pytorch3d/tests/test_harmonic_embedding.py
Jeremy Reizenstein 9eeb456e82 Update license for company name
Summary: Update all FB license strings to the new format.

Reviewed By: patricklabatut

Differential Revision: D33403538

fbshipit-source-id: 97a4596c5c888f3c54f44456dc07e718a387a02c
2022-01-04 11:43:38 -08:00

51 lines
2.0 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import unittest
import torch
from common_testing import TestCaseMixin
from pytorch3d.renderer.implicit import HarmonicEmbedding
class TestHarmonicEmbedding(TestCaseMixin, unittest.TestCase):
def setUp(self) -> None:
super().setUp()
torch.manual_seed(1)
def test_correct_output_dim(self):
embed_fun = HarmonicEmbedding(n_harmonic_functions=2, append_input=False)
# input_dims * (2 * n_harmonic_functions + int(append_input))
output_dim = 3 * (2 * 2 + int(False))
self.assertEqual(
output_dim,
embed_fun.get_output_dim_static(
input_dims=3, n_harmonic_functions=2, append_input=False
),
)
self.assertEqual(output_dim, embed_fun.get_output_dim())
def test_correct_frequency_range(self):
embed_fun_log = HarmonicEmbedding(n_harmonic_functions=3)
embed_fun_lin = HarmonicEmbedding(n_harmonic_functions=3, logspace=False)
self.assertClose(embed_fun_log._frequencies, torch.FloatTensor((1.0, 2.0, 4.0)))
self.assertClose(embed_fun_lin._frequencies, torch.FloatTensor((1.0, 2.5, 4.0)))
def test_correct_embed_out(self):
embed_fun = HarmonicEmbedding(n_harmonic_functions=2, append_input=False)
x = torch.randn((1, 5))
D = 5 * 4
embed_out = embed_fun(x)
self.assertEqual(embed_out.shape, (1, D))
# Sum the squares of the respective frequencies
sum_squares = embed_out[0, : D // 2] ** 2 + embed_out[0, D // 2 :] ** 2
self.assertClose(sum_squares, torch.ones((D // 2)))
embed_fun = HarmonicEmbedding(n_harmonic_functions=2, append_input=True)
embed_out = embed_fun(x)
self.assertClose(embed_out.shape, torch.tensor((1, 5 * 5)))
# Last plane in output is the input
self.assertClose(embed_out[..., -5:], x)