pytorch3d/tests/test_shapenet_core.py
Nikhila Ravi 778383eef7 Texture loading and rendering in ShapeNetCore and R2N2 data loaders
Summary:
- Add support for loading textures from ShapeNet Obj files as a texture atlas.
- Support textured rendering of shapenet models

Reviewed By: gkioxari

Differential Revision: D23141143

fbshipit-source-id: 26eb81758d4cdbd6d820b072b58f5c6c08cb90bc
2020-08-21 20:42:17 -07:00

286 lines
11 KiB
Python

# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
"""
Sanity checks for loading ShapeNetCore.
"""
import os
import unittest
from pathlib import Path
import numpy as np
import torch
from common_testing import TestCaseMixin, load_rgb_image
from PIL import Image
from pytorch3d.datasets import ShapeNetCore, collate_batched_meshes
from pytorch3d.renderer import (
FoVPerspectiveCameras,
PointLights,
RasterizationSettings,
look_at_view_transform,
)
from torch.utils.data import DataLoader
# Set the SHAPENET_PATH to the local path to the dataset
SHAPENET_PATH = None
VERSION = 1
# If DEBUG=True, save out images generated in the tests for debugging.
# All saved images have prefix DEBUG_
DEBUG = False
DATA_DIR = Path(__file__).resolve().parent / "data"
class TestShapenetCore(TestCaseMixin, unittest.TestCase):
def setUp(self):
"""
Check if the ShapeNet dataset is provided in the repo.
If not, download this separately and update the shapenet_path`
with the location of the dataset in order to run the tests.
"""
if SHAPENET_PATH is None or not os.path.exists(SHAPENET_PATH):
url = "https://www.shapenet.org/"
msg = (
"ShapeNet data not found, download from %s, update "
"SHAPENET_PATH at the top of the file, and rerun."
)
self.skipTest(msg % url)
def test_load_shapenet_core(self):
"""
Test loading both the entire ShapeNetCore dataset and a subset of the ShapeNetCore
dataset. Check the loaded datasets return items of the correct shapes and types.
"""
# Try loading ShapeNetCore with an invalid version number and catch error.
with self.assertRaises(ValueError) as err:
ShapeNetCore(SHAPENET_PATH, version=3)
self.assertTrue("Version number must be either 1 or 2." in str(err.exception))
# Load ShapeNetCore without specifying any particular categories.
shapenet_dataset = ShapeNetCore(SHAPENET_PATH, version=VERSION)
# Count the number of grandchildren directories (which should be equal to
# the total number of objects in the dataset) by walking through the given
# directory.
wnsynset_list = [
wnsynset
for wnsynset in os.listdir(SHAPENET_PATH)
if os.path.isdir(os.path.join(SHAPENET_PATH, wnsynset))
]
model_num_list = [
(len(next(os.walk(os.path.join(SHAPENET_PATH, wnsynset)))[1]))
for wnsynset in wnsynset_list
]
# Check total number of objects in the dataset is correct.
self.assertEqual(len(shapenet_dataset), sum(model_num_list))
# Randomly retrieve an object from the dataset.
rand_obj = shapenet_dataset[torch.randint(len(shapenet_dataset), (1,))]
# Check that data types and shapes of items returned by __getitem__ are correct.
verts, faces = rand_obj["verts"], rand_obj["faces"]
self.assertTrue(verts.dtype == torch.float32)
self.assertTrue(faces.dtype == torch.int64)
self.assertEqual(verts.ndim, 2)
self.assertEqual(verts.shape[-1], 3)
self.assertEqual(faces.ndim, 2)
self.assertEqual(faces.shape[-1], 3)
# Load six categories from ShapeNetCore.
# Specify categories with a combination of offsets and labels.
shapenet_subset = ShapeNetCore(
SHAPENET_PATH,
synsets=[
"04330267",
"guitar",
"02801938",
"birdhouse",
"03991062",
"tower",
],
version=1,
)
subset_offsets = [
"04330267",
"03467517",
"02801938",
"02843684",
"03991062",
"04460130",
]
subset_model_nums = [
(len(next(os.walk(os.path.join(SHAPENET_PATH, offset)))[1]))
for offset in subset_offsets
]
self.assertEqual(len(shapenet_subset), sum(subset_model_nums))
def test_collate_models(self):
"""
Test collate_batched_meshes returns items of the correct shapes and types.
Check that when collate_batched_meshes is passed to Dataloader, batches of
the correct shapes and types are returned.
"""
# Load ShapeNetCore without specifying any particular categories.
shapenet_dataset = ShapeNetCore(SHAPENET_PATH)
# Randomly retrieve several objects from the dataset.
rand_idxs = torch.randint(len(shapenet_dataset), (6,))
rand_objs = [shapenet_dataset[idx] for idx in rand_idxs]
# Collate the randomly selected objects
collated_meshes = collate_batched_meshes(rand_objs)
verts, faces = (collated_meshes["verts"], collated_meshes["faces"])
self.assertEqual(len(verts), 6)
self.assertEqual(len(faces), 6)
# Pass the custom collate_fn function to DataLoader and check elements
# in batch have the correct shape.
batch_size = 12
shapenet_core_loader = DataLoader(
shapenet_dataset, batch_size=batch_size, collate_fn=collate_batched_meshes
)
it = iter(shapenet_core_loader)
object_batch = next(it)
self.assertEqual(len(object_batch["synset_id"]), batch_size)
self.assertEqual(len(object_batch["model_id"]), batch_size)
self.assertEqual(len(object_batch["label"]), batch_size)
self.assertEqual(object_batch["mesh"].verts_padded().shape[0], batch_size)
self.assertEqual(object_batch["mesh"].faces_padded().shape[0], batch_size)
def test_catch_render_arg_errors(self):
"""
Test rendering ShapeNetCore with invalid model_ids, categories or indices,
and catch corresponding errors.
"""
# Load ShapeNetCore.
shapenet_dataset = ShapeNetCore(SHAPENET_PATH)
# Try loading with an invalid model_id and catch error.
with self.assertRaises(ValueError) as err:
shapenet_dataset.render(model_ids=["piano0"])
self.assertTrue("not found in the loaded dataset" in str(err.exception))
# Try loading with an index out of bounds and catch error.
with self.assertRaises(IndexError) as err:
shapenet_dataset.render(idxs=[100000])
self.assertTrue("are out of bounds" in str(err.exception))
def test_render_shapenet_core(self):
"""
Test rendering objects from ShapeNetCore.
"""
# Setup device and seed for random selections.
device = torch.device("cuda:0")
torch.manual_seed(39)
# Load category piano from ShapeNetCore.
piano_dataset = ShapeNetCore(SHAPENET_PATH, synsets=["piano"])
# Rendering settings.
R, T = look_at_view_transform(1.0, 1.0, 90)
cameras = FoVPerspectiveCameras(R=R, T=T, device=device)
raster_settings = RasterizationSettings(image_size=512)
lights = PointLights(
location=torch.tensor([0.0, 1.0, -2.0], device=device)[None],
# TODO: debug the source of the discrepancy in two images when rendering on GPU.
diffuse_color=((0, 0, 0),),
specular_color=((0, 0, 0),),
device=device,
)
# Render first three models in the piano category.
pianos = piano_dataset.render(
idxs=list(range(3)),
device=device,
cameras=cameras,
raster_settings=raster_settings,
lights=lights,
)
# Check that there are three images in the batch.
self.assertEqual(pianos.shape[0], 3)
# Compare the rendered models to the reference images.
for idx in range(3):
piano_rgb = pianos[idx, ..., :3].squeeze().cpu()
if DEBUG:
Image.fromarray((piano_rgb.numpy() * 255).astype(np.uint8)).save(
DATA_DIR / ("DEBUG_shapenet_core_render_piano_by_idxs_%s.png" % idx)
)
image_ref = load_rgb_image(
"test_shapenet_core_render_piano_%s.png" % idx, DATA_DIR
)
self.assertClose(piano_rgb, image_ref, atol=0.05)
# Render the same piano models but by model_ids this time.
pianos_2 = piano_dataset.render(
model_ids=[
"13394ca47c89f91525a3aaf903a41c90",
"14755c2ee8e693aba508f621166382b0",
"156c4207af6d2c8f1fdc97905708b8ea",
],
device=device,
cameras=cameras,
raster_settings=raster_settings,
lights=lights,
)
# Compare the rendered models to the reference images.
for idx in range(3):
piano_rgb_2 = pianos_2[idx, ..., :3].squeeze().cpu()
if DEBUG:
Image.fromarray((piano_rgb_2.numpy() * 255).astype(np.uint8)).save(
DATA_DIR / ("DEBUG_shapenet_core_render_piano_by_ids_%s.png" % idx)
)
image_ref = load_rgb_image(
"test_shapenet_core_render_piano_%s.png" % idx, DATA_DIR
)
self.assertClose(piano_rgb_2, image_ref, atol=0.05)
#######################
# Render by categories
#######################
# Load ShapeNetCore.
shapenet_dataset = ShapeNetCore(SHAPENET_PATH)
# Render a mixture of categories and specify the number of models to be
# randomly sampled from each category.
mixed_objs = shapenet_dataset.render(
categories=["faucet", "chair"],
sample_nums=[2, 1],
device=device,
cameras=cameras,
raster_settings=raster_settings,
lights=lights,
)
# Compare the rendered models to the reference images.
for idx in range(3):
mixed_rgb = mixed_objs[idx, ..., :3].squeeze().cpu()
if DEBUG:
Image.fromarray((mixed_rgb.numpy() * 255).astype(np.uint8)).save(
DATA_DIR
/ ("DEBUG_shapenet_core_render_mixed_by_categories_%s.png" % idx)
)
image_ref = load_rgb_image(
"test_shapenet_core_render_mixed_by_categories_%s.png" % idx, DATA_DIR
)
self.assertClose(mixed_rgb, image_ref, atol=0.05)
# Render a mixture of categories without specifying sample_nums.
mixed_objs_2 = shapenet_dataset.render(
categories=["faucet", "chair"],
device=device,
cameras=cameras,
raster_settings=raster_settings,
lights=lights,
)
# Compare the rendered models to the reference images.
for idx in range(2):
mixed_rgb_2 = mixed_objs_2[idx, ..., :3].squeeze().cpu()
if DEBUG:
Image.fromarray((mixed_rgb_2.numpy() * 255).astype(np.uint8)).save(
DATA_DIR
/ ("DEBUG_shapenet_core_render_without_sample_nums_%s.png" % idx)
)
image_ref = load_rgb_image(
"test_shapenet_core_render_without_sample_nums_%s.png" % idx, DATA_DIR
)
self.assertClose(mixed_rgb_2, image_ref, atol=0.05)