.join(self.dataset_root, self.frame_annotation.image.path)
local_path = self.path_manager.get_local_path(path)
image = load_image(local_path)
self.assertEqual(image.dtype, np.float32)
self.assertLessEqual(np.max(image), 1.0)
self.assertGreaterEqual(np.min(image), 0.0)
def test_load_mask(self):
path = os.path.join(self.dataset_root, self.frame_annotation.mask.path)
mask = load_mask(path)
self.assertEqual(mask.dtype, np.float32)
self.assertLessEqual(np.max(mask), 1.0)
self.assertGreaterEqual(np.min(mask), 0.0)
def test_load_depth(self):
path = os.path.join(self.dataset_root, self.frame_annotation.depth.path)
depth_map = load_depth(path, self.frame_annotation.depth.scale_adjustment)
self.assertEqual(depth_map.dtype, np.float32)
self.assertEqual(len(depth_map.shape), 3)
def test_load_16big_png_depth(self):
path = os.path.join(self.dataset_root, self.frame_annotation.depth.path)
depth_map = load_16big_png_depth(path)
self.assertEqual(depth_map.dtype, np.float32)
self.assertEqual(len(depth_map.shape), 2)
def test_load_1bit_png_mask(self):
mask_path = os.path.join(
self.dataset_root, self.frame_annotation.depth.mask_path
)
mask = load_1bit_png_mask(mask_path)
self.assertEqual(mask.dtype, np.float32)
self.assertEqual(len(mask.shape), 2)
def test_load_depth_mask(self):
mask_path = os.path.join(
self.dataset_root, self.frame_annotation.depth.mask_path
)
mask = load_depth_mask(mask_path)
self.assertEqual(mask.dtype, np.float32)
self.assertEqual(len(mask.shape), 3)