pytorch3d/tutorials/camera_position_optimization_with_differentiable_rendering.html
2020-02-05 11:07:42 -08:00

3815 lines
292 KiB
HTML
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!DOCTYPE html><html lang=""><head><meta charSet="utf-8"/><meta http-equiv="X-UA-Compatible" content="IE=edge"/><title>PyTorch3D · A library for deep learning with 3D data</title><meta name="viewport" content="width=device-width"/><meta name="generator" content="Docusaurus"/><meta name="description" content="A library for deep learning with 3D data"/><meta property="og:title" content="PyTorch3D · A library for deep learning with 3D data"/><meta property="og:type" content="website"/><meta property="og:url" content="https://pytorch3d.org/"/><meta property="og:description" content="A library for deep learning with 3D data"/><meta property="og:image" content="https://pytorch3d.org/img/pytorch3dlogoicon.svg"/><meta name="twitter:card" content="summary"/><meta name="twitter:image" content="https://pytorch3d.org/img/pytorch3dlogoicon.svg"/><link rel="shortcut icon" href="/img/pytorch3dfavicon.png"/><link rel="stylesheet" href="//cdnjs.cloudflare.com/ajax/libs/highlight.js/9.12.0/styles/default.min.css"/><script>
(function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){
(i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o),
m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m)
})(window,document,'script','https://www.google-analytics.com/analytics.js','ga');
ga('create', 'UA-157376881-1', 'auto');
ga('send', 'pageview');
</script><script type="text/javascript" src="https://buttons.github.io/buttons.js"></script><script src="/js/scrollSpy.js"></script><link rel="stylesheet" href="/css/main.css"/><script src="/js/codetabs.js"></script></head><body><div class="fixedHeaderContainer"><div class="headerWrapper wrapper"><header><a href="/"><img class="logo" src="/img/pytorch3dfavicon.png" alt="PyTorch3D"/><h2 class="headerTitleWithLogo">PyTorch3D</h2></a><div class="navigationWrapper navigationSlider"><nav class="slidingNav"><ul class="nav-site nav-site-internal"><li class=""><a href="/docs/why_pytorch3d" target="_self">Docs</a></li><li class=""><a href="/tutorials" target="_self">Tutorials</a></li><li class=""><a href="https://pytorch3d.readthedocs.io/" target="_self">API</a></li><li class=""><a href="https://github.com/facebookresearch/pytorch3d" target="_self">GitHub</a></li></ul></nav></div></header></div></div><div class="navPusher"><div class="docMainWrapper wrapper"><div class="container docsNavContainer" id="docsNav"><nav class="toc"><div class="toggleNav"><section class="navWrapper wrapper"><div class="navBreadcrumb wrapper"><div class="navToggle" id="navToggler"><div class="hamburger-menu"><div class="line1"></div><div class="line2"></div><div class="line3"></div></div></div><h2><i></i><span></span></h2><div class="tocToggler" id="tocToggler"><i class="icon-toc"></i></div></div><div class="navGroups"><div class="navGroup"><h3 class="navGroupCategoryTitle">Tutorials</h3><ul class=""><li class="navListItem"><a class="navItem" href="/tutorials/">Overview</a></li></ul></div><div class="navGroup"><h3 class="navGroupCategoryTitle">3D operators</h3><ul class=""><li class="navListItem"><a class="navItem" href="/tutorials/deform_source_mesh_to_target_mesh">Fit Mesh</a></li><li class="navListItem"><a class="navItem" href="/tutorials/bundle_adjustment">Bundle Adjustment</a></li></ul></div><div class="navGroup"><h3 class="navGroupCategoryTitle">Rendering</h3><ul class=""><li class="navListItem"><a class="navItem" href="/tutorials/render_textured_meshes">Render Textured Meshes</a></li><li class="navListItem navListItemActive"><a class="navItem" href="/tutorials/camera_position_optimization_with_differentiable_rendering">Camera Position Optimization</a></li></ul></div></div></section></div><script>
var coll = document.getElementsByClassName('collapsible');
var checkActiveCategory = true;
for (var i = 0; i < coll.length; i++) {
var links = coll[i].nextElementSibling.getElementsByTagName('*');
if (checkActiveCategory){
for (var j = 0; j < links.length; j++) {
if (links[j].classList.contains('navListItemActive')){
coll[i].nextElementSibling.classList.toggle('hide');
coll[i].childNodes[1].classList.toggle('rotate');
checkActiveCategory = false;
break;
}
}
}
coll[i].addEventListener('click', function() {
var arrow = this.childNodes[1];
arrow.classList.toggle('rotate');
var content = this.nextElementSibling;
content.classList.toggle('hide');
});
}
document.addEventListener('DOMContentLoaded', function() {
createToggler('#navToggler', '#docsNav', 'docsSliderActive');
createToggler('#tocToggler', 'body', 'tocActive');
var headings = document.querySelector('.toc-headings');
headings && headings.addEventListener('click', function(event) {
var el = event.target;
while(el !== headings){
if (el.tagName === 'A') {
document.body.classList.remove('tocActive');
break;
} else{
el = el.parentNode;
}
}
}, false);
function createToggler(togglerSelector, targetSelector, className) {
var toggler = document.querySelector(togglerSelector);
var target = document.querySelector(targetSelector);
if (!toggler) {
return;
}
toggler.onclick = function(event) {
event.preventDefault();
target.classList.toggle(className);
};
}
});
</script></nav></div><div class="container mainContainer"><div class="wrapper"><div class="tutorialButtonsWrapper"><div class="colabButtonWrapper"><a href="https://colab.research.google.com/github/facebookresearch/pytorch3d/blob/master/docs/tutorials/camera_position_optimization_with_differentiable_rendering.ipynb"><img align="left" src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a></div><div class="tutorialButtonWrapper buttonWrapper"><a class="tutorialButton button" download="" href="/files/camera_position_optimization_with_differentiable_rendering.ipynb" target="_blank"><svg aria-hidden="true" focusable="false" data-prefix="fas" data-icon="file-download" class="svg-inline--fa fa-file-download fa-w-12" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 384 512"><path fill="currentColor" d="M224 136V0H24C10.7 0 0 10.7 0 24v464c0 13.3 10.7 24 24 24h336c13.3 0 24-10.7 24-24V160H248c-13.2 0-24-10.8-24-24zm76.45 211.36l-96.42 95.7c-6.65 6.61-17.39 6.61-24.04 0l-96.42-95.7C73.42 337.29 80.54 320 94.82 320H160v-80c0-8.84 7.16-16 16-16h32c8.84 0 16 7.16 16 16v80h65.18c14.28 0 21.4 17.29 11.27 27.36zM377 105L279.1 7c-4.5-4.5-10.6-7-17-7H256v128h128v-6.1c0-6.3-2.5-12.4-7-16.9z"></path></svg>Download Tutorial Jupyter Notebook</a></div><div class="tutorialButtonWrapper buttonWrapper"><a class="tutorialButton button" download="" href="/files/camera_position_optimization_with_differentiable_rendering.py" target="_blank"><svg aria-hidden="true" focusable="false" data-prefix="fas" data-icon="file-download" class="svg-inline--fa fa-file-download fa-w-12" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 384 512"><path fill="currentColor" d="M224 136V0H24C10.7 0 0 10.7 0 24v464c0 13.3 10.7 24 24 24h336c13.3 0 24-10.7 24-24V160H248c-13.2 0-24-10.8-24-24zm76.45 211.36l-96.42 95.7c-6.65 6.61-17.39 6.61-24.04 0l-96.42-95.7C73.42 337.29 80.54 320 94.82 320H160v-80c0-8.84 7.16-16 16-16h32c8.84 0 16 7.16 16 16v80h65.18c14.28 0 21.4 17.29 11.27 27.36zM377 105L279.1 7c-4.5-4.5-10.6-7-17-7H256v128h128v-6.1c0-6.3-2.5-12.4-7-16.9z"></path></svg>Download Tutorial Source Code</a></div></div><div class="tutorialBody">
<script
src="https://cdnjs.cloudflare.com/ajax/libs/require.js/2.1.10/require.min.js">
</script>
<script
src="https://cdnjs.cloudflare.com/ajax/libs/jquery/2.0.3/jquery.min.js">
</script>
<div class="notebook">
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In [5]:</div>
<div class="inner_cell">
<div class="input_area">
<div class="highlight hl-ipython3"><pre><span></span><span class="c1"># Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.</span>
</pre></div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div><div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<h1 id="Camera-position-optimization-using-differentiable-rendering">Camera position optimization using differentiable rendering<a class="anchor-link" href="#Camera-position-optimization-using-differentiable-rendering"></a></h1><p>In this tutorial we will learn the [x, y, z] position of a camera given a reference image using differentiable rendering.</p>
<p>We will first initialize a renderer with a starting position for the camera. We will then use this to generate an image, compute a loss with the reference image, and finally backpropagate through the entire pipeline to update the position of the camera.</p>
<p>This tutorial shows how to:</p>
<ul>
<li>load a mesh from an <code>.obj</code> file</li>
<li>initialize a <code>Camera</code>, <code>Shader</code> and <code>Renderer</code>,</li>
<li>render a mesh</li>
<li>set up an optimization loop with a loss function and optimizer</li>
</ul>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div><div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<h2 id="Set-up-and-imports">Set up and imports<a class="anchor-link" href="#Set-up-and-imports"></a></h2>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In [5]:</div>
<div class="inner_cell">
<div class="input_area">
<div class="highlight hl-ipython3"><pre><span></span><span class="kn">import</span> <span class="nn">os</span>
<span class="kn">import</span> <span class="nn">torch</span>
<span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span>
<span class="kn">from</span> <span class="nn">tqdm</span> <span class="kn">import</span> <span class="n">tqdm_notebook</span>
<span class="kn">import</span> <span class="nn">imageio</span>
<span class="kn">import</span> <span class="nn">torch.nn</span> <span class="k">as</span> <span class="nn">nn</span>
<span class="kn">import</span> <span class="nn">torch.nn.functional</span> <span class="k">as</span> <span class="nn">F</span>
<span class="kn">import</span> <span class="nn">matplotlib.pyplot</span> <span class="k">as</span> <span class="nn">plt</span>
<span class="kn">from</span> <span class="nn">skimage</span> <span class="kn">import</span> <span class="n">img_as_ubyte</span>
<span class="c1"># io utils</span>
<span class="kn">from</span> <span class="nn">pytorch3d.io</span> <span class="kn">import</span> <span class="n">load_obj</span>
<span class="c1"># datastructures</span>
<span class="kn">from</span> <span class="nn">pytorch3d.structures</span> <span class="kn">import</span> <span class="n">Meshes</span><span class="p">,</span> <span class="n">Textures</span>
<span class="c1"># 3D transformations functions</span>
<span class="kn">from</span> <span class="nn">pytorch3d.transforms</span> <span class="kn">import</span> <span class="n">Rotate</span><span class="p">,</span> <span class="n">Translate</span>
<span class="c1"># rendering components</span>
<span class="kn">from</span> <span class="nn">pytorch3d.renderer</span> <span class="kn">import</span> <span class="p">(</span>
<span class="n">OpenGLPerspectiveCameras</span><span class="p">,</span> <span class="n">look_at_view_transform</span><span class="p">,</span> <span class="n">look_at_rotation</span><span class="p">,</span>
<span class="n">RasterizationSettings</span><span class="p">,</span> <span class="n">MeshRenderer</span><span class="p">,</span> <span class="n">MeshRasterizer</span><span class="p">,</span> <span class="n">BlendParams</span><span class="p">,</span>
<span class="n">SilhouetteShader</span><span class="p">,</span> <span class="n">PhongShader</span><span class="p">,</span> <span class="n">PointLights</span>
<span class="p">)</span>
</pre></div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div><div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<h3 id="Load-the-Obj">Load the Obj<a class="anchor-link" href="#Load-the-Obj"></a></h3><p>We will load an obj file and create a <strong>Meshes</strong> object. <strong>Meshes</strong> is a unique datastructure provided in PyTorch3d for working with <strong>batches of meshes of different sizes</strong>. It has several useful class methods which are used in the rendering pipeline.</p>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In [6]:</div>
<div class="inner_cell">
<div class="input_area">
<div class="highlight hl-ipython3"><pre><span></span><span class="c1"># Set the cuda device </span>
<span class="n">device</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">device</span><span class="p">(</span><span class="s2">"cuda:0"</span><span class="p">)</span>
<span class="n">torch</span><span class="o">.</span><span class="n">cuda</span><span class="o">.</span><span class="n">set_device</span><span class="p">(</span><span class="n">device</span><span class="p">)</span>
<span class="c1"># Load the obj and ignore the textures and materials.</span>
<span class="n">verts</span><span class="p">,</span> <span class="n">faces_idx</span><span class="p">,</span> <span class="n">_</span> <span class="o">=</span> <span class="n">load_obj</span><span class="p">(</span><span class="s2">"./data/teapot.obj"</span><span class="p">)</span>
<span class="n">faces</span> <span class="o">=</span> <span class="n">faces_idx</span><span class="o">.</span><span class="n">verts_idx</span>
<span class="c1"># Initialize each vertex to be white in color.</span>
<span class="n">verts_rgb</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">ones_like</span><span class="p">(</span><span class="n">verts</span><span class="p">)[</span><span class="kc">None</span><span class="p">]</span> <span class="c1"># (1, V, 3)</span>
<span class="n">textures</span> <span class="o">=</span> <span class="n">Textures</span><span class="p">(</span><span class="n">verts_rgb</span><span class="o">=</span><span class="n">verts_rgb</span><span class="o">.</span><span class="n">to</span><span class="p">(</span><span class="n">device</span><span class="p">))</span>
<span class="c1"># Create a Meshes object for the teapot. Here we have only one mesh in the batch.</span>
<span class="n">teapot_mesh</span> <span class="o">=</span> <span class="n">Meshes</span><span class="p">(</span>
<span class="n">verts</span><span class="o">=</span><span class="p">[</span><span class="n">verts</span><span class="o">.</span><span class="n">to</span><span class="p">(</span><span class="n">device</span><span class="p">)],</span>
<span class="n">faces</span><span class="o">=</span><span class="p">[</span><span class="n">faces</span><span class="o">.</span><span class="n">to</span><span class="p">(</span><span class="n">device</span><span class="p">)],</span>
<span class="n">textures</span><span class="o">=</span><span class="n">textures</span>
<span class="p">)</span>
</pre></div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div><div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<h2 id="Optimization-setup">Optimization setup<a class="anchor-link" href="#Optimization-setup"></a></h2>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div><div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<h3 id="Create-a-renderer">Create a renderer<a class="anchor-link" href="#Create-a-renderer"></a></h3><p>A <strong>renderer</strong> in PyTorch3d is composed of a <strong>rasterizer</strong> and a <strong>shader</strong> which each have a number of subcomponents such as a <strong>camera</strong> (orthgraphic/perspective). Here we initialize some of these components and use default values for the rest.</p>
<p>For optimizing the camera position we will use a renderer which produces a <strong>silhouette</strong> of the object only and does not apply any <strong>lighting</strong> or <strong>shading</strong>. We will also initialize another renderer which applies full <strong>phong shading</strong> and use this for visualizing the outputs.</p>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In [7]:</div>
<div class="inner_cell">
<div class="input_area">
<div class="highlight hl-ipython3"><pre><span></span><span class="c1"># Initialize an OpenGL perspective camera.</span>
<span class="n">cameras</span> <span class="o">=</span> <span class="n">OpenGLPerspectiveCameras</span><span class="p">(</span><span class="n">device</span><span class="o">=</span><span class="n">device</span><span class="p">)</span>
<span class="c1"># To blend the 100 faces we set a few parameters which control the opacity and the sharpness of </span>
<span class="c1"># edges. Refer to blending.py for more details. </span>
<span class="n">blend_params</span> <span class="o">=</span> <span class="n">BlendParams</span><span class="p">(</span><span class="n">sigma</span><span class="o">=</span><span class="mf">1e-4</span><span class="p">,</span> <span class="n">gamma</span><span class="o">=</span><span class="mf">1e-4</span><span class="p">)</span>
<span class="c1"># Define the settings for rasterization and shading. Here we set the output image to be of size</span>
<span class="c1"># 256x256. To form the blended image we use 100 faces for each pixel. Refer to rasterize_meshes.py</span>
<span class="c1"># for an explanation of this parameter. </span>
<span class="n">raster_settings</span> <span class="o">=</span> <span class="n">RasterizationSettings</span><span class="p">(</span>
<span class="n">image_size</span><span class="o">=</span><span class="mi">256</span><span class="p">,</span>
<span class="n">blur_radius</span><span class="o">=</span><span class="n">np</span><span class="o">.</span><span class="n">log</span><span class="p">(</span><span class="mf">1.</span> <span class="o">/</span> <span class="mf">1e-4</span> <span class="o">-</span> <span class="mf">1.</span><span class="p">)</span> <span class="o">*</span> <span class="n">blend_params</span><span class="o">.</span><span class="n">sigma</span><span class="p">,</span>
<span class="n">faces_per_pixel</span><span class="o">=</span><span class="mi">100</span><span class="p">,</span>
<span class="n">bin_size</span><span class="o">=</span><span class="mi">0</span>
<span class="p">)</span>
<span class="c1"># Create a silhouette mesh renderer by composing a rasterizer and a shader. </span>
<span class="n">silhouette_renderer</span> <span class="o">=</span> <span class="n">MeshRenderer</span><span class="p">(</span>
<span class="n">rasterizer</span><span class="o">=</span><span class="n">MeshRasterizer</span><span class="p">(</span>
<span class="n">cameras</span><span class="o">=</span><span class="n">cameras</span><span class="p">,</span>
<span class="n">raster_settings</span><span class="o">=</span><span class="n">raster_settings</span>
<span class="p">),</span>
<span class="n">shader</span><span class="o">=</span><span class="n">SilhouetteShader</span><span class="p">(</span><span class="n">blend_params</span><span class="o">=</span><span class="n">blend_params</span><span class="p">)</span>
<span class="p">)</span>
<span class="c1"># We will also create a phong renderer. This is simpler and only needs to render one face per pixel.</span>
<span class="n">raster_settings</span> <span class="o">=</span> <span class="n">RasterizationSettings</span><span class="p">(</span>
<span class="n">image_size</span><span class="o">=</span><span class="mi">256</span><span class="p">,</span>
<span class="n">blur_radius</span><span class="o">=</span><span class="mf">0.0</span><span class="p">,</span>
<span class="n">faces_per_pixel</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span>
<span class="n">bin_size</span><span class="o">=</span><span class="mi">0</span>
<span class="p">)</span>
<span class="c1"># We can add a point light in front of the object. </span>
<span class="n">lights</span> <span class="o">=</span> <span class="n">PointLights</span><span class="p">(</span><span class="n">device</span><span class="o">=</span><span class="n">device</span><span class="p">,</span> <span class="n">location</span><span class="o">=</span><span class="p">((</span><span class="mf">2.0</span><span class="p">,</span> <span class="mf">2.0</span><span class="p">,</span> <span class="o">-</span><span class="mf">2.0</span><span class="p">),))</span>
<span class="n">phong_renderer</span> <span class="o">=</span> <span class="n">MeshRenderer</span><span class="p">(</span>
<span class="n">rasterizer</span><span class="o">=</span><span class="n">MeshRasterizer</span><span class="p">(</span>
<span class="n">cameras</span><span class="o">=</span><span class="n">cameras</span><span class="p">,</span>
<span class="n">raster_settings</span><span class="o">=</span><span class="n">raster_settings</span>
<span class="p">),</span>
<span class="n">shader</span><span class="o">=</span><span class="n">PhongShader</span><span class="p">(</span><span class="n">device</span><span class="o">=</span><span class="n">device</span><span class="p">,</span> <span class="n">lights</span><span class="o">=</span><span class="n">lights</span><span class="p">)</span>
<span class="p">)</span>
</pre></div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div><div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<h3 id="Create-a-reference-image">Create a reference image<a class="anchor-link" href="#Create-a-reference-image"></a></h3><p>We will first position the teapot and generate an image. We use helper functions to rotate the teapot to a desired viewpoint. Then we can use the renderers to produce an image. Here we will use both renderers and visualize the silhouette and full shaded image.</p>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In [8]:</div>
<div class="inner_cell">
<div class="input_area">
<div class="highlight hl-ipython3"><pre><span></span><span class="c1"># Select the viewpoint using spherical angles </span>
<span class="n">distance</span> <span class="o">=</span> <span class="mi">3</span> <span class="c1"># distance from camera to the object</span>
<span class="n">elevation</span> <span class="o">=</span> <span class="mf">40.0</span> <span class="c1"># angle of elevation in degrees</span>
<span class="n">azimuth</span> <span class="o">=</span> <span class="mf">10.0</span> <span class="c1"># angle of azimuth rotation in degrees</span>
<span class="c1"># Get the position of the camera based on the spherical angles</span>
<span class="n">R</span><span class="p">,</span> <span class="n">T</span> <span class="o">=</span> <span class="n">look_at_view_transform</span><span class="p">(</span><span class="n">distance</span><span class="p">,</span> <span class="n">elevation</span><span class="p">,</span> <span class="n">azimuth</span><span class="p">,</span> <span class="n">device</span><span class="o">=</span><span class="n">device</span><span class="p">)</span>
<span class="c1"># Render the teapot providing the values of R and T. </span>
<span class="n">silhouete</span> <span class="o">=</span> <span class="n">silhouette_renderer</span><span class="p">(</span><span class="n">meshes_world</span><span class="o">=</span><span class="n">teapot_mesh</span><span class="p">,</span> <span class="n">R</span><span class="o">=</span><span class="n">R</span><span class="p">,</span> <span class="n">T</span><span class="o">=</span><span class="n">T</span><span class="p">)</span>
<span class="n">image_ref</span> <span class="o">=</span> <span class="n">phong_renderer</span><span class="p">(</span><span class="n">meshes_world</span><span class="o">=</span><span class="n">teapot_mesh</span><span class="p">,</span> <span class="n">R</span><span class="o">=</span><span class="n">R</span><span class="p">,</span> <span class="n">T</span><span class="o">=</span><span class="n">T</span><span class="p">)</span>
<span class="n">silhouete</span> <span class="o">=</span> <span class="n">silhouete</span><span class="o">.</span><span class="n">cpu</span><span class="p">()</span><span class="o">.</span><span class="n">numpy</span><span class="p">()</span>
<span class="n">image_ref</span> <span class="o">=</span> <span class="n">image_ref</span><span class="o">.</span><span class="n">cpu</span><span class="p">()</span><span class="o">.</span><span class="n">numpy</span><span class="p">()</span>
<span class="n">plt</span><span class="o">.</span><span class="n">figure</span><span class="p">(</span><span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">10</span><span class="p">,</span> <span class="mi">10</span><span class="p">))</span>
<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">silhouete</span><span class="o">.</span><span class="n">squeeze</span><span class="p">()[</span><span class="o">...</span><span class="p">,</span> <span class="mi">3</span><span class="p">])</span> <span class="c1"># only plot the alpha channel of the RGBA image</span>
<span class="n">plt</span><span class="o">.</span><span class="n">grid</span><span class="p">(</span><span class="s2">"off"</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">2</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">image_ref</span><span class="o">.</span><span class="n">squeeze</span><span class="p">())</span>
<span class="n">plt</span><span class="o">.</span><span class="n">grid</span><span class="p">(</span><span class="s2">"off"</span><span class="p">)</span>
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area">
<div class="prompt"></div>
<div class="output_png output_subarea">
<img src="
AAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo
dHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXmcZGV59/2971Ontu6enhlmZWYY
YNhRQAiouCvm8TEhbtAKLsElJsaoBNzy6pvOGH0SfANGeXiCPkpwwWgjikvccIlrXFEEQdmGQWZl
tp7urq6qU+e+3z/OuU+dOl3VXd1dPQtzff2U3V3L2Xq66sd1/e7fpay1CIIgCIIgCPNHH+wDEARB
EARBeKwgwkoQBEEQBKFHiLASBEEQBEHoESKsBEEQBEEQeoQIK0EQBEEQhB4hwkoQBEEQBKFH5Hq9
waGhoQ8ATwIs8JaRkZGf93ofgiAIC4G8fwmCMF96WrEaGhp6BnDiyMjIk4HXAh/q5fYFQRAWCnn/
EgShF/S6Ffgc4FaAkZGRe4AlQ0NDi3q8D0EQhIVA3r8EQZg3vW4FrgJ+mfr50fi+/dknfvvb35bI
d0E4AnnOc56jDvYxdEDevwRBmJZu3r96LayyO1SxV6Et//zc63u8e0EQDmXeedtfHexDmI5ZvX9d
cMEFC39EgiAcMnzrW9/q6nm9bgVuif8Lz3E0sL3H+xAEQVgI5P1LEIR502th9U3gIiIj6BOArSMj
I2M93ocgCMJCIO9fgiDMm54Kq5GRkR8DvxwaGvoxcC3wxl5uXxAEYaGQ9y9BEHpBz3OsRkZG3tnr
bQqCIBwI5P1LEIT5IsnrgiAIgiAIPUKElSAIgiAIQo8QYSUIgiAIgtAjRFgJgiAIgiD0CBFWgiAI
giAIPUKElSAIgiAIQo8QYSUIgiAIgtAjRFgJgiAIgiD0CBFWgiAIgiAIPUKElSAIgiAIQo8QYSUI
giAIgtAjRFgJgiAIgiD0CBFWgiAIgiAIPUKElSAIgiAIQo8QYSUIgiAIgtAjRFgJgiAIgiD0CBFW
giAIgiAIPUKElSAIgiAIQo8QYSUIgiAIgtAjRFgJgiAIgiD0CBFWgiAIgiAIPUKElSAIgiAIQo8Q
YSUIgiAIgtAjRFgJgiAIgiD0CBFWgiAIgiAIPUKElSAIgiAIQo8QYSUIgiAIgtAjRFgJgiAIgiD0
CBFWgiAIgiAIPUKElSAIgiAIQo8QYSUIgiAIgtAjRFgJgiAIgiD0CBFWgiAIgiAIPUKElSAIgiAI
Qo8QYSUIgiAIgtAjRFgJgiAIgiD0CBFWgiAIgiAIPUKElSAIgiAIQo8QYSUIgiAIgtAjRFgJgiAI
giD0CBFWgiAIgiAIPSI3lxcNDQ09E7gZ+G18153A+4FPAh6wDXjlyMhIrbeHKwiCMH/kPUwQhIVi
PhWr742MjDwzvr0JeA9w3cjIyNOA+4HX9PA4BUEQeo28hwmC0HN62Qp8JvCl+PsvAxf0cNuCIAgL
jbyHCYIwb+bUCow5bWho6EvAUmAj0Jcqm+8EVvfoGIXDEaVQnocqFFDlMqpYwBbz4OegEUZPqVSx
1Sp2soqt1bBhCNYe7CMXjhzkPUwQhJ4zV2F1X/xGNAIcD3wX8FOPK0A+IY9ElMIbGIB1q9lz1hL2
nqYwx02yYul+1g3sYyBXYzQoUvQC7t27gl37lqMfKrH497D0rv3oh7YR7h0FEx7sMxEe28h7mCAI
C8KchNXIyMgW4LPxjw8MDQ1tB9YNDQ2VRkZGJoE1sflTOILQfX3Y047ngRf0c+mF3+NPF/2a9bmA
svLxlEJnO8/HQGBDgqeH7AgNXxw7g+t/9XTWfSZH+cf3E+7bJxUsYUGQ9zBBEBaKua4KfDmwemRk
5F+GhoZWASuBfwdeAnwq/vr13h+ucCiicjm81at45CXH8Ld/9Tku6n+Yfl0E8vGtM77yABjU8Lal
D3D5s+/lR+f7vOY//4JTPrwP8/sHsI3GAToT4UhB3sOEbvjHf/xHtNZorVFKTfnqbpdffvnBPlTh
EGKurcAvAZ8eGhp6QfzJ+QbgV8AnhoaG/hLYDHy8x8cqHIKoXA7OOoXfvcXne894P2tz/UBxztvz
lcczS4bfvPiDXHjqS9H/dCb+j+7C1mTVu9BT5D1M6Mj73ve+RFBlb+2E1fXXX49Sir/8y7882Icu
HALMtRU4BlzY5qHnzv+QhMMC7aH7yoRnbKA+vI/bT/sPBnV/zzbfr4v856k386qNz2f8ipNQv/49
thFED0p7UJgn8h4mtGN4eJhyudxRVKXFVbvbjTfeCMBll112sE9FOIjMZ1WgcKTgVvjl86hyCZYM
UjnpKB7+H5o3PPtbvHHxPZR1qee7Les8Nx73Fc5/16vp/8zZ+BMGZSylP4yhHt6GGZ+QlYSCIPSE
4eFhSqUSvu/PKKqmE1ee5/HZz36Wl770pQf7lISDhAgrYSpKoctl1OoVmCX9NPp9JlblGd2gqZ08
yZM3bOLtK2/lKcUg9khN76OaD/26yE/+6OPce6ZlQAcUFHyrcjwbv/tCVn9Ps+j3Y3jbdmH2j2Hr
dRFagiDMmuHh4eT7XC6H53ltxVQ3wqpQKJDL5bj55pu5+OKLD+p5CQcHEVZCgsrl0P19mA1refBF
i3jZhd/n6f2/A+AoXeHoXIN+5VNQOTyl48kfC09Z5zmrAFAA4LJFOxm68H9z1/MUX9t/JrdsOpPa
nccz+ACUdoWUH94Pm7ZgxsdFZAmC0JEPf/jDLF68mLvvvhsAa21SdUqLq3bG9ay48jyPYrGYCDPP
87j66qu58sorD/ZpCgcYEVZHMkqhcj66rwQrlzN6xlFsezq87Kn/zWeX/5TBlvZeIRE2hwJlnee8
Apyz7C7euewOKucETFhDYOF7k8fz3i+/hBM+vR91/8OYiYrkYgnCEc573/tezjzzTJYtW0Yul8Na
SxiGhGHIqlWr+M53voPWGmPMFHHlxFNaVLnHc7kcvu/j+34iqowxjI2NceKJJ/LlL385OQalFLVa
jc2bN3PFFVcc1OshLBwirI5QdF8f4VknsvUpZcZPrfGUkx/g7Ss/z5n5cRbpIp7qvWdqIfCUxkNT
8HyWxPcd5+/koks+wPCzz+crX3si675dI3/3I5h9o9h6XapYgnAE8NGPfpRTTz2VfD6yKhhjCIKA
er1OvV5HKYUxhkajQRg2/8Mr3fbL5/MtAiotqNx96Z+VUlhrmZycZGJiItmmTb3naK1Zu3Ytn/vc
5xIht2XLFt7ylrcc4CskLBQirI40tEfu6FU8/LL1vO11I1zUv5WCiv4ZRO298sE+wp7Qr4u8f9Uv
eMef/4BbX3IiH7jrOeR+dgIrf14lf8cmCR8VhMcgH/jAB3jCE55AX18fxhhqtRq1Wo1CoUBfXx9K
KSqVCvV6nW9+85sAeJ6H7/v09/czPj6eCDEnrlxFyomo7FdXxSIWbxMTE9xxxx0YY7DWYozBGMOK
FStaBJb73vM8lixZwk033YTneUxOTvLqV7/6oFw/oTeIsDpS0B7eon5qZ5/AfZdZvv6M/4+T/L4F
NZ4fbDylWeH18frBrbz2/I9Te3KDn9WKvPZLr+fk63YQPviwtAgF4TBneHiYpzzlKSxevBhrLbVa
jXq9zvLly1m6dCm1Wo1Go8ENN9yQCKVcLkd/f38iiNzXwcFB9u3bhzGGgYGBRFx5npc8z92caLLW
Yq0lCAImJiZ44IEHyOWmfrROTExgjCEMQ4wx9PX1JeIqLbgKhQI33ngjhUKBSy655ABdRaGXiLB6
DOPCO+99c55rz/80Ty3upV8V4spUX0/3FVoTb/fQxFOassrzzJLhgZdeT+XiOm965Nnc8X8fz8pv
PEy4fYckvAvCYcLXvvY1lixZQrVaBaBcLlMsFimXy3zyk59EKUU+n8f3o/GPSikWLVqUfO+EFBlR
QyyuALZs2UKhUKBYLCbbcqLMtf7K5TLr1q2jXq9z5513Jm1EUmIt+zWNu8+JtDAM2bNnT3JMV111
VbLSsFwuo5Tida973QJcUaGXiLB6rKI9OOsUcv+ym3tO/BIF5QO98U0d6iKqG8o6z/Xrvsdv3/1t
Xv/iV5C/4RwW3XYP4f79B/vQBEHowM0338yaNWsIgoDx8XE8z6NQKOD7Prfccgta62RlXlpAZcVU
J1z1yQmbWq3WdhUgcSzD0qVLCYKAzZs3J9vI7jd9f/a+NK69mM/nMcawd+9ejDHJcYyNjdHf38/H
P/5x/vzP/3weV1FYaERYPRZRCu+EY9n8d5bbE1E1dwIbYjDkUvEKjwVx5SuPswoe/33WZ/mv9/tc
+cG/5Ogb7xJxJQiHGFdffTVPfOITMcYwPj6OtTZp633jG99IjOb5fL6lXUdK6GQrU6SqVdm2XtYL
5URVehVgsVhk3759aK3ZsWNHYl5vt39HJ1GVvd9ay/LlyzHGsGPHjkRg7d27l0qlwnXXXUe5XBYv
1iHK4f3JKExFe3gnHMc9Vy7lu+d9ZN6iCkAT/dHXbAODjVbiZUTVgRRZoTWE1iTft7t/NnhK85xS
yPvefAP7//hUlP/Y9Z0JwuHGNddcw7nnnsvExATj4+MEQYC1lnvuuYdvf/vb5PN5SqUSxWKxY0I6
01StsqKqVqsxOTnZ8hzf9ymVSpTLZQYGBli0aBF9fX309fVRKpU45phjKBaLLSZ3581qNwpnphE5
7rW+77NmzRrWrl2bHEutVmPnzp1s376dj33sYwfgNyDMFqlYPYZQuRw84VQ2vR1+8MQPsMKb3ey+
0BoMqWXBsaAyWML4v+DcfenXcICFlaf0FHHlxJ67fy7H87xShf+44vfsvm8D9s57xdguCAeZa665
hnPOOYeJiQmCIEBrzebNm9m5cyee55HP5xMhM1Prz1Wh0r4mh7uvEfssnU+qWCzS399Pf39/4uNy
vis3+qbRaFCv1xkcHCQIAoIgSCpM7VYBtmOmNqW1lvXr12Ot5eGHHwagWq3y8MMP8+///u9SuTrE
kIrVYwXtYc49nf5rtvHr829gba57UVWzATUbYLAENhITaVFlMHhKpRLXm7SrXvWadpWodvt1wrBB
OOfK1XXHfI3fvaWP3DFroAtPhiAIC4OLThgfH6dWqwFw7733JqIqHYPQLsQzS7ZFl77fvSaXy1Eq
lejr62PRokUMDAzQ399PsVikWCxSKpUST5fWGmstjUYj8Xa5x53gy1avshWsmYY6p6tX7uu6deta
jn/z5s184hOfWODfhjAbpGL1GCG3ZjWb39bg1uO+SkF138qKRIulYgN8pVOrBiNvVc0GhFg8FDk1
dYTNgfRatduXE37GWnzl4QGhVTQIadgw8YV1e4yDusTPn/tBzqtcwanvq9PYtn1BzkUQhM588IMf
5PTTT2d8fJxGo8G2bdsYHx9nYmIiESzuxjSG8U6081x5ntfi3XIVMVcNcwGjAGEYtmRXOf+VMQbf
91FKEYZhi2erXbRCu587nYOrommtWb9+PcSiylWxPv3pT3PppZd2eYWFhUSE1YFAKXShAJ4HWoMx
oDUq76P6+6L7wxBbqWKrVQhDiHv+ZErXNmiANS3hlsrPs/XCY/jiOe+nrLurVGVFSlF5FJQ/RYBo
NBrw1NQWoMGiUW0FT68El9uPwaDRLdMJs1Wp9D6j446OebbHsczr47YLr+ZFm97OmuvHMKkEZUEQ
Fpbh4WHWrFnDxMQEjUaDnTt3JqIqG9TZrvU3XawBKSHjhEr6Oa5ClN6Hq4i5ETikwkPd9pyISm/H
CS1i8eXEVVbUdSMEs+eotSYIAo499lgeeughgiBg69atfOYzn+FlL3vZrK630HtEWC0ESoHS6LyP
GhigceLRPPKUPqrLLWHB4u9XoKG+osHJG7aypryXvfUS9+xYRePBfvL7FLlJ0PVoc/XFEAxYCnsU
i+8PKW+p4I3XUJM1CBrYcpGBF2zj2NzMqemhNdRsA08pGjYktJaajXwFhczfd2BDAmKfkfXIpR73
lIaUuMrSTsykPVzZ13QSP05UddqWwRDYEI2loHIt++jUKvTbVN6ybPD7+Z+v+DF3fOd0+PXdktIu
CAeIUqmUpKA/+uijjI2NJZWqdu0zZims2uVLZVtvTlylxZdLUE+vEiQV0eAedxUsYgFkjEmEWVpc
MYPvqt05pLcLtIirsbExGo0G//Ef/yHBogcZEVY9RpfLcMIxjG8YZN8Gj/q54/z5qT/hosHbWa4V
vtKMmUjIDOgcBeUnIqOxIWT0SXV2h4ox62OspqwDVnkhZeVRtSF31Qf4z9EzuW9sBTsq/YxODFDw
G3z85BvxVHHG43PCQhO1y2q2QdUafKUwGEKrEhN4u9emJYmnNMaGNAgxNhJY01WHnBibcl8b0sIp
jNt8aUHU3JYGojiIRDTFr3UVrLTYctER3ayWvPyoH3LB887nmHsKmDiIUBCEhWN4eJjly5dTrVZb
RFV2KHK3wqqdnyr9ffb16dWEadGTrUilBVe7dp+rSrXbVvZ4uhVXWY+Y7/tJtey4445j06ZN1Gq1
JOBUOHiIsOoRKpfDW72KR5+zjlWv3sS71nyBx+V3s9IrxYKgmXTe30F7eGhWeD5H6ab4SIulfuCZ
JcNTir8gWBFVkyJvkaZfzyyqQmtaqzUWyhoKmT/s5ko/hbHTl6kjUajjqlIktLoSWDMcZ2RAt3hK
JUKw7XZs3CJUquU5gQ3j42+tkHlKEVpLyMytyqVegeDMcdTAAIiwEo5w3vOe97RUctLtMDpUX6y1
vPWtb+16H1prjjrqqGSIsRtk7Mzis61YzVSpIiWUslUr1WZsjatGdTLCp31U7URTu+fPthWYvuaF
QoF6vZ60KMfGxliyZIm0BA8yIqx6gVKoU07gnreVueb8T3JBaRcllcdTs4s7cMz0gZ+t3sxlu66K
U7UNatZQUJoChZbnRKIkJMQSEmJiwdVu3xqdVIMAfLzEOO4qSUkVyrbGGKRbfU5MhbY19iFdRXPt
R3eskajSybaN+58FHe87OS8LIY0p1bd25PB41vH38fDRx8KuXdIOFI4ohoeHAVpm5rnKUVbYTMf1
118/paqTvRljGB0dZenSpQDs27cvEQukPE3tVtAxi7TzmdqA2VWF6e22a+G1E0adTOrpKtZsaXe8
7ud8Pk8QBJxwwgncf//9rF+/PhkkLRwcRFj1AG/Fcu69bDG3PfNfODZX7qold6BJt9aa91mKKodH
2Co+YjQqbq25CIbmakEnbDyl45V4UTXM4ERO03+lUZFfy0atR1/pZFuJEFOREHM+LvfVtfBcFSva
d1MkOVHlxJ7bT4jFx6Ogmv/E3Taifc4sTD2lefWyH/LmJ5zF0t/lsfGS70OK2M+nvKgFak3citDx
B0AYiiAUZsXw8DBa6ySvKS2k0kv/HZ2EQjsRMt3X0dFR6vU64+PjhGGYCCtXreokima6L/t4u+e3
q0BNJ6jSdHq8ncDqZFzPLlRqR6dYBlLmeGLfVbF46H0GHUmIsJon3vLlbLn0BD76ouvZ4M+tQjWX
kM3ZvMaJqoqtU7OGfuVHQkapWLg0BUs6v4pYTPmq6U0yqKQSNTXzyiQiJ7SZFXnWJO0617prho5q
ckwVdgANGyRxa4ENqdoQX0WC0L3WecPcMQTWoJXCU82qlhNVFRMtl/ZVd+LqjHzIrmfVWP71xTS2
75jx+QuNyuXQ5TJqySDh0kXUVpaZWJVjcoXCq0Jhr8VqCAai6zG4KaC0eQxdiVuZ9QCzZy+mWpMA
VGEKw8PD+L5PoVBI8pjShu50xaoTnSo4TCOqNm3aBEC9XqdQKLQIKzpUajoJq26/thNgnciew3Tn
2O56TCemssfQ7nimq6a51Yfuernfz80338zFF18847kJvUeE1TzQfX1sveRE3vWGm3hasXHI562W
VZ6iMrEg8lo8SgbDuKkRYinGrcam2PGS50SiKK42Ja0/nVSe0j4ng40FVfSaRizEXCszxDBpo6WP
2TalI6o+NQiswUPhoZI2o3tNLVXNCrGRGR9FMfP+FHmrokyubn1WZZ3n7ed+g8+e9XwK39qNjZOZ
DyhKoUsl1NEr2fPElex4RsiLz/klFy7+T9bl9jOoFQM6T2gto6aOpxTluIJ3f6D4ytiZ7A3K9Odq
3DO2it9850xW/7hBYdck3u4xzLYdYs4XGB4eplgsJjP33C0bvulynehRtSotMIwxVKtVjDFJCjoZ
IdWNv2quAit9PtNVmuggsDpdk278VjO9vtPoG3csYRiycuVKCoVCUnEUDg4irOaKUnDcOk4a+j1/
Wn4UbxahnFlmm7M0m1TxMOOLCq0iTGIKSPxIBeUncQs1G1C1jUiY2Egg1WwQVZbiP/qoCmaomIAA
i46zsFwLLr2aj2R1XvTG4ipMhkjoQDNZvRHHO1RMgFaKmjVtt52+Zjk8Jm2daizcikoTxiny2UqY
n/aQdeGzArhk0f1cdZHl1F8tJdyxs+tr3xOUInf0ah65+FjWv+hBrj/mg5yez6V8bqkqqYqEYJqz
CnBW4XfNO5b/ltFjv8I9r8izPRzka3sfz88+fjZHf/5BGjselSrWEcrw8HAyc8/3ffL5/JRU8+zX
bkWFY6Y2GbGwqtfrWGvxfT8J5MwKifT+ei2qOgmt7Ll08kxNJ7i6DQPN3tfu2qevh8vcOuqoo5LQ
1Fwux0033cTLX/7ytucgLBwirOaILhTYesFSbljziRYfz4HAGbm7EWTtnhMQMm6agiVrhjcYtLUt
OVYanYy0acmjUopCXKWKWnCWmmkQYimnoiScvyqqGIWgmq3Eig0JqSXtPWIBFMSiilgYFlxlzGpq
NkgiE6JqlUleQ0qIpcVTzTbQSlFW+barDDvRrwpcdu6P+e9jzoGdjx4wz5LK5dDHHcO9r1vJ/73o
ep5SDPDV/P8rdFCXeFIRYJwX9v03v33bd/izJ/01J35wGfb2e0RcHaE4YeViDbLRBqQqI9NVembT
brPWcvvtt7f8XKvVkgHEQRB03EZawMxXYLU79m6Zi7jKPjaduOq0YjG9clFrzZ133sm5556bJMhb
aw/ZqtU//dM/sWzZMk455ZQk6LVeryc5YK4V7CqXjUaDIAio1+u88pWvPNiHPyMirOaIKpXYf1rA
CX44r2rVXJlLqnlrQCd4sbjIZeo2bsRNNRYQeaUoq2aFx7UQazbEQyUCxyhDNQ4b9ZVumS3YiEfj
BNbiYajYED/ev06tImxpCcbPL6fakqFVVKmB9Ri31eR5E9bQh2ZA55MViiGtAqGs/Rbj/Wx4Yt8D
fOP4p7PoV97CtwOVQvf30zhzA79/dY4vPPtfeXzex5vDStBuOD1f4o5n/Rtn6Tdw0lsWE+7avSD7
EQ5NhoeHUUpRKBTwPI9CoZB8iLsxLo1GI8lyShulrbUt5vZ2s/Cy5vdsOyuNMYaxsTEWL15MEAR4
npfsx9GNIJqPuOoVM7UKZxJX7Vqf7QSWS3ffsGFD0rp1sRCHkrByVdFFixZRKpVYvHhxUnELw7Cl
rZkeI+QiPvL5PMVikS984QuJ8Go0GodkRU6E1Ryx9Tq5vXO/fO3M59lk8k7p5dnXdbs/50MyNqom
VWwA1uCrEA/dsmouqmRFfqTAmqR96AJEPaUpEAkqV+2q2WhmX4DFt1FrKo2vIiO8R+QBcgIowK0W
9BKJV1B+lAqPiQ3rYdKW9IiM6T5+1MZEg67HIaW6mXtlW68ZqZWNs8FTmhP93ew+Q7H4a2XC/ftn
vY1u0cUiat3RbPvjVay+6CG+eNznOd3PL/g8xn5d5Hkn3c2mgVUgwuqIo1wuT/mwdlWCarXKW97y
lnnv4+qrr54y58+1rRzWWoIgYHx8nMWLF7dUMYwxidCaTTuPOYqw2dBtjEI3YoouRVW6YvXzn/+c
P/qjP0oESTrx/VBIYnf+PTfQ2vM8JiYm+OY3v8kFF1zQkhWWDVt1uGpprVZL/m1qrRkZGWFoaOig
nVs7RFjNEdtoUHw08gDNhk3BOB/b+2Ru37sOYxXr+/dwlD9BiOb3+1eya7KPkh9w6uB2Llr6c07M
jeMpxZixVK2HrwyLNazw+rrYW5OoygRaaUqpP2ZnOq/ZeLhoaqVeQXnJ4yGWigkoKEuBHCb2MEWr
+5rtPoCC0i1tvWTQs2l6oArxykT3Ol/p5Bhc5hWAj0IrFa/mC2JPFqnXe9RsQC02rJMSqG50j4nP
J7SROGwQCcnZsNLLccyTHoE1K2FsbEHagd6yo3j0z06CF+/mX079ME8sTLSd37gQBDbkq/eczin7
H1rwfQmHHoVCgf7+fnw/+o8l104CepbkfeWVV065z2VlpXEfmpVKhWXLlrF79+6WvCvXOuokZHrV
+mt331wEVLdiipSgyoqqTt8D/PKXv+S8886jVCq1VIDccw5m1cr9fguFAqVSiXw+n6w21Vpzxhln
sGvXLowx1Go1VqxYAW3S7Pft28euXbsIgiA5t8HBQZYuXcpFF1100M6vEyKs5ojyPMI5RIX8n91P
47evOBE1MYkH/CG/mj/kvMgMXw8YDEOsn+fegZN41zFnM7Y22o9XA6uhPgjnPu8uPrH++7Pet8uc
cvh4VGxIYALK2ieHh1aWwJLyUylQEMYtPoNh3NYSE3nFRKLI2Gg1HkmLsUF/pnVV1l7SfiRVSTLW
giLZpjPVj9sAH8VoLMjKSlFWfnN+YQrtxJ+tN83zWEJrWzxwGj2nqlVJ5Xnb+q/z7vNex9IHH+55
ppUuFtn1pyfxxrffwkX9D8cBswcmiya0hnduP5cT/i0k3Dt6QPYpHFo0Gg1836dYLCbCxd3ned4B
XbrvKhP1ep1cLkexWKRer7c8PhPT+b7afZ3pvl5+3+nnbtp+Wc/bHXfcwdlnn90iqpz4c7eDFRbq
RFWpVKJUKlEsFikUCi0DrtMLJAYHB9teB8/zWLx4MRs2bEiqqdu3b+eFL3zhQTmvbhBhNUdULkd1
dUhhltWEvzrqB7zxge7CJsu3K/o8D9w+tMJbspifnnYs4TH/1ZLR1O1wYYdb1eehKOpc098U5025
qASXzu5M4YW4kqVRcQCopmYbBNg4p4okEqHVkxW1Cus2ui/UzTdHP17Flx5dMx7nTUWiKNq+AfaY
OkWlprQZvbiyVbORf2tQ5ylNtjmcAAAgAElEQVRnfF5lle/a9J/FU5pnlCrolz6K9/1VNDZtnvU2
OqI9zBkncuzr7uWSgS0UDpCgCmzIpkaVKzZdxPj711L8xR1YMa4fkaQzo5zHqlwus2rVKrZv397y
eK9oV61KH48TV8VikVKpxNjY2JTE8+luzLIVONN9vfw+/XOnGIXsfWmvGsA999zDaaedlrTWSInO
7GsP5Igb93tVSrWIKhff4ft+Iqhc67LdeadN7I1Gg7179/KKV7zigJzDfBFhNUdso0FhhzfrVuDa
XAFvxXIaf3iki53YqUZp38eEmv2myhKvDMCkrRNYk5iz0222TnhxlSkJB00NSHbZUc5fRSx+vDiJ
3W3bS0JBFTr+g3YCJ51u7kScj8JXKhFSrn1nsOj4zcKtOizrqCWRI9pfJT7HYvx6R9o/5VqNZe1R
sUFsrG/9J95toGq75xaUz/tO/gL/eNprKGx+pDer55Qid8wa7nlFmW+v+yKF1BikdrEa820LBjbk
/qDG+7Y+nx/95iRWfV+z9MdbKW65AxvUu9iC8Fhj48aNvP/970+qG+kPP2stuVyOQqFwQKtW7kPV
ZVnlcjkGBweZmJhoO/C4G1E1WyG1UOIqvf2ZKlXpKlVaVD3wwANs2LChRVQ50qLTea0OdDtQa90i
qtIRHu7W7rzSfjonrPft28dll112QI9/voiwmiOmWmPN96t89qWn8deLN3X9gZfD45GXHMOaG/bP
3gStPerHLufxax9hzBoKJvogrMYeJUfkWZq5euVEUnalXIl8kgtl3Pw+VNvqXJgSVMTxC26UjKda
5wcGcWuuag1l7bFEF5PKVxTHECQ+LYOJ22FNwVe1lr5Y4KVxHq2y9pPZhwADsTibDekB0AVyU36v
63L7GT3WZ6Wfw9bmKay0R27d0Wx6xVr+/o8/x0pvask+PYxao5NMsNmcz7it8dPqIm7Y8TR+9usT
WfNtWHT7Nk7d8ztMpdISxCgcmdRqtWTZvquMGGMYHx9Pog8O5JgUJ5yy/zZdHEQtrvi753WqBmVF
DLMUQ70QVJ1E30y37ExGrTU/+tGPOP3009mwYcOUCpZbHdhu+9lFAgvF8PAwuVyupfXnkvydsMqu
HHXH6FrAYRgSBAH79+8/LKIV2iHCaq6YkPwdm7j2y8/ngpddzan5clcv85Tmyr8a4WP3v5jS12+f
1dJ93Vdm6xNL/MWqn1GOR7aE1jKg8+Ti1htEhvLZkBVhbmVilHQOOrU5J5SSuYFxhlRCZjVgNCfQ
xmZ4SxC3H328RMw1bEAt9nDpeCViGJvPnV8KYKnOMx6LL2dcJ64kuRZiWWmKyiQRErMRIW7OoDu/
BmE8j7C5jQFlGT05ZHW5TDgfn5VS5Nav5XdvXs11F36MpxfH2uahaTRaNYNcTexJa7dqND2kumYD
Njcsnxs9hxt/eT6rbsux5Bc7OXn73ZiJCg1p+QkpGo0G4+Pj9PX1EYZhUlEgZWQvFAp8/vOf58Uv
fvG89zddG9DhTMrpCob7EC4UCkl4qGM6AZP9nmkE0XSPddNSnE5AtbtvpgqV1prbbruNc845hyc/
+cktwsSRDSxt1yr97Gc/y0tf+tIZr/tccb9T17p1Ysp9dV6qbARHWlA1Gg32799/SEYozAYRVvMg
HN3Pum/WueX5Z/N3R93d9Yf4Swe28b9eNcmGu46msfkP3a0wUwo2rGP9n27iuaVtLNIlSA0rTo+n
cXP/ZuO5SuO8Tr5yMwRtklelUc3YBppmdbdaz31Nj7MpkKNBSM00nxMQ4uMl1Shnnieu0lRNHRQY
G8UteChqROKrrLzY9xXGx9ocs+Ol/n82hDZqaboQUTD4TK14Deo8Z5z5EPVVy2Dv3jldXwBdLvOH
F63hphdcy7kF1TYLLT3guptxSW4e5KZAc+Oep/KlH/4R624znPbrLYQ7HiWUVp/QgY0bN3LVVVex
ZMkSGo1GUr0iFgLW2iRH6ECQrsKkBVV6Jp5rb7nMJroUNcwgkGa6r93jnfYx2ypVVlTddtttnH32
2TzrWc9qaZ+laTd6p91+F7IdmF79525uFaCrUmVDZ90qTyeoRkdHD3tB5RBhNR9MSHHTLm7ftw6O
urvrlxWUz9Vn38zfveQ1rP3EJOGuXTOKK10q8Yf/sZjPH/d/WdImasEZ2AOinKqQOr6dmqreLdGH
um4JD22KF50kp1fcrL/YW+UR+atqNhqTQxufkKu6jNuo4uMrHY/LaXq/isojiM+prPykmuNEXVHl
WoZGzxfn7fKVpmLDZNbeVJ9Vjjet/RZ//7jXMXBfbm5hodrDnnocJ7zwPp5QMHhq+pZlc1FBZ3FV
swG/D0I+uuvp/Of3z2HdbSGn/moT4e69NERQCV1QqVSoVqsEQZC02NpVrQ407gM4K7JcqGQ6GsLR
TrQwQ5Vpuq8zPWeuoqpdjILWmu9+97s87nGPmyKospW1mVZIpred9WL1CieqtNYto5BcqKczqaeN
6q5KdbiZ0rvl0J4afBhg9+7jV3cflwwT7pZnFffz1r8Y4aHXn4i3YvmMz1d9fVTPmOToNn8cgQ0T
weGh2GcMu8IwaZuNmyoVU5/VjEGHCwNt96HuK4+iylFQucTcrtGUVJ5SXIFpECY+ISe83JbK2qdf
F+Kspnh2YGx0j1YJRqv6nF/Li/Ov+nUxMeh3OrZuiTK2Wq+LTr5OFW2e0jy5MMm2Pw3QAwOz36FS
5I5exQMXDfAPx3w5Sa2f6fimO8eKqfNv+07kRV+4nDvfdSanvH8Txdt+RWP7DjGkC12zceNG9u3b
R61Wo1arJZ6ddPsml8tx6623zms/3bQB24mitLE5e0tXe5w3a7pqULe3tCiZ7mv2vunud6IjLUBy
uRxbtmxh3759VKtVnvGMZ7B8+fKWeIJOMxo7tTjbCbmbbrppXr+76X6XaVHlDOrZSpUTxPV6nT17
9vAnf/InjzlRhVSs5k+4f5zjR0I2nvdkNq746ZQhuJ0o6zyvWrSLM173AV4Z/C3rPlIj3Nc5Q0gV
C/j5BlUbUrIu1LNZLXGttYoN8RT4QL/yKet8i3CYa9xAJwrKj3Ou2qykS7WwtIoHOiuDH3uH0iNs
3FBmgyWHl2RgLUQ4Zpi6folfzBJ51mJBN12Vr6zzvOu8r3LLiqfOuh2YO3o1D1+6njde+FWOz/z1
OeN+1j/VzuvlzmO3meSvNr2Qbf+2gVO+u4lw124xowtzZs+ePQwMDCQfkk4QOIHhcqV65bVqx3St
MlKtv6yYcJUtd5wqs2R/IP4PoW4qWN0+bzZtvmyFatOmTfT19dHX10epVGLt2rVTBF32mGa6bumV
ku18Vn19swuW7hatdcuKv7RJPX0u7vdRqVQOehr8QiIVq/liQvI/uYcf//MT+X92nM+omZzVy88q
FHjVq77B6B+f2rkCoj3CVUs4eskoFRuZuhvEFSkin1G/KuArj7LyKCqVNPDGTTXKk4o/lJ0xvde0
qxx5sUBxt7LO06+L9OsiZd06piX93OmqZPMhsCEVU6dmG+w2k9FIn1iUEq9wDKyJYyZazd3Zqtbp
hS2ES8qR961blOLB1x7LP7/+Bt6w+L6kqpc9Rle5c2h0snLSVbBqNuCX9ZDzv/83jL/zaBZ/4ddR
hUpElTAPNm7cyNatW5mYmKBarSajRtIVn0KhQLFY5JprrlmQY2hXlcniWknZylU654o4pqFYLNLX
15cIr3q9zuTkJBMTE+zdu7dtZSndvsre0gGX3d4eeeQRtm/fzqOPPsro6Ci1Wo1jjz2WlStXtgjZ
dJWnm+vQ7tq1u5bu1st2YLtqlTOrp4WVOxd3/Wu12iGZlt5LpGLVA0ylwuA37+G7a87jeW+8k+eW
Jmc15+91g3dyx+XruD9/Oku/fh/h7j0tniud99l9Wj+Xrv4BgzoSHwZDIWm/qRbzOoQUlU6ynDTN
CAO38m2u3qvDFSdGAMZMNOqmai1FBUWVS1ZVenEYqk6FpLZjUNeoLitSVBpsFyvslMJbvJi/veRW
/rg0gd+mBajjGYgmHsLjfFVeRtjVbIO7AsUlP3w9J/5rHX5zH0ZafkKPePe73821116bmJCzVSs3
qPmkk07iQx/6EG9+85u73nY3bUDHTJUr92HtPrDdfa5qlc26Iq6sZEMpsx6udgIt/TX9/dq1a1FK
sXXr1pbWXvp7rTXHHHNM27ZkJw/YbK5RO3/ZdKsDe0H69+jiONy/l3Sl051/WtTu27evJ8dwKCMV
qx4Rju5nzdcf5f9seVb7x6cZnrxIF7l23Vf5i3fdyr3vPBHvpA2gm6JHLzuKR5/a4Pn9v00qUxqd
DB1Ob7+gcizRxXi8i2XMGio2YNzUqNpGfH/AXlOlZgPGTZVRMzlnD9bhgsFSUnlCLFULE8ZSjLOh
3KpCjYpCVrHRMOlYMLWrni33LHtPyqGLXZh5tUdu1UoefeEpvLj/vmkFrft9uhWXWRqEbGqEvO6O
V3H8hy385j7xUQk9Z9euXYyNjTExMZEMQiYlTFwl6Pjjj+f666/v2X5nElPp59GmupWtXmWH+XZq
z7kQ1L6+PgYGBhgcHGTx4sUsWbKEpUuXsmzZMpYtW8aKFStYuXIlq1at4uijj072tXr1apYvX87S
pUsZHBykr68vSRvPtshm8kz16jp2Ot/Pfe5z89p2WlSpOFTWiap8Pp8ILXeepCqM+/fvP+zCPueC
CKteYS128xYe/OrxbAkrs3qppzRLvDKvHdzOT156Nff/Qx/eqSegcjlULsf+89ZyxfnfZH2u2T7T
car4uA3Yb6qJeb65ck/hAwNKM6DzLNJFyioft7niMjkeJZWP7lfNGIXDVWC5qpQLGnVfm/lU0SDo
Pq3w4/cyF5Dqzjm0NhnmHHmwbMv2HYO6yFkX34U+amnnA9Ie3uJBzNPO4HfvOJbnvvlHLIljMtod
u2uHOrGX3renop+3Nmpc8cDFLP1IP7lf/E5ElbAgbNy4kQceeIDR0VHGx8eTlYLEFQpXlSkWi6xd
u5YbbrihJ/udrrIyXXWn3X3t2oRZ0dVu+52M7NlWYLYdmP45a9ieT1Wq03Vqd+zTPd/d3KDtuZCt
OKYrVW4FYDtRZYxhbGzsMROnMBNdtQKHhoYeB3wR+MDIyMj/HhoaWgd8Mg4M2ga8cmRkpDY0NPRy
4PJ4Rf2HR0ZGevPXdphgJidZf/NWnnHcFXzqj6/nCflGy4q2LO2qWMu8Pr5x/nVc8M43cfxHH4//
uy08eqbH8/t/S45mCGkUSxDN3uvXzRVyblWdVgpslBnlKjKuTpKe09cgpGICqtbgK8WgLi6IYXyh
cEnprrrkK49KPGcwGp3TiKpPWPqBEAispawUAzo/ZeWfF183IEqIxxDaqWGcvvJ46+pv8pbT/ob8
lm3ReBulQGmUn0MvHqRx/GoefkYfF1z8Mz6x/L9Y6hVaMrY6CdhOERLjpsY/73gu+z+2lsU/+C2m
Wp3fxTtCkPevubFx40Y2btzIySefjNaaRYsWtbR20h+cK1as4JOf/OS0SdmzaQMyTWQCHYTUdEb0
rJDKtvjatdSy2+h0bDM990DSycDODKJ1LrRrAbqRSG7xALHAHR8fZ2hoqCf7PRyY8RN0aGioD7gW
+Hbq7vcA142MjDwNuB94Tfy8vwcuAJ4JXDE0NDTNf84/BrGWxqbNnPbeLbzhur/h2r2ns99U236A
TlcVOiZX5itPu47Se7ax5WUnECwyVK3XYmqOMpc8FmsXdxC9ybmhyaMmpGojEVGx9ZZYAROPqNlr
Jnk0rDERD152GVRpg3TF1BPTt4ttqNnggFe1Ol1DtzLSGcH3hFE2Vln7lFSeYhwFUbeW8dhj5QZF
E1+vrPgtqBwBFl81n9PuOE72PXaclye3eiW5tWvQZ5xC8Oyz2POys7n3rRuobxzl7179Wd678oes
zvVTUH7yO3S5Y6RajelohawYD63hq5V1/PRTT2DJN+7FjI0twFV+7CHvX/NjeHiY+++/n/3791Op
VJIcqXQFx324Ll26lM9//vPz2t9MfqB2lZ9uhEInAZT2aKVbh+1u6ee3azMyjYDLfr+QdBKb862Y
ZYWxa586UdVuNaAxhmq1umArSA9VuqlY1YDnA+9I3fdM4K/i778MvBX4PfDzkZGRUaI3tB8BT4kf
P3KwlsaWraz9VMCnzXNZ9voxLlu0teUp7kO13VgS4g/ak/win9zwBe6/3OPnk8cRxivVCiqXvL5q
o0HJ6W3UbICPR1kZjIK6tYyZEHQNHy9eRRiPo7E2cfJUrY2qW7ZBWelIPMVeI7eiLz0yJXs+dBGN
kBVHnZ7vzi8SeTYZ3ePTNNy7cNKyysdVqjqVuGqVrtJhYczWKaqoBRpYKKpopmHFBCxKVehC68z9
rSvy/FT0Q/ocCsrnmX92O99YehZ6ZZU/OfkuHl9+BF81WOPvZV1uP0s1lNTU9p9bbGCwLTnx2Z8d
e80k7/7eiznti3+gsWfuie9HIPL+NU/e/e53c9VVVyUflgMDA8ny+XTlyn1433rrrTz88MOzMrXT
4QO/24rVdGJrpqpSt1WcdjMJZ/P4gSRbucrebr31Vl74whfOuJ12Vcb0AoZ2osotDnArAC+88MIF
OcdDmRmF1cjISANoZMp4fSMjI25Q2k5gNbAKeDT1HHf/kYe1hDsfZe1Ijv+1/oW8+CXXsMRrnSU4
U2K4pzSDqsQ5BTinsIXA+okQSwuAYkrw1OIVbf3aZ0ApxoxLRW+ufCuQS0afQJR35alowHJ6dVwk
KFQSReBoEFKNq0TF+J9PaKPE9yK5xHydPs9s1EMimFAtWVakRBWxqAkIqBlDgKWMSa5btMLRJMdX
sQFVa9HxvMD08Tp8FXmrDDBmQvpUcx4gkAyeDqwlBPrUzMnu/7T6u7z8BT/maK/C2lwpGYsT5Yo1
W7TT/d7dEGx33tmssYqp8/fbn8OGT4eEW7Z1NwJJAHn/6hnveMc7uOqqqzj++OMpl8stqwTTuA/u
9evXz9gazNKNwJmuYjVXUfVYJdvenKka6OjUss0Gn7q2n7s5YeX26+ZPHonMNW4h/c6upo7ebbn/
yMRaGtt2cOKnlvKGc/+Uj67/KiWVnzGfqVOAZ3YlmacUPjpONLfJiN6y9jGYpJpVVOnXNOfp9VPA
11FApq+8FoHTsEEyQkbHhmpXIarZZhXJJ6pmaRW11iomSAI2+1VhynkYTPIcAM8qypqkKuaO0cUL
TNqoCpXsTzVnCTofFbH3yPmmsvt2afQFlUsS3QNryKtoBE/VNvDj6ljVhphYgAU2Oo90BaldO7Jf
FTgzX8ePV2sCFMilWo1TPVouxsFV5QB0XI1Lt3qJxd6/7jmLX37oCSz9+W8wklPVC+T9aw684x3v
YHh4mIGBARYtWpR8yGbJ5/MopRgcHOSWW27hoYce4sorr+x6P+0qLNO1Btt9ne57ZlGlmu1zuyFb
2VrIStd0PqsPfOADLRETbgYjba6n24b7nbv2bzptPf3vwbUAjyRfVZq5upQnhoaGXH9jTWwA3RL/
Vx+Z+49cTAh33Muet63j8V9+M9ePrmdnONHx6d36ljwVpZa71XzEK/zcqBeAwBrGrGHM2KjNl6ly
NAip2IB9psGesMa4rSXeqdDaJAWdOGR0r6lSMSmRg2oJ/9ToZGRNtj3pzi091sZXmrL2Wx5Pf++q
RxooKk2/8uPRN9GKuUgg2UQshbHjuKzyLaKK2G9VUDlKKo+Jr8OgzkcCzFWYUvv3UJTjFPbmNTEt
1yT9u3Dn33q+NlmNmF5t6b53lTS3AjC9PUfNNvhhdZCbbnk2R339fsxE5387wqyQ9685snHjRnbv
3s3o6GgyrDm9ki7ruyoUCmzYsGHWxvVOdOsTmklUdbOfdu3HmVbezYZ2nqv5+rBmapumH+vr66Nc
LlMulymVSslXd+sUF1EsFlsGLKfbgOlq1f79++d1Loczc61YfQt4CfCp+OvXgZ8CHx0aGloMNGJ/
wuU9Pt7DDhvUUT+5i1MfOIpPPedP+PLrzuA/T/7yvFfeNVf5tc9ECqwljP1ERaUj8WCisTeujRbN
97NMWMOYCanEwaJRpSYO1Is9Rr41oJrG74LKtbS1dCyooue0Zmu5Kp2PF41m0c0WYM0GU7xmtThv
y1V93MzALFFlyRDYqKrUH4tKt9+KrWOsTSqFoTXJdpwALeATUsdDMWEaUftPKQrxn4aLoXDk2lzv
SDBmfzcKY5uPV6k3B0enoh7Src80BssuU+dd97yA9V8ZjUJjhV4h71/z4OUvfzkf+9jHMMYkqeGq
Q6p3t8N/p6tSdRJGs20Ftvu503EcTmRbfp3uzwqscrmcjPtxN5dX1smkn277ZWcCumqVG1lzpEQr
tGNGYTU0NHQOcDVwLBAMDQ1dBLwcuHFoaOgvgc3Ax0dGRoKhoaF3At+IS+gbnRH0iMeEhDt2sviL
E9S3n8LOGyuszvW3fep8BVdgIw/UgM7hBuSEWEZNiG+hqCyLdJFS/N7RUCHE7TkTP7ecaQ2GVlFQ
Fj+eq+dW0WWP28dL5gC2M7RHlZ1WEdXOYxVFHnhJcya7v6h9GYkXd7w+Hp5qjqJJWmxOGNnmbMWC
ysWCTkf5VtZGI3aIvWOx+HIiylWZ2gV7Ng39pkXkRr+HqLVYUJayyrd45Ei3fZ24SrWBazbg82OP
Q916FOp3v8GaLtLdhSnI+9fC8NrXvpZrr72WNWvWMDg4SKlUakk1J/4Ad6sI58tcqkWzEVWzbQ0e
inQSWNnnuK9OEIVhSKPRQGs9o7ByVSzX+kt/T9wCrNfrXRnjH8t0Y17/ZbyKJstz2zz3c8D8Yl0f
w5iJCfwf3cVrHxjiCyd9MamaOOYjqlybyXmrCqppdh81k2igasFXtmU/Hho0VEyAF4uOrNhxoimI
/2YbhHHqe6tIKih/xnZmO0E25WcLOdX5mmh0IlTcDD1iIZRT0fHVTPM4KjZAq6ZoioJCg2hsjbVJ
9W1A5xK/Wfp4GjaMvGNtjscQzW501Tv32ijg07Uyc1NEWc02WjKzstfyDw3DB39yAad9dxuNyuwC
Z4Um8v61cLzpTW9ieHiYk08+mcWLFzMwMJDkF2UF1kx0Y6rOPr/dtme6f7ptPRZR04y3yQaYOmHV
KV5CKUWhUGgRVWJYb8/hkwT5GMHWatTfs4qn/url/NekZmc40ZNcqLSoKsURBMSVk5o1BBZ8BeVY
/Dj/T7Rvm0QwpEeppLOvmgOS1RQ/UZpeDU9ORyBk0bG/y42hSRvbcb4lpQjiNidALf6aw0tS62s2
Wm3oqSjTS6MTUenac+46RTMXp55XYEMmrElM/ZFXrZFUx9xAZ+exipLhGy3XOXvNDJbPjJ7Lui9p
WQUoHNJs3LiRSy+9lHvuuYddu3YxOTnZ4rtKVzO6ZbpWYC9F0KHa9lvIvKv0OU83TDo96zCXy01p
AaaHLacN67VajYsvvnjBjv9wQYTVQSD3g9+w4g0V3v32v+BJ334zXxhf0TFItBNp0eMopwQV8Qd0
xdbxUSzWmnwcn7DbTDJuaslQYhcwquM/uJptUDH1Kd4fV83R8eDnmUgHmrpjdiNn3C17Du7nYJrB
xtlqWg4vEVqe0i1ZVEUViSjfecDS50Nkwn80rGHazOer2Ua84tB0nO/nKUUxZebvVwUKKpfss2oj
P1stHj3kWopRda/9G+heU+UTP3oKAz97GFurtX2OIBxKXHnllfz6179m+/bt7N+/nyCI3luUUuRy
c7XyNpntisBuX9vL45kPCy2msj+7ilW70TxpweUEVNZXla5ciWF9KvP/Fy/MGtto0PjDI/Rv38mp
v1zF+5/3Mj5zyYN86LhbOKaD9ypLg3CKkToSPB4NQhqx18rHw9fOsB75furWUsfSF7fvXPutrHSS
MUWb9hRtKknt4iFchYZYeHjJYOGobeeM6dmMJ3debv+uOpaVNNl9pr8PbJhkW0WZVn7s0YpCRp0R
PUi+2rbjjp1wrFpDWXtUbSP2XrUeTRiHrJYz7b4CuTjbSxPE/imtVIuR3lfR78rL/PfNz2tHcfR3
FeEuMawLhw8bN24E4JprrmH9+vUsWrSIYrE464pVJ+ayIvBQ4UCHh7bzW6lMaKirNKUrgyZloWh3
vC5t3ff9liiGRqNBpVLh0ksvXeAzOzwQYXUQsUGdxuY/sPKmvUzctYFnv+FN/NfTrmVtF+JqahCn
TiIKAIrKo6hyKR9XFAlQtSH5pMLSKk682KiOCpvJ5W2IBho386ywrYLL/S/aq5cIISdWXOUotJYQ
0/LarKhKi5WWFXTTpL07I7tGU9b55Oyjo46qeB6KWnwO5TgCIsS2BIY6TBwTQVtRpxJjfME2TfZO
wI3Fx1nWXiKq0tfRrQx0YuvhRoU3/fg1nPqzrTRkwLJwGHLFFVcAcN1117F27Vr6+7v7j0VmEWJ5
sGknlGaTT5X1PXWz/V7htus8VsaYFp9V+tpnz6dQKLT456y1hGFItVo94g3raURYHWysxYyN4f3k
Lk7auZ6nv+lK/s//vJEnFvbG+UvtJ5Fnq0kGwz7jfD1QtQ2Wat0Se+hW05mkItV+nM50sYhOOLn0
dTciJl2V0mhKqtUA7h5zY3ICLJp4pV0qOd7FIbTLwZqM0+ILyqdB2Laa5fxXpMbftJ6boazyjJpq
fJ+irPxmHpa1oJpVraLSceq7bntcQZy1FXm2Gsm1M0S+q2Kcau+OJT0WKD3fsWbq/KKe58+/czmn
fGicxh9axyAJwuHGG9/4RgA+8pGPTPu86YTUfLOjFqINOB+6EVvdPLcbshWqbPSC53lYaxNx5Yzr
TFMddHllDrcK8NFHH0VoIh6rQwTbaBDe9yCnvHcTV/3Nq3jyDW/llZuex64OgaLtKjVF5dpXkbhy
7T9nVo+ESFx5wVKJfU5ZP1O2qpIOySQ2gPt4cbJ7tIrQtf+SSlXKkO2GOEdDnUPGrKFumzlVk7bO
uK1RiT1fzieV3q8L8WvSNh8AACAASURBVEwHkmZxx9cUV52vW2RGb2ZflVQUGOorjzFTT80m1PE2
9ZTWa2BDxkyDUWPZEdap2CC5udhPHRvnKybAxBWxSBSq5BbYkLsCxWv++9WcfN0k9u77o3BZQXgM
8PrXv75n25rLqr8DwYEasDzX/WVFVXqBQdprlb25CpbzXKVnRDpRtW/fPl796lf3/BwPZ6RidShh
LeGOneS/uZvjf9zHjp+fwlf+5TguW7RzxpdGbTONH4+XccJi1FQpxmZplyOliWbZued1MqI70RV5
osJkG8QeIlIiaNzUklR1V62KhFSQmOPBI9RusLOmpKI2XVS1CqnF1ZtGvFKxYgOKsYgymNgU7sfn
22zNEb/OYNoGeNKmhVfWPhqd5Fk1r6NLjldxzlWUQxUQJuecZkDnCEwDHQeZpmMgiphkMLQfh6G6
c07nVe0I6/y/D76MdZ/w4O77sTK2RhBaOJQyprqpJKWfM5/hzZ1ajtP9nKZTtlV2u05ApZ+bFl/Z
qqK1lnq9zsTEBJdccknH/R+piLA6FDEh4dgYxZ2T6LbW6qlElQ8nMqIcq8isbjGxKCL+QC+rfOJX
6iSqvKRlGE5ZTUemqmUwSbvM+Yiiak48BFo1VxH6eHhatbY4LVTjcE7n3fKVRxkX6mmmtEXTvqx0
gGfNNiJTfJtzchW1wDavh5uD6K5Fg5Cy9lOxCwasF7vGbMt23TUvK0VRtXqoXMXQjyMd9pkGA3pq
GOqYqXPjviey+9PrWPHfvyWUVYCC0BNmI1a6pRtvVbev7XZb3VanZjMiJ+3xItVydeb1Tl43l2nV
aDSo1Wq85CUv6erYjjSkFXioYi3evgo/GTuhZQWea+2RyXhqyU2KDdrp1XHt2n1ZY3gWFwtAPHtw
3NQYNZNJW6/ZetP4GfHlWoJVa6naRmI6L+t8i0BKZvDFf+Bjpp4IMRdb0K8L8TkGVEyd8Ti2IL3/
yJjfaNl3Fo1qWfGoUUlUQ2BDJm09EYPu2Nzj7bxuntJxS9UmiwbShNZSjduefUonie7Na2T5ae0o
PvOVp7Py65sJx8baHrcgCIcPMwmhA902nM0xpFuDrlKVfk1aVL3gBS84gEd8eCHC6hBG7R/nB48c
n5i2iQWBiYcDT9o6o2YyCrBUigGdp18X6Fc+gTUYaxnQTfFUMfW2Asp5f9JiJU1IJBDGrGHUhIzH
XihSgqwQz8EzyeDieASCUpRVPqn4OHHkPFRulR6x38lvqYRF7cBd4WQ0jw+NpxTVljiHZrCpSzjP
tgPT5+SGMWc9ahUbMGYaSXXOXRNXycqaz933vtIM6siLFUVFOE9YkJjf3fzBrLgdNVX+7q4XcfzI
PhrbdkgQqCDMIYW9E70WMHMZmjyXalMvjnu6bWT9VtNVppyXyt2CIKBer7Nnj0TBTIe0Ag9hbKNB
rdb8FSUiwrpKlKYaf4B7SrWMoik77xKAIokYyBK1/MI4+iDKgPKtl6zOc2JgQOcSr1PgzPCpCAX3
/GxW1Zg1VMJJ0vWearySMAT6lI78Timje2BDqjSaA5aVSqpYGo+y8vGUSubrOeGTPv90lpYzvLfD
JdY7ueTHbUxfEa8QNGi8ZDUkmZWIxtokUsEoi6+icNKCyiUxDS613ct8UNxVH6B462L4/a/ErC4I
bTjYpnTHXNt9c71/Nsc1l8fSMQudXpcdaxOGIbVajb1794pZfQZEWB3C2Fodu7mPfec36E8VWJzA
cPP0xm0AFgZ1PooyiP1G6SpLtg2Vxj23ZgNqxlIhwFORD6pAjgK5Fk+Tr8I4GLMpfPy4VdawAYGN
oguIK1Z1aym61XVKgQnxlaIczyB0giiMq2wBhoq16FQcZ2gtOdWsYvnoeO5f1D4sK5+CbhrCKyYg
wEZRBx0M7SQCzMS5XlGWlVvpqFV0ji6TyolPF3Xh4iOIS7++0hSUT8nlxKTetFwFL0q0NzzYgNf8
6K859b+20KhWZ/kvQxAeuxyIVtlsBM1cRdF0HqqZ/FVzFVzdXjuVGpCdXWmZFVTGmGRQs2RVdYcI
q0MYW62x9C744eQ6XtK/qyX3yH24+3hoGyQCgzgcVNNa6TJd/MHl8CioSLhE1ZrmY+lVdS7BvWos
eaUopwYPO4otws62zBj0dZisRnTeq8QvFQdullW0DSd0Ahuy10zGs/cs5VTLz0MlpvSKrVNL+Zr8
NnlWaUKiFYo+XrJSMglHtVGFyhnqo9ZeU2T6yovP0yY/t+zLNoNCiX8/H9t3Fv9+z5Mof7efU27b
TuPhLTP+XgRB6D3dCCNmUTXrdahnt8eX/X6656dvjUZjShswLa7SgqrRaLBt27aenNeRgAirQxlr
KO1pcNfkWv5HeQtl3WyoufZUtKKNxDzuK90248klfNMmOT3dQnMhos3Vcs0wUN9G4iM9h89RMUFS
sVnilVt3rlpjEZoCxq22i0SdwdKvCni6WR1zhvKqjVbkBUTVr0IscJzPSaPZa6pMGMuAVuSVol8X
Ws67ffZX80/AJ/KCRSb3ZiZW2nWW9W8VlJ94xNrhKmL7jOHH1fXccvUFbPjeVsKt9xLW6+KrEo4I
Nm7cyPDwcNfPT1dN5tsq61acZJlNNWq6n2eqeE333Hbibqa4hW7iGJxo6pSyboxJBFWlUuGyyy7r
eC2EqYiwOoSxxmK1YnV+H77SSdWknJo3Z4jaWGPW4McVn0I8g65mGokAwa1iSyWnB9aAjSpDBfzE
P+WM1pEh3cPHRgOJcUObdZKBlYtnExKLt2x8gwv3dMnmzncUzTG0iYDTauofvwsFDWJR5TxZ/bqA
F+dCRVWqkEHtoS306aiiNajzLcfiRtVkZwx66Dg8VcXXp1lFSyqE1hIQxKNy2qTVdxjRE/m3Qh5s
5Pnf25/DL776ONbffAeNSkUElSDEzBQJcKgxnzbddGNsZnrtbJ7TySflfq5Wqy2jbBzu+0ajQRAE
vOIVr5jVcQoRIqwOYZRWNEqadf7uuPJiWwzobnyMr6CMiysIQTcrKFFCehPXFozaZ9G2AmuS8TL9
upCsMmy+Jo4/QCWttXTLy9jIy+SOyUuZx6MkcosPBEBoYbGOVsk1Q0zrSRXKmeCj1qOiQA4dG8IH
MllRobUE1tCvotypJbqUCMCKDZI5fm6wc0g0lDo7DshVtVz0w7ipUdZ+NDcxRqOTY0vjoh3amdOr
tsFXJ9bzDz/9M9Z9LsexP7mPcKJ9kr4gHMl0s7qul9lTc2W2MwK79WHN1V81XXUqK6ocxhjGx8en
VKrS+9y9ezeXX355V8cgTEWE1SGMDUP6Hpnki7vP5vziN5IUclKepEh85CmpaDSMIaRmDeXYnxR9
8Le2r9wquoKbkZd4oFw70UtM2zqu6BBXZpx4SHuu3OucgAlsyKipU40rSKGN2oFFFRnEXYuO2Gge
xi2+CVNnqSauLEVep5yKxByqGTXRSMU9ODGWHlWDhcBaRk09uQ7Eo2X642vmtWmXusgJh0muHy37
SOMqZqFt4CnFoM5HA5+t4WsTR3PVx4c45fM7MQ/9QcI/BWEauq3KHKwq1mxFVbvn9dK83sljNd33
bnXfxMREsv1qtcr+/fv5h3/4h66ugzAzIqwOZawld9cmfvGZM/jc6zfx4oF7o5aXq7jYZhSmpzQF
/KSyNd2oGieY3OrCkEay6s5tN7BR+y/EJiv/dFzdwq2Aw0/24WIWqnHae14pivFQ48VaJ/6r9Cga
L/ZG9SlNNR5YXLMNqnG1KmrnNU3uk7YetQZd2GimghXtP/KDhUCRaJVfxYSUtdcyDDmLO37idqqL
XCCpRrWfTfhgA+6urWVzfRnb6oMsyVV4XOkRfjlxLF/996ey/j/uI9y1S1p/whHPdD6rbOsq+9hM
q+tmarMthFdrNj6r2W6bzLXIrthr97x2Iir9fTqTyg3IFhYGEVaHOOHYGGtu281Hnv1UXnDW79t+
yEfJ5VHgZkH5FPRU8ZAknMcVKpfPlNyHxVhDiXws0nLxc6O2YNRKiypLvlIUUhUf50mKhJPGVyHG
WsrxcTQrRkGSbwVRZcq12Mo6uq9iAooqEmJpH5aOV+uFhPgodGqVIYmXK6CocpTjLKqKDagaw4Bu
hoK2C0AlldflssGKOt9x7qDjd0GNF9z2Zhbf4VPeaSjuCvAmG/xIn4c3WmX15jslTV0QumQ6ccUs
hQptzOezXeU3m9d00w7sRnh1I7Kmuz+78i/bAgzD8P9v796DJCvrNI9/z8nKqursKvsCQjftdRUW
HQhn1hjRRQaQdsErGyu8qCwSKiLL9M4wrMy0o2HbTrg64iyOaIzsOHifkHckwsvgqnR7B8XWAbEZ
VJB7I/S9um55O+fdP857sk5l562qT1V2Fc8noqQq81TVOZnWG0+/7+/83sa2NbJwFKyOds7B47s5
+MhJ8IfMumNtZpZlJhS0m6VqloaSkIAVwSCH4jIxjqEgqZEqBCErGJzpWRXM9KYqUphVbzRT+J3M
NNX833J6fLZBZhrIstvOZPtYlcIkXI3HdWrAcBCzKkhm1tL9AxtB0C9XVuKkOD47e1XxtV1hhxmn
VNSYhUtm+4abmo0ya+k1eWwsnuZNd72NF1w3hnvoMVytjosi36KBntpbiEiiVbE1XcLHfPpI0WNY
6nZMp9/dbUmvl2XAbucH7WeoWh2X7Z5erba/i1nyoS1tloB4aopjfhFye/kEf4edmzXTVHYRB324
SLWamUk3Rp5wNaZc1ddkJT9r3MVMpluxZOqMWrVuyKq4erJk6GfEai5q3PmHD2FJPdcAQ0GxUfg+
5AvODw8w6R15ASW//DhzLjPF9hUXU3YRU3FSqJ6GuPTaa/4uyZV++S9tTZHuqZiV7ps44APjimCw
4zXXXMQXD53E6s+MEt/3EPHUFK5WTbqnO6dlP5E2tm7d2va5duGq+fNu39fquXbf1+6j2/e0+x3d
Zpbmco2tzqfTY+2uKRuqoijiggsuaHt9kg/NWC0BrlLhuFsf4S9PfTOrz/9HXjY0zVAwQNEvvU24
CrEPWDVXbvS7yhZop81Ei76HVGosLlMMQoaDoHFnH75D+JSrUfNLgOmiWNHfzRdngkxMzIRLCrPT
/fpomkFr2abAz1KlIbDut+Yp+S7uM1vozN4+B9/yYTgYYDyuUvNd4EuBo+I7m6eNRgEOxOXGKzHc
psYqDV8zLSncYQuB6TVMuSp//8tXcOLPH6Ne07/+RPLSLiCkM1TzmaWazxLgXH52px5UvdR99TJb
1UttVaegmIaqiYmJI3oNpDeasVoi6o8/wUmfP8S7dl7oWwnMdP8uhcXGRsBJsXat5YbKxaBAKRj0
264M+hmkpP3CSFCkFAwyEg77YvF0eSxg2O/VV/T73s3UPAUMBQOMx3XG4oipOFk2HAqKjdmpXsS+
T1ZaeJ7OZlVcjbG42iiYn6nlGqAUzNRAFXwobJ6RioCDcdLnK250pPdb0bSY0cuGKvzMV/qRDYZP
RjHDO1YS79NGpCJz1W7Wqt3MU7cZmubvaTfr1G02qt05tZul6jbb1Mv1dbrmbufU/P2tfkZ2tqpc
LnPxxRf3cNVypBSsloo4gt8+RHjLGnZWRw97eiQYYiQYYjQcbNyB1yxtDprWRIWkQSn0M2AzQSgk
nDWzNRSEjIaDjVYJhSDMhLuZ8JUUusd+v74q9eSew7ZF48meezE1okZdUs1FHIrLHIzrlF12P77A
F7oPNs61QEDRXwfA08JhVgSDFCkwHAR+s2fHGv94c6+prJqLGi0XklfKNc4xff0ORFO8/7HXsu4n
k8RqnyAyL63CVbslrU7Pd9JpWa5bYOpWs9Tr13NZAuy07Nfu9Wj3ujQv/1WrVQ4dOtTx9ZL8KFgt
IfH0NMd/fzfX3HsBB6KpxmxKtk4pJEyCRXB48XU6KzThKkzFVSZchcg3Gc1KO6mndVKx7wE1HlcP
q8FKny+7pLVC5BwTruKPrfsO75Gvxaq1rf1KQ1XkXLI1jT+uFASM+i7q6cbHU3GVibjMtKtSCouN
MNXcayqZpUruMMQHpJlZrtnXnIbOKDNwNTcS3RdPc8nv3sCuD51I4c7fqJZKJGdpGEg1B4q5hq1e
A9hcjmt+rN3z3Waj2s14dZtxa3fNzYEq+zExMcHb3/72jtcn+VGwWkqcI374MQY/t4YP7/3PHIin
qRMdtrTVrp6pEATEzlFxcdIRPU46mk+5GhOuQsXVGsEpJikQr7l0tigJKlN+o+N0qTHZ36/IseEg
o+FAUhgfJ8Er6YE1c17pMlz6vY2PTL1WxdUJfU1XIbN8h7/TbyKu+OL7mT0L09mzZEmxltRHBQGl
oEDNb6OThKa47d2B2ZqxtLg+e2zNRXx830s5+IlnUfruTuJy+YjeSpGnuk6zVnEcdw0tvYStTo/1
4kiXAjsd0+35TjNVrQJW+po1h6rJyUltTbPIVLy+xLhKhdW3P8q//Pg03vK6nzAa0tjIOO2g3txp
PTVAgWIQUWz0nEpmpKZd1QeVKqvCYUbCot/cOGm4mQ1Yw74mq+a3wAkJKIWDs2uTgiTMpD2rxuOk
K3kUVxs9sYpBUvc05IvqC2HSkmHKVX3Lg7CxGTQ++DTuGPR9rAqZZqM0tXAYi6uMx0m7hZVhsr3M
SJDUbbW60zF5LZJO763C153VmK9++Qyetf1eoqmpI34fRaS1OI4Jw7Cxl51rKu52bYrZ05DRqplm
uwab3YrEe2k22u4cmh9vbmSaPa75825aLZm2ClXlchljTE8/U/KjGaslKNq9l+PuCPh19XhoaolQ
9kturYrXC43u57Pf9qQppmuEJzLLZknDzQKj4QDD6XJjMFPcnt3gOQ1BU3HEuO8KfzCOKbsk9E35
/5b9ljP41glpq4OQgOFgoBGYipnZqnQWrRgk+wzGfp/AmouYdkktV9q+YcpVKbs0VM3c7XgoLjMV
11r2+krPv1WoeqQ+wUXbruTZN+0iOnhwXu+ZiByu3axVq9mXXmqRWn3d7rHmxzuFmk4/M/t1p8/b
Ld91O8derrPV8l+tVtNdgH2iYLUEuXqNtT/bw3vuOp87K8ksT9qAczgYaMzspLVSWUl4CGZvRUPk
C73Dmc2T4yoH4mnf+6rOwbhODUcNx3ic7I+XLh1mA1zSpypgVVig2pjlSjZgLgbJjNfKMLnDcGbj
5mz/LUcpLFIKi42wld6lWPbnMh5HlN3M5sdpnVg2FA0HAaNhwEhQ9G0mkrsmR8Khjs1Cm+2NJnnz
v7+Fk/6pQvToLtVVieSsVbjKhqnm8NApoPQSqLqFqebne1kGbHdO7cJQq3PudI7Nx7arpYrjmHq9
TrVaZXp6mksuuWQe74gcKQWrpcg54gcf5bkfrPOWL2/iM2MvoOJqPoiEs5pwtioWT2ud0nqnIgWO
CVdQCovUiBp1TEW/l9+w73OFL1Iv+OW4tDZqOlNzNUCBNeEKVoUrWF8o8YyBFawtDFEKAop+tqvq
Z8eS2qckTNVJCtzTRqLpXY11IiZchbKLku2kg4CVQchoOMBIONQIZWkNVRomh/xSYtKKYaDxc3vt
TI+fJbtp/GSizx9HePf9uPrhzUVF5Mg1h6tWAaI5ZHULLXnNWrV7vt3vpsMsVS+Pt/vIzuK1en2i
KKJWq1GtVqlUKlx00UVH+K7IfClYLVGuViX+1W858ZMP83+//Gr+rTrsN1eeHRxazc7ExEy5alKE
7ptyZpf+hoIBVoWDjARDlHyLheGgQCkocHxhiGMLK3haOMyqcAUA43Hdz17VZ/3OGMdEXKHmIkZ9
cXvFxawOB1hbGGr8nuySX1qnlS7xJbVSETXnKJIUpI+EQ43gNeRnpPAhLL3DsJKZ0Zq5Y7J1/RQt
OtVHLmZvNM1Hbz+XtT94hFh1VSILqjlcNYeq5pmZXgIPc5gRavfR7nu6/a5WIard7+52Ts2hqvm1
aA5VqqvqLxWvL2VxRP3x3/PcLwxw2Yr/wZXn/z8uGN3J+kKp47eloWQqriUPNE3iTLgaQ4SMZLaC
KbuI4aDAeJx0Gh8OCoQura9KCtSLaXsGXzcV+QL2kq+hivxehI3mof73Zts3xMRMxLXGHYUhMOi3
tgmDgJqLiahSIJi1RU76c8quypRzSV8tAn+XYBKaOm2q3HwH4P21Cu/49Vt43pdioid39/6eiMi8
peFqy5YtOOeIooggCBotGLJF6602Ew7DcNZxqV6L11OtZq7aFcW3+rpbIXqvRevdwlk2VKUfb3rT
m9r+XlkcmrFa6pyj/vCjPP+6+7npg+dx6W/fzEP1qbYNOVNDQdL/6WnhcCNwzLRCSELNhKsw7dK9
BZMtc4pB0ji07CL2+21vRoIio+EApaDYaIUwFdeYcDVKQTHZxBlHMUhmxGjs5xc1gk8arsqu7mfA
Yn9XYNho9ZDsDxj7wNV6w+liEHJsOMhQEPotfmJfsN55I+ZU5GLurMa85pa/YHTzMAO336MlQJFF
lp29qtfrRFHUcWmw03LZXGah5rJUON/ZqubvbXcdrWapss+lgapSqVCpVBgbG1OoOkpoxmo5cI5o
zx5Wf22K6pMn8/or38mX/tON/MHgQMdtZdItXJoDx3GF0syGysSUggKlYKZFQxw4plyVYgClYKZ5
Z+SSDur4u/2qzlGhzqSLGWzUVsHqMKRGsrRX8zNajY2PHYyGgQ9nkS+0T/4FkNZMRX4D6jpRYz/A
pLu7awS3dI4M8B3Xu4eqiquxs+q46Dt/yguu2030wCNJx3sRWXRbt25ly5YtAI1gNTCQ/H1nZ7Gy
0jYN2XYN2cdSnWaTmnWa7Wo3s9VpNsq1aM/QSrtQli1STwvV3/jGN/Z8PbLwNGO1jMSTkxR/vJNn
/G2IueMdPBlNN2auOm0pk90IOSRkXzzNWFxmb1xlf1xnykX+zruZGaK03UH2jr440xB0yoeoGsl/
y75QHZLHQt9AtOSX8tImn4UgmQ1LiuPxPa/CpL9WMNTYrqbmO8FPuAr74mnGfY+skLBR/L7C733Y
LVRFLuaR+gSXPHgeb73+Kl74t3sUqkSOAtmZq7SFQBooOhW1t5vxafX5XGqtutVZtZtBa/V5q9/f
6W6/7JJftVqlWq0yOTmpUHUUUrBaZlylQnDnb3jO3wdceM+lPFSfouKSWqpO4Srt41QMChT9/oFr
w4FG24TxOLlrL7l7r8akixvb2JBZ2hv2Gz2XfLuDpAdWwKj/ecM+mxWDMLkj0Df+TNs84Ou3hoIB
nl4YohQWGp3TZ843aBwX+3Motuk2381UXOXW6RWcecvVjF19Ahtu+CX1Bx9WqBI5SmTDlXOuEa5q
tRpRFBFFUdvQ1O5Oulafdyoc79b+od2SXbdA16ogvzlMpdea/ahWq+zevVvtFI5SWgpchlytSvjz
e1n11ydy7n9/Fx99/Rd5VelAx+LtVDEoUAqLjRqmGAdhtTETVXZ1ihQ4vpDcEZhdBkwaeBaouYhS
UPQbPidzU1lV5yj6pUB8UJpyVWLnGAmHGp3fp12VivP798U1SuFMM9S0FcRIWGTEn0ej83uHrWuy
fl+f4H89+jp+87mTeeE3H6H++BPEClQiR53ssiC+7qo5AGWXCZuXBFstDTZ/3ukjlS7jZR/PPuZy
6LDeKpQ1f2iW6uimYLVMuVoVfvlr/uPe9fzV1CWUzZc5c8Wjvs1BseP3pv2vCkEIPlDVfL3UuIuJ
XNToaF4KBhvHhISMxzN35a0Jh33wChiLqxyM6hQDGA0LjAQzjTrH4mnG44hB39E9cklYG6KY3B3o
Z6vSOxLTAvrsHYHJRc/uBt9O5GJ2RVO8asc7WX/9EMftuJv65OSRvNwissCydwySqbvKfhQKBcIw
xDk36w5BWgQuMtvntNIcotqFqVbb1jT/3l5CVbvC9WxN1fT0NJdddlmOr6osBAWr5SyOqD+2i+d/
Kubj91zEX7/c8bY/+QGXr/kFa8LhroXtqeFggDhIWies8ktzxSBM7rijykgwBH62a5iYAjGh7+6e
hDOSDuhhfWZT5CBpNBq5mFIwyHAhrQVzhIEj9oXzkNZnOYp+r8Kki3rhsPPvtUD9KxPr2PKNCznp
xv3E991HXKvO+yUWkcWVXRrcsmXLYUtrYRi2/WgOXN1mrFKtQlbz47QIU722feg0S5X2prr88ssX
9HWV/ChYLXfOUd/1OE+7eS+rt43yvRedzmfPO5uXnn4vf7b+Vk4pOkrhYNtvT4NRKUz6O0Uky3Uh
AUNBUvvUaAjqnwcoUmDaVX2hebIFDpmivqTFwszvSZcpI+qNmrCaSwLa0wtDs3pdzUfNRRyIy/zv
3Wdy+/V/zEm33E+0d6+2qBFZwrKzWHEcMzAw0DFYtQta3ZYC281UZQNULz2sWgUq/MxZNlSld/tV
KhWuvPLKBX8dJV8KVk8RrlYl2ruPge8d5KRfjLDvORt4x5l/zsirnuADJ36Nlw+X2y4RFoKQgr/b
bvYPTeaUmkNP5PcfTO8cTHtRzTrGOSJfe9U885R+TxrgYhxhGtiCQscO6s0qrsYDtRp/s+s1/Oz2
k3nWrTWOue1uIi39iSwb2YAVBAEDAwONZcFePtLZq1ZhqpfA1TzDlWoVsLKPZYNVFEWNu/2uuOKK
BXutZOH1FKyMMacAXwOus9Z+whjzWeDFwD5/yLXW2luMMRcDV/l+jjdYa29c2NOXOYsjooNj8MtD
nHBfieDWDVxz5uWM/Ncn+PhJX+7a+yornc3Ct1qIiSlSYDgcYIACsZ/RSju8FzLtGmpESX2Wl+7x
VwgCin6/wzRAFVqEr05qLuLBepnPH3gp/3z3H7P69iHW/Wg/Jz16D/HUFLEafj6laPx66sgGrFqt
RhAEFAqFnoJWL7NWcwlVWa3CFC0C1aZNmxbstZHF0zVYGWNWAtcD25ueere19l+bjnsf8BKgCuww
xnzVWrt/Qc5cjoxzxJOTcO99HP/QYwTf38Cl5/4Fp1/8b7x/3XaOCVf0NCuUHlNI/zczviQ1VAEj
aaFopmVCuln0xb5xoAAADUxJREFU7KOTmquhsHNxfTsTcZkfl1fxlzv/G4XvrOH4nx3i5IceJh4b
J6rXtOz3FKTx66mpuQ6r7v8xlQas9L/ZsDWXENXuuXYzVO1aMkRRpKW+ZaiXGasK8Grgr7ocdxqw
w1o7RjJQ3QacDnwjn1OVBeFcssHwr+/nhMee4L6fn8zLX/NHPPclj/Jnz97GqYN7Ob6HOwnbSWec
/Fc9HT9Xj9Qn+OATr+R73/1DNny/zjN3Pk605wFctdrosyVPWRq/nuKaN3fGh600WDXPZs1n5irI
7GHYrWHp9PQ0mzdv7strIYuja7Cy1taBeovdsjcZY64GdgObgHXAnszzu4H1uZ+xLAzniMfHCW//
Fc+7c5jw6cfwf553MePPHOTgyXDyyx7kXc/8FicOTDAaDvS8TcxCiFxMxdW5vx5z/ZPn8NObX8Qz
vrWf5z90D9HEJHX1ohJP45e00hy2tmzZQrFYnBWU5hKyaNEuYXp6mve+9719ukLpp/kWr38B2Get
vcsYsxl4P/CTpmMCGhU4smTEEfHkJPHkJAMPP8raQoFjBgeJ1qzmgxsuYeLZJQ4+v0Dl1CnOO/Fe
Lli7gxcNTrCmUMr9VNJNmsfjOmUHD9RX8Y9PnMkdv/kPDD88yLF3R4z++z6e8ehdxNPTWuqTXmn8
kllazWqJzNe8gpW1Nluv8HXgH4CvAK/NPL4B+OmRn6L0jXO4eh1XryfLhbseZ+TnBUaLA4SlEg8c
cwJ/86y3svfUITj7AFv/4BucNvQEq3z7hrG4StlBIYAiUAwCCgSEQUCRZNua7KzX3miSOyrH8O2D
p/KjXc/j0IOrGXkwZOTxiOH9dQb3TRM+uZ+TJ36Dq1ZxtTqRZqdkjjR+ichCmlewMsbcDFxjrX0A
OAvYCdwBfNoYsxqo+/qEq/I/ZemrOMJVIqJKBQ4cYOB3D7H+R0XCL41yw4bX8bFnjDC9Nvm/1eBE
TOAc8UBAVAyIBgOiIYiGAqIVMP10x8oTD7J25RQP/e54jrutwJpfT1DYM8b68d2sm34EV6vjoihp
7ZDZyFlkvjR+ichC6uWuwBcDfwc8B6gZYy7wd9ncZIyZAiaAt1prp/20+rf9FPrWtBBUljHnGj2y
2LuPobuTrW6S53wMysxKBWHQeCwohASDgxAGnFzdQ1yu4OIINUOQvGj8EpHF1kvx+i/8v+qa3dzi
2K/4KXV5qnIOmrukZ752mSknVwPK5UU8OXmq0fglIoutP7d1iYiIiCxDClYiIiIiOVGwEhEREcmJ
gpWIiIhIThSsRERERHKiYCUiIiKSEwUrERERkZwoWImIiIjkRMFKREREJCcKViIiIiI5UbASERER
yYmClYiIiEhOFKxEREREcqJgJSIiIpITBSsRERGRnChYiYiIiOREwUpEREQkJwpWIiIiIjlRsBIR
ERHJiYKViIiISE4UrERERERyomAlIiIikhMFKxEREZGcKFiJiIiI5ETBSkRERCQnClYiIiIiOVGw
EhEREcmJgpWIiIhIThSsRERERHKiYCUiIiKSEwUrERERkZwoWImIiIjkRMFKREREJCcKViIiIiI5
UbASERERyYmClYiIiEhOFKxEREREcqJgJSIiIpITBSsRERGRnChYiYiIiORkoJeDjDEfAc7wx38I
2AF8ASgAvwcusdZWjDEXA1cBMXCDtfbGhb8EEZH2NH6JyGLqOmNljDkbOMVa+zLgPOBjwAeAT1pr
zwDuB95mjFkJvA/YCJwFXG2MWbs4lyEicjiNXyKy2HpZCvwhcKH//ACw0g88X/ePfcMPRqcBO6y1
Y9baaeA24PQFPHcRkW40fonIouq6FGitjYBJ/+VlwDeBc621Ff/YbmA9sA7Yk/nW9HERkb7Q+CUi
i62nGiuSKfXzgbcD/wX4beapAHD+v7R4XESkrzR+ichi6emuQGPMucB7gFdZa8eASWPMCv/0Bl8A
usv/q4+mx0VE+kbjl4gspq4zVsaYVcC1wEZr7X7/8DbgDcAX/X+/BdwBfNoYsxqo+/qEqxb+EkRE
WtP4JSKLrZelwIuAYwFrjEkfu9QPQu8EHgY+Z62tGWM2A9/2U+hb/b8ORUT6ReOXiCyqwLn+lBFs
377dffiVn+rL7xaR/th86xWcc845zfVMS8727dvdxo0b+30aIrKItm3b1tP4pc7rIiIiIjlRsBIR
ERHJiYKViIiISE4UrERERERyomAlIiIikhMFKxEREZGcKFiJiIiI5ETBSkRERCQnClYiIiIiOVGw
EhEREcmJgpWIiIhIThSsRERERHKiYCUiIiKSEwUrERERkZwoWImIiIjkRMFKREREJCcKViIiIiI5
UbASERERyYmClYiIiEhOFKxEREREcqJgJSIiIpITBSsRERGRnChYiYiIiOREwUpEREQkJwpWIiIi
IjlRsBIRERHJiYKViIiISE4UrERERERyomAlIiIikhMFKxEREZGcKFiJiIiI5ETBSkRERCQnClYi
IiIiOVGwEhEREcmJgpWIiIhIThSsRERERHKiYCUiIiKSEwUrERERkZwoWImIiIjkRMFKREREJCcK
ViIiIiI5GejlIGPMR4Az/PEfAl4PvBjY5w+51lp7izHmYuAqIAZusNbeuLCnLyLSmcYvEVlMXYOV
MeZs4BRr7cuMMccAdwLfBd5trf3XzHErgfcBLwGqwA5jzFettfsX/CpERFrQ+CUii62XpcAfAhf6
zw8AK4FCi+NOA3ZYa8estdPAbcDpOZ+viMhcaPwSkUXVdcbKWhsBk/7Ly4BvAhGwyRhzNbAb2ASs
A/ZkvnU3sH7hTl1EpDONXyKy2HouXjfGnA+83Q9CXwA2W2tfAdwFvB8Imr4lAFz+pywiMjcav0Rk
sfRavH4u8B7gPGvtGLA98/TXgX8AvgK8NvP4BuCn+Z+yiEjvNH6JyGLqpXh9FXAtsDEt5DTG3Axc
Y619ADgL2AncAXzaGLMaqPv6hKsW5SpERFrQ+CUii62XGauLgGMBa4xJH/sMcJMxZgqYAN5qrZ02
xmwGvu2n0Lf6fx2KiPSLxi8RWVSBc/0pI9i+fbv78Cs/1ZffLSL9sfnWKzjnnHOa65mWnO3bt7uN
Gzf2+zREZBFt27atp/GrpxqrhbL51iv6+etFROZt27Zt/T4FETkK9W3GSkRERGS50V6BIiIiIjlR
sBIRERHJiYKViIiISE4UrERERERy0pe7Ao0x1wEv9f1i/txau6Mf5zFXxpizgH8B7vEP/Qr4iN8i
owD8HrjEWlvp86m2ZIw5BfgacJ219hPGmGe2OndjzMW+OWIM3GCtvbHf555qcQ2fBV4M7POHXGut
veVovgaS6/gIcIb/G/wQsGMJvhfN1/D6pfhezJXGr/5YDuMXy2QMWw7jFws4hi36jJUx5kzgRGvt
y/zeXR9f7HM4Qj+w1p7lP/4n8AHgk9baM4D7gbf1+wRbMcasBK5v2s7jsHP3x70P2Oi7Ul9tjFnb
x1NvaHMNAO/OvCe3HM3XQHIdZwOn+L+B84CPLcH3otU1sNTei7nS+NUfy2H8YpmMYcth/GKBx7B+
LAWeA3yVZOf5e4E1xpin9eE88nKW328M4Bv+xT8aVYBXA49nHmt17qcBO6y1Y9baaeA2v73H0aDV
NbRyNF8DwA+BC/3nB4CVS/C9aHUNhRbHHc3XMB8av/pjOYxfLJMxbDmMXyzkGNaPpcB1wC8yX+/x
jx3qw7nMxwuNMV8H1gJbgZWZqfPdwPo+n19L1to6UM9s60Gbc1/n3xOaHu+7NtcAsMkYc7U/101H
8zWQXEcETPovLwO+CZy7xN6LVtcQLbX3Yh40fvXBchi/WCZj2HIYv1jgMawfM1bN7eADX6uwFNzn
B6PzgUuBfwKKmeeX0rXQdK7puS+19+cLwGZr7SuAu4D3L5VrMMac75eTNi3V96LpGpbsezEHS/l6
NH4dnZbk381yGL9YoDGsH8Fql0+AqROAJ/pwHnNmrd1lrb3JWuustb/z573aGLPCH7LBF+4tFZMt
zr35/Tmqr8lau91ae5f/8uvAqUvhGowx5wLvAV7lN/tdcu9F8zUs1fdijjR+HT2W3N9MK0vx72Y5
jF8s4BjWj6XA7/h/Nd1gjPkj4HFr7XgfzmPO/J0B6621HzXGrAOOBz4DvAH4ov/vt/p9nnOwrcW5
3wF82hizGqj7teSr+n2i7RhjbgausdY+4Nf5dx7t12CMWQVcC2y01u73Dy+p96LVNSzF92IeNH4d
PZbU30w7S+3vZjmMXyzwGNaXvQKNMR8G/sTfuvin1tpfLvpJzIMxZhT4Z2A1MOgH2DuBzwPDwMPA
W621tX6fazNjzIuBvwOeA9R8Cr8Y+GzzuRtjLgCu8dOd11trv9Tv86f9NVwPbAamgAl/DbuP1msg
uY7L/RTzbzMPXwp8egm9F62u4TN+On3JvBfzofFr8S2H8YtlMoYth/GLBR7DtAmziIiISE7UeV1E
REQkJwpWIiIiIjlRsBIRERHJiYKViIiISE4UrERERERyomAlIiIikhMFKxEREZGcKFiJiIiI5OT/
Awuph6AHQDgpAAAAAElFTkSuQmCC
"/>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div><div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<h3 id="Set-up-a-basic-model">Set up a basic model<a class="anchor-link" href="#Set-up-a-basic-model"></a></h3><p>Here we create a simple model class and initialize a parameter for the camera position.</p>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In [10]:</div>
<div class="inner_cell">
<div class="input_area">
<div class="highlight hl-ipython3"><pre><span></span><span class="k">class</span> <span class="nc">Model</span><span class="p">(</span><span class="n">nn</span><span class="o">.</span><span class="n">Module</span><span class="p">):</span>
<span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">meshes</span><span class="p">,</span> <span class="n">renderer</span><span class="p">,</span> <span class="n">image_ref</span><span class="p">):</span>
<span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span>
<span class="bp">self</span><span class="o">.</span><span class="n">meshes</span> <span class="o">=</span> <span class="n">meshes</span>
<span class="bp">self</span><span class="o">.</span><span class="n">device</span> <span class="o">=</span> <span class="n">meshes</span><span class="o">.</span><span class="n">device</span>
<span class="bp">self</span><span class="o">.</span><span class="n">renderer</span> <span class="o">=</span> <span class="n">renderer</span>
<span class="c1"># Get the silhouette of the reference RGB image by finding all the non zero values. </span>
<span class="n">image_ref</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">from_numpy</span><span class="p">((</span><span class="n">image_ref</span><span class="p">[</span><span class="o">...</span><span class="p">,</span> <span class="p">:</span><span class="mi">3</span><span class="p">]</span><span class="o">.</span><span class="n">max</span><span class="p">(</span><span class="o">-</span><span class="mi">1</span><span class="p">)</span> <span class="o">!=</span> <span class="mi">0</span><span class="p">)</span><span class="o">.</span><span class="n">astype</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">float32</span><span class="p">))</span>
<span class="bp">self</span><span class="o">.</span><span class="n">register_buffer</span><span class="p">(</span><span class="s1">'image_ref'</span><span class="p">,</span> <span class="n">image_ref</span><span class="p">)</span>
<span class="c1"># Create an optimizable parameter for the x, y, z position of the camera. </span>
<span class="bp">self</span><span class="o">.</span><span class="n">camera_position</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Parameter</span><span class="p">(</span>
<span class="n">torch</span><span class="o">.</span><span class="n">from_numpy</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">([</span><span class="mf">3.0</span><span class="p">,</span> <span class="mf">6.9</span><span class="p">,</span> <span class="o">-</span><span class="mf">2.5</span><span class="p">],</span> <span class="n">dtype</span><span class="o">=</span><span class="n">np</span><span class="o">.</span><span class="n">float32</span><span class="p">))</span><span class="o">.</span><span class="n">to</span><span class="p">(</span><span class="n">meshes</span><span class="o">.</span><span class="n">device</span><span class="p">))</span>
<span class="k">def</span> <span class="nf">forward</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="c1"># Render the image using the updated camera position. Based on the new position of the </span>
<span class="c1"># camer we calculate the rotation and translation matrices</span>
<span class="n">R</span> <span class="o">=</span> <span class="n">look_at_rotation</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">camera_position</span><span class="p">[</span><span class="kc">None</span><span class="p">,</span> <span class="p">:],</span> <span class="n">device</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">device</span><span class="p">)</span> <span class="c1"># (1, 3, 3)</span>
<span class="n">T</span> <span class="o">=</span> <span class="o">-</span><span class="n">torch</span><span class="o">.</span><span class="n">bmm</span><span class="p">(</span><span class="n">R</span><span class="o">.</span><span class="n">transpose</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">),</span> <span class="bp">self</span><span class="o">.</span><span class="n">camera_position</span><span class="p">[</span><span class="kc">None</span><span class="p">,</span> <span class="p">:,</span> <span class="kc">None</span><span class="p">])[:,</span> <span class="p">:,</span> <span class="mi">0</span><span class="p">]</span> <span class="c1"># (1, 3)</span>
<span class="n">image</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">renderer</span><span class="p">(</span><span class="n">meshes_world</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">meshes</span><span class="o">.</span><span class="n">clone</span><span class="p">(),</span> <span class="n">R</span><span class="o">=</span><span class="n">R</span><span class="p">,</span> <span class="n">T</span><span class="o">=</span><span class="n">T</span><span class="p">)</span>
<span class="c1"># Calculate the silhouette loss</span>
<span class="n">loss</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">sum</span><span class="p">((</span><span class="n">image</span><span class="p">[</span><span class="o">...</span><span class="p">,</span> <span class="mi">3</span><span class="p">]</span> <span class="o">-</span> <span class="bp">self</span><span class="o">.</span><span class="n">image_ref</span><span class="p">)</span> <span class="o">**</span> <span class="mi">2</span><span class="p">)</span>
<span class="k">return</span> <span class="n">loss</span><span class="p">,</span> <span class="n">image</span>
</pre></div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div><div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<h2 id="Initialize-the-model-and-optimizer">Initialize the model and optimizer<a class="anchor-link" href="#Initialize-the-model-and-optimizer"></a></h2><p>Now we can create an instance of the <strong>model</strong> above and set up an <strong>optimizer</strong> for the camera position parameter.</p>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In [11]:</div>
<div class="inner_cell">
<div class="input_area">
<div class="highlight hl-ipython3"><pre><span></span><span class="c1"># We will save images periodically and compose them into a GIF.</span>
<span class="n">filename_output</span> <span class="o">=</span> <span class="s2">"./teapot_optimization_demo.gif"</span>
<span class="n">writer</span> <span class="o">=</span> <span class="n">imageio</span><span class="o">.</span><span class="n">get_writer</span><span class="p">(</span><span class="n">filename_output</span><span class="p">,</span> <span class="n">mode</span><span class="o">=</span><span class="s1">'I'</span><span class="p">,</span> <span class="n">duration</span><span class="o">=</span><span class="mf">0.3</span><span class="p">)</span>
<span class="c1"># Initialize a model using the renderer, mesh and reference image</span>
<span class="n">model</span> <span class="o">=</span> <span class="n">Model</span><span class="p">(</span><span class="n">meshes</span><span class="o">=</span><span class="n">teapot_mesh</span><span class="p">,</span> <span class="n">renderer</span><span class="o">=</span><span class="n">silhouette_renderer</span><span class="p">,</span> <span class="n">image_ref</span><span class="o">=</span><span class="n">image_ref</span><span class="p">)</span><span class="o">.</span><span class="n">to</span><span class="p">(</span><span class="n">device</span><span class="p">)</span>
<span class="c1"># Create an optimizer. Here we are using Adam and we pass in the parameters of the model</span>
<span class="n">optimizer</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">optim</span><span class="o">.</span><span class="n">Adam</span><span class="p">(</span><span class="n">model</span><span class="o">.</span><span class="n">parameters</span><span class="p">(),</span> <span class="n">lr</span><span class="o">=</span><span class="mf">0.05</span><span class="p">)</span>
</pre></div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div><div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<h2 id="Visualise-the-starting-position-and-the-reference-position">Visualise the starting position and the reference position<a class="anchor-link" href="#Visualise-the-starting-position-and-the-reference-position"></a></h2>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In [12]:</div>
<div class="inner_cell">
<div class="input_area">
<div class="highlight hl-ipython3"><pre><span></span><span class="n">plt</span><span class="o">.</span><span class="n">figure</span><span class="p">(</span><span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">10</span><span class="p">,</span> <span class="mi">10</span><span class="p">))</span>
<span class="n">_</span><span class="p">,</span> <span class="n">image_init</span> <span class="o">=</span> <span class="n">model</span><span class="p">()</span>
<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">image_init</span><span class="o">.</span><span class="n">detach</span><span class="p">()</span><span class="o">.</span><span class="n">squeeze</span><span class="p">()</span><span class="o">.</span><span class="n">cpu</span><span class="p">()</span><span class="o">.</span><span class="n">numpy</span><span class="p">()[</span><span class="o">...</span><span class="p">,</span> <span class="mi">3</span><span class="p">])</span>
<span class="n">plt</span><span class="o">.</span><span class="n">grid</span><span class="p">(</span><span class="s2">"off"</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Starting position"</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">2</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">model</span><span class="o">.</span><span class="n">image_ref</span><span class="o">.</span><span class="n">cpu</span><span class="p">()</span><span class="o">.</span><span class="n">numpy</span><span class="p">()</span><span class="o">.</span><span class="n">squeeze</span><span class="p">())</span>
<span class="n">plt</span><span class="o">.</span><span class="n">grid</span><span class="p">(</span><span class="s2">"off"</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"Reference silhouette"</span><span class="p">)</span>
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area">
<div class="prompt output_prompt">Out[12]:</div>
<div class="output_text output_subarea output_execute_result">
<pre>Text(0.5,1,'Reference silhouette')</pre>
</div>
</div>
<div class="output_area">
<div class="prompt"></div>
<div class="output_png output_subarea">
<img src="
AAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo
dHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3XmcZFV99/HP6e7Zh9kYdRgYHEBQ
NkVBFgmIAoKCEgMczYMookYS8QkPSgLqg2LyigY0KEuUJajBB+UIBkEJoChiUAlRRgXZF1kGGJgZ
Bmbr6eU+f8xpKGp6qe6+XUv35/161Wu67r1169xbU7/61rnn3gpFUSBJkqTRa2t0AyRJksYLg5Uk
SVJJDFaSJEklMVhJkiSVxGAlSZJUEoOVJElSSQxWGlQIYf8QwvoQwuaNbstwhRBuCCGcPcC8Y0MI
z9S/VZJCCAtCCLeGENaGEPZtdHvGUmWtCSEsDiEUIYQ98v2HQwgnNrqNKpfBqkWEENpDCJ8KIdwZ
Qng+hLAuhLAkhPDhquVOCiFMH+VzvbCOoihuLopialEUy0e7DfVWFMXbiqL4P2zcprYQwqkV8y4t
imJ+QxsotZgcBLryl62+2+MhhMtCCK8cxqreA7wKWFAUxS1j2OSGa+ZaE0LYLYTwjor7i0MI/6ux
rWp9BqvW8SXguHybB8wB/gk4N4Twfja+KeYD/wKMOFiVsY4m9XrgM41uhDQOnJa/bE0timIqsDcw
C/hRCKG9xnXMAZ4oiuK5MW6rBvch4B0V948EDFajZLBqHYcClxdFcVtRFF1FUXQWRZGAvwD+kL8t
LgUC8Fhf70wI4agQwu9yL9fSEMKX+4pfCOGA3C19XAhhZQjhA9XrqFhmfn5Mkdd5Qwhhdf4Ge2Rf
I0MIbwgh3JF71H4RQjiy8vHV8rwPhxBuyo95IITwlor5W4QQUgjhqfx8N4QQdqyYf2wI4a4QwpoQ
wpMhhPNCCFPyvJvy/f2BXwMz8jfsv8zbvLpiPTuEEK4LISwPIawKIXw/hLCQl3bfHxRC+FV+rrtC
CPuN2asttYiiKB4FPgnsDLyaje+ZySGEs0IID+bDfUtCCIfmeWcB/xfYKb8f9x9seV58L385hPDL
EMIdedqsEMLFIYRH83vylhDCGyse83AI4YQQwuUhhOdCCE+EED5WMX9eCOHSEMKKEMIzIYRvhRA2
y/NCCOHvQwj35PbcE0I4dqB9EELYPtePlfm5bgohvDbPe0mt6cf0EMK3c41eFkL4YMV6Z4UQLsrb
uDZv/5sq5hchhKMq7u+Rpy0eah+FEC4CPgackGvrZ4Azgbfn12XL4e4HZUVReGuBG3AF8BDwpkGW
OQAogPn5/tZAN3B0vv8aYCXwoarl/w2YmQNV9Tqq7xfAEmA3YBJwPvBMfuwU4Cng4tzjtTdwf+Xj
+2lzAdwDvAGYCnwBeA6Ykef/GviP3Es3C/h2XmcbsBXQA7wtP/8rgd8Bf5MfexNwXv77OGB1xfO+
cB+YDPwJ+Ne8H14O/AT4aZ6/OLfzp8C2wDTgB8BvG/3/wpu3et6Ah4FP9jP9tfk9slO+fxZwO7BN
rhMfAtYDC/P8zwF3VDx+qOVvAp4A3gKEPO17wA3AK3Lt+CywDJhW0daH8mM6gFOBDcDmef5/AP+Z
a8t84FbggjzvY8CjwK5Ae+7V6QT2GGC/3AB8I7djKvBF4NZi01rTV0v2qGjjg8Cbcx36PLAWmJnn
Xw78Etgy151/BlYAs4sX6+dRFe3YI09bXOM+eqFG5vvfBH5YcX9Y+8Fb3m+NboC3Gl8oWAjcmN80
TwBXAn9TGViqQ1CeNrdqPTcAX69aft+B1jFAsPp0xfL752mvAPatfFMXLxbQoYLVGRX3Z+Uw+C7g
dXn+qyrmb52n7QnslP/eu2J+W8XftQarI4B1fcWsarteXlEMj6mY/35gXaP/X3jzVs9bf8Eqvz9+
DPxP/oLTBjwLxKrlftP32MpgVePyNwE/rpg3H+gF9qyYFvKXvKMq2npRxfy+2rEXsHn+UvZnFfN3
Bt6W//498HdV7bmyMoRUzftv4GsVoS9UzBsqWP1rxbI75vm75MOlvcBBFfOn5FoViyGCVY37aKhg
Naz94G3jzUOBLaIoiqVFURyYB3x+FlgDnAE8HEJ4+yAP/XAI4d7cjbseODB/c6n00DCbc3/F32vz
v9Ny+OvJvT99bq1hfff0/ZHHXCzP39C2BTYURXF/xfxH8rfObYG7cjH7r9zFfQaw3TC3hbyuR4ui
qOyuv79iXvU08nZX70dpIvhCxcD1DcB9uYYcWmz85H05MBu4tHKQe+716G+Ae63LV9apV+WQcHPF
8uvyeiofM1Ct2iYHuof7ZhZFcWdRFDfkuzsA/1jVnnfmcNaf04GY6/FFwGEhhFDj/qzcrnX536m5
jQH4Y0UbO3MP0rabrmYTte6jwQx3P8gxVq2nKIoHiqK4sCiK9+dDYTfn4+KbCCEcl7uWP5G7jqfm
HqtqG4bZjJ4BpgegOxfXPr01rK96wGvI37oGCi6BjfuiKIrib3IBScB+wB9DCIfXthkv6O95+iuK
A223NJGcVjFwfdf8vri6KIq+y5f0BZhDKwe5F0UxuSiKj/ezvlqXr6xTfQFkx6rHTCqK4ssVyw30
nu2rUQN9Bq4DPtpPe97V78qK4jpgEXByrmeXAd8ZYN0DtaXaoPVvAJW1tNZ9NJhh7QdtZLBqASGE
RSGEr1UPAM/fXm4EXjbAQ/cG/rsoimuKougKIUzKhXCsLAOm9A36zvas4XEv9DKFEGblMQ+P5m+b
k0MIr66Yv0Meg3FfvoTCvKIoHi6K4qtFUbw1F7OPDLPd9wNb5+fus3MueA8Mc13ShFEUxT3APwAX
hhDm8mKv89N5HOYL8kkgm4SC4S6fPZRDU/Vjtqmx6Q/lL32VtWXXEMJf5bv39bPurQc66zGEML8o
irVFUVxZFMXxwJ8D7wkhzKuxPf3pqz0v1Ow8uH5Rbh95HNq0isdU9tiPdh8x3P2gjQxWreEp4CDg
svzm7wghTMpnpZ1Y8c2o7xvKq0MIM/Mba/sQwitCCAvyYbOn82G2gVSvYzj+Jw88Py2EMDWfffLe
Gh733hDCLiGEqcBpwOo8UPx/gD8AXwwhzM6F+4t5gPpv87Vwfh9CeF0+e+XlubDc189zrAOmhRBe
GUKYUTXv2jzG4wshhGk5GH4WuKYoiqeHuQ+kiebMXFe+WjHtfOCUEMLu+Rp8hwN35sue9GdYy+cw
dmk+TLV9ronHA3dUfbHrV1EUK4DvA6fn+jgPOKfii+D5wPEhhIPzuvfJY77eWb2uEMK0/EXv4yGE
KfkL7B55nzxb607sp43LgB8Cn80XVJ2RT+5ZAVyXF7sHeHd+3sXAX1U8vpZ9tA7YJoQwJ4eldcCi
fH/ycPaDKjR6kJe32m7AgnzW2oN5fNXaPLDwk0B78eLZbTfnLvMz87H0H+Wg8mAOIocBq/JZhv0N
dq9eR3+D1wc7C+XAHOjW5DNu/jLPnzfAdhW5+/zn+U39ALB/xfzFwDW5SD0JfDdfVJDcJf7ZPKZr
Xb5UxIUVZxRWDl7fPIe0zhxGqwez75bD3ErgMeDrwKyinwGnedpR+Whkw/9vePNWr9sgZwW+se+k
k+LFOvLl/J5dk88kPrJi+eqzAoda/qbqAdP5RJdL8pjM54FfAW8eqK15MHcBHJDvz8zB47nc235J
xXs+5C95j+Tacg9wwiD75YA8nnR1DlM/B/Yqahu8XtnG6vmb58OKT+RB59cC21c979358+BW4JCq
ejzUPjo6fx6szCcg/VneF88Duw93P3jbeOs7g0EqRf7WE4qi6M7335dPYa7uJepbvsiXg7ii7o2V
JKlkHgpU2e4EzsuHArcA/nfuzpYkadwzWKlsMQ8IfSp359+bLzInSdK4V/qhwBjj2flstAL425TS
baU+gSSNEeuXpNEqtccqxvhmYPuU0j75JwnOKXP9kjRWrF+SylD2ocADgasAUkp3AXNjjLOGfpgk
NZz1S9KodZS8vgX5Ghd9ns7Tnqte8MYbb/R0RGkCOvDAA2v9qY96s35JGlQt9avsYFX9hGGQy/Xz
xYO/XvLTS2pmp/74hEY3YTDWL0kDqrV+lX0o8PH8Da/PwnzBN0lqdtYvSaNWdrC6IV+Rmhjj64Gl
KaXnS34OSRoL1i9Jo1ZqsEop/RL4TYzxl8C5Xr9IUquwfkkqQ9ljrEgpnVr2OiWpHqxfkkbLK69L
kiSVxGAlSZJUEoOVJElSSQxWkiRJJTFYSZIklcRgJUmSVBKDlSRJUkkMVpIkSSUxWEmSJJXEYCVJ
klQSg5UkSVJJDFaSJEklMVhJkiSVxGAlSZJUEoOVJElSSQxWkiRJJTFYSZIklcRgJUmSVBKDlSRJ
UkkMVpIkSSUxWEmSJJXEYCVJklQSg5UkSVJJDFaSJEklMVhJkiSVxGAlSZJUEoOVJElSSQxWkiRJ
JTFYSZIklcRgJUmSVBKDlSRJUkkMVpIkSSUxWEmSJJXEYCVJklQSg5UkSVJJDFaSJEklMVhJkiSV
xGAlSZJUEoOVJElSSQxWkiRJJekYyYNijAcA3wPuzJP+AJwJXAq0A08Ax6aUOsttriSNnjVM0lgZ
TY/Vz1NKB+Tbx4HPA+enlPYD7geOL7GdklQ2a5ik0pV5KPAA4Or89zXAQSWuW5LGmjVM0qiN6FBg
tlOM8WpgHnAGMKOi23wZsEVJbZSksWANk1S6kQar+3IhSsC2wM+ASRXzA1CU1EZJKps1TNKYGFGw
Sik9Dlye7z4QY3wSWBRjnJZSWgdsmQd/SlLTsYZJGisjGmMVYzwmxvjJ/PcC4BXAN4Aj8yJHAteV
2lJJKok1TNJYGemhwKuBy2KMRwCTgb8Gbgf+Pcb4UeBPwLdKbqsklcUapiFdv3RJTcsdsnC3MW+L
WsdIDwU+D7yzn1kHj75JkjS2rGEaTK2Bqnp5A5YY5VmBkiSNG8MNVAM93oA1sfmTNpKkCW+0oWqs
1qXWY7CSJE1oYxGEDFcTl8FKkjQhXb90yZgGIMPVxOQYK0nSuNeokDPQ8zoOa/wyWEmSxp1m7y2q
bp9Ba/wwWEmSxoVmD1ODqWy7Iau1GawkSS2rlcPUQLxsQ2szWEmSWsp4DFP96W87DVvNz7MCJUkt
YazP4msFE337W4E9VpKkpmaYeCkPFTY3e6wkSU3LUDUw901zMlhJkpqSwWFo7qPmY7CSJDUdA0Pt
3FfNxWAlSWoqBoXhc581D4OVJKlpGBBGzn3XHAxWkiSNE4arxjNYSZKagqFA44HXsZIkDWmkocdr
LdXf9UuXuN8byGAlSdpEWb1H9kJpojFYSZJeYBCSRscxVpIkMFSNK76WjWOwkiT5QSyVxGAlSROc
oWp88nVtDMdYSZKkuhlN4GuFsx0NVpI0gdmroXoYq7NMmzFoGawkSYMq48PLANcYzXBNq7F87Zth
+6oZrCRJY66/Dz/D1vhWj9e32UIVDl6XJA3FAKThGuv/M4cs3K0pQxX2WEmSGsGwVj/1PFw2lq9r
swapavZYSdIEVuuHlUFIjdLMvVP9scdKkiSNWtnhu5XCVCV7rCRJNfGHmVvXWO/zMtffaj1U1QxW
kjTBtfKHmBqvrFDV6oGqj4cCJUnSiJQRqsZDmKpkj5UkqW6D2D0M2Dhl7/vRrm+89FBVM1hJkobF
cKTRGo+Bqo/BSpIEw/ywM1xNbOP9h5RHw2AlSXrBWIYrw9j44Os4OIOVJGnE/JBtLY0eIzfee6sw
WEmSqg33w89wNTEYqmpT0+UWYoy7AD8Azk4pnRdjXARcCrQDTwDHppQ6Y4zHACcBvcAFKaVLxn4T
VC+ho4MwbRqho4Ois5Pe9Z3Q29PoZkmDsn6NzCELdxvWB+lQv0dn+JrYJkqoopYeqxjjDOBc4MaK
yZ8Hzk8p7QfcDxyflzsdOAg4ADg5xjhvbJuveggdHXRsu5inj38jD1y0DevSLO7+6s6sP2x32mfN
anTzpAFZv0bHniv1cbB67WrpseoE3gH8fcW0A4AT8t/XAJ8E7gFuSymtYmNBuwXYN89XiwodHfTs
uyvT/+Exfr7t2cxsm7pxxs7wwNtWc+h3T2GHrzxE95NPQVE0urlSNevXKI2k54oJ+GHaSobqXaxc
brQm4v+DIXusUkrdKaV1VZNnpJQ689/LgC2ABcDTFcv0TVcLa9thW7Y9626+/6ofvxiqsu0mzeT2
Y87mj6dvTcfWW0EIDWun1B/rVzlG8uFo71Vrun7pkhduGpmR/qRNZddEyPerP1VD1XJqMWHSZB49
fD4/2PI7eTjKpma2TeUP7zyHXaecyE6fLeh+7PFNeq7CpMm0TZtKURTQ20uYOgXa2inWrNk4Tqvo
tbdL9WT9GoHh9lxh71VTq0dwmqiv+0jPClwTY5yW/94yDwB9PH/ro2q6WlSYOoVi71VMCv2Hqj4z
26by24PP4a6/25KOVy4idHTQPmsWHYu2gj135dFT9mD19zZn2WVbcN9F2zPratj5+me4+6s7s+ID
e7LuiDcS9tiFts02s9dL9WD9GqGRflDa+6GJZKQ9Vj8BjgS+nf+9DrgVuDjGOAfozuMTTiq5vaqz
9rbempab2z6d29/9FXbf/K952Q8Xsv49z3L8q37Fm6bfx26TO2gPm2b4sw67nc53dNFTFNzbVfDu
6z/O9pduoOPex+lduZKiu3sMtkiyfo3GSHquNPFM1N4qaglWMcbdgS8Di4GuGONRwDHAN2OMHwX+
BHwrpdQVYzwVuD53oZ/RNxBUralY38n6O+bAnrUtP7ttGtfvex6T/gy27piZp04e9DFTwiQIsNsU
eOhdF3LXoWs54/HDefhrezD3B3fS+/zzo98QTVjWr7FhuNJgJnKoopZglVL6TT6LptrB/Sx7BXBF
aa1TQxXdXWx5cxcPHbuabSbNrOERGwe0j8aOk6fz3W1+ymP/dDUHb/t3bHvRg55xqBGzfo0dw5XU
P6+8roEVBVN/9wgn3P/euj/1Vh0zWfLRr7LmW1Mp3vQ6QsdIj1pLGiuHLNxtwvdO6KX8/2Cw0hB6
l6/g2W8tYlnPmro/95QwiZt2uYqDL/gFvXvtAm2DD6KX1Bh+mEovMlhpUEV3N/N/9ignPPTnL5l+
8/rhr6un6H3JrVanzHuAbc6+h/D613jWoNSk7L2Sr/9GBisNqeeJJ3nqvO24a8PaF6ad8/hBw15P
e2h7yW04LtjqV0w/exnt2y0e9vNKqh8D1sTka/4ig5WGVHR3M/tnD3DUbz7yQk/TRYuvrns7vv+q
H3PXJ15G+9y5dX9uScNjwNJEZbBSTXqWr2DB+VP58bqN11Wc2z69Ie34xWH/wjPveg1hypSGPL+k
4TFcjX++xi9lsFJtil4mPdfJsu7NGtqMrTpm8t5TrofX7uB4K0lqMEPVpgxWqkn77Fnc976ZHDVz
6Zisf3Vv7aPh/3bu/dz78Um0bz5vTNoiSRqaoap/BisNra2ddXvvwNcO/zemtw1+JfWRmtk2teZl
20MbV+3/r6zZZzsvwSBJDWCoGpjBSkNqnz2Lh48ueMu04V9jYWXP2iGXGck1sl47eSqPHt1N+8wZ
w36sJEljxWClIfUuXshpb7qWSWH4vUNz26fzzCDB6ZmeNby8fWTh6F/2SfRut2hEj5UkjYy9VYMz
WGlQoaOD5bvN4i9m3jfidcxvn8Gq3nU807PmhYuDruxZy50b1jF/hKEK4G3TVvD4gbM9Q1CS6sBL
aNTGYKVBhWnTeGbvbua2TRvVema3TWN++4wXLgw6t306O08e3Tqnt01m0WEP0z5/81GtR5Kkshis
NKiw4GUc9obfD/tK6YMpc12f2Pp6uha/3EsvSE3MXo7WZk/V8HQ0ugFqYm3trHn1fN63+feA5jz7
btfJz7F6q6lsFtqg6Gl0cyRp3DBMjYw9VhpQaG/n2e06ePWkzkY3ZUAzwyTWzw2ENnusJKkshqqR
s8dKA2sLdG0G09smNbolA5oU2umaFaDEw4uSNNEYpMpjsNLAegvauhrdiKGte1lBaG+jaIG2ShPV
IQt34/qlSxrdDBmixpxf8zWoUEBPUTS6GQNqI9Azpxvam3MMmCRpYjFYaWBtgZ5WuERUl+OrJEnN
wWClQbV1QS+9jW7GgFYXncz5YwfFBo8DSs3OQ1CN52sw9gxWGlDR1c3ce3t4sLvRLRnYHRumMP93
6yi6DVaSpMYzWGlgvT3Muv1J/vGxwxrdkgF9Z/k+TH5sBTTxODBJL7LHpHHc9/VhsNKgep96mt/9
bAfW9m5odFM20VX08J9370Tx7HONboqkYfADXuOZwUqD6l3fyeZ3FDzR03zB6rHudcy+ZSq9q9c0
uimS1NQMs/VjsNLgenuYffcq/v3ZvRrdkpe4eT389QPvYerKgvZXvIzQ4SXZpFbiB339uK/ry2Cl
od3/CFd+583c29UcPUM9RS/7T4Xv7/AffOWL57LZ5et45rg30j53bqObJklNxVBVfwYrDal3zRpe
eenDHHr1yTzT0/hw1Z5/vmZ622T2nDKJ727zUy75zNnc9U/b07Foq0Y3T1KN/NDXeGSwUk26lz7B
qy9YxcmPvb3RTenXaydP5Q/vPIc/nrGA9vmbN7o5kmpkuBo77tvGMFipNkUB9z/M7y/bhYe6Vje6
NZvoKXqZ2TaV3x58Do+9/9WEKa1wyXhJGADGhPu0cQxWqlnv+vVsedUjvPW6/9M046369B0enNs+
nRM/chVtixY2ukmShsEgUB73ZWMZrDQs3Y89zk6ff5z3nHkKn3rqtXQVPY1u0ibet9nDrHr9yyH4
G4JSKzlk4W6GglFy/zWewUrDUxR0P76UBd9Ywi8/tRefWbY7PUV9f0uwsxj852umhA7Wz2uD4H9v
qRUZDkbG/dYc/OTRiPSuXcu0n/2BX35+Lz617A2s7Flbt4A1JUwa9ErwD3evZd7d66HOgU9SeQwJ
tbOnr7kYrDRivevXM+PaJfz+uB156xc/yY6/OI6r10wfdcDqKXoHXccT3av5i3vfzfY3Hcev17/0
UOTq3vUc/MNPMOl3D/r7gVKLMywMzX3UfLxctUal6Oyk+P3dvOKPk2i7Yg7/vP+xXHbSfXxp0dVs
1tZOb1Ews20Kk0L7gOvoLLr4r/VT+e26xdy9egt+ds8OtHUUvHvHJRw9979Z3LGBNb0Ff+yazz/c
ezhdV72MBf/5KNuvfYTP7PoRHnnbFGa/djkrVs5g3k+n8pprH6Dn2VV13Q+SxsYhC3fj+qVLGt2M
pmSoak4GK41eUVB0baDnqWVsdtWzPLdkK/5y10+wfk4bnXMCa/dYy5feeAWvm/wkv+1cyA+W78a8
yWvZb7N7ebJ7Nl+66e288ocF0x9YSXhuNa9Zcz9M6uDOuYu5fdHrWb3lZNq6YfqTG9j8nqX0PPMI
3V0bDwW2/3wl294yiTB1CvN7euhd30lPb/MNqJc0coarlzJQNTeDlUpVdG2g574HmX7/Q8xob4f2
dtpmzuDri49gw+bTmPz0OtqfXc1y5nLv9O2gu4cdn7ibntVrNg1Ey1fQ/sDDzO4bhF700l19eC+H
uqKr+X4kWlJ5+sLERA9YhqrmZ7DS2CgKiu5u6O6mp7MTlq9gUggURUH3MNdDE17SQVJjVAaLiRSy
DFStw2Cl+nEwuaQSTYReLANV66kpWMUYdwF+AJydUjovxvhNYHdgeV7krJTSj2KMxwAnAb3ABSml
S8a2+ZI0OOvX+DfeApZhqrUNGaxijDOAc4Ebq2adllL6YdVypwN7AhuA22KMV6WUVoxJyyVpCNav
iaXVA5aBanyopceqE3gH8PdDLLcXcFtKaRUbC9UtwL7ANeU0VZKGzfo1AbXSOCzD1PgzZLBKKXUD
3THG6lknxhhPBpYBJwILgKcr5i8Dtii9xZJUI+uX+gsujQ5bhqnxbaSD1y8FlqeUlsQYTwU+B/yq
apkAOFpZUrOxfk1w1cFmrIKWAWpiGlGwSilVjle4GvgacAVweMX0LYFfj76JklQe65eqGYBUphEF
qxjjlcApKaUHgQOAO4BbgYtjjHOA7jw+4aTymyxJI2f9kjSWajkrcHfgy8BioCvGeFQ+y+byGONa
YDXwwZTSutytfn3uQj+jbyCoJDWC9UtSvdUyeP03+VtdtSv7WfaK3KUuSQ1n/ZJUb22NboAkSdJ4
YbCSJEkqicFKkiSpJAYrSZKkkhisJEmSSmKwkiRJKonBSpIkqSQGK0mSpJIYrCRJkkpisJIkSSqJ
wUqSJKkkBitJkqSSGKwkSZJKYrCSJEkqicFKkiSpJAYrSZKkkhisJEmSSmKwkiRJKonBSpIkqSQG
K0mSpJIYrCRJkkpisJIkSSqJwUqSJKkkBitJkqSSGKwkSZJKYrCSJEkqicFKkiSpJAYrSZKkkhis
JEmSSmKwkiRJKonBSpIkqSQGK0mSpJIYrCRJkkpisJIkSSqJwUqSJKkkBitJkqSSGKwkSZJKYrCS
JEkqicFKkiSpJAYrSZKkkhisJEmSStJRy0IxxjOB/fLyXwBuAy4F2oEngGNTSp0xxmOAk4Be4IKU
0iVjvwmSNDDrl6R6GrLHKsb4FmCXlNI+wKHAV4DPA+enlPYD7geOjzHOAE4HDgIOAE6OMc6rz2ZI
0qasX5LqrZZDgTcDR+e/VwIzcuG5Ok+7JhejvYDbUkqrUkrrgFuAfcew7ZI0FOuXpLoa8lBgSqkH
WJPvfhi4FjgkpdSZpy0DtgAWAE9XPLRvuiQ1hPVLUr3VNMaKjV3qRwAfAt4G3FsxKwBF/pd+pktS
Q1m/JNVLTWcFxhgPAT4NvD2ltApYE2OclmdvmQeAPp6/9VE1XZIaxvolqZ6G7LGKMc4GzgIOSimt
yJN/AhwJfDv/ex1wK3BxjHEO0J3HJ5w09psgSf2zfkmqt1oOBb4HmA+kGGPftA/kIvRR4E/At1JK
XTHGU4Hrcxf6GfnboSQ1ivVLUl3VMnj9QuDCfmYd3M+yVwBXlNY6SRoF65ekevPK65IkSSUxWEmS
JJXEYCVJklQSg5UkSVJJDFaSJEklMVhJkiSVxGAlSZJUEoOVJElSSQxWkiRJJTFYSZIklcRgJUmS
VBKDlSRJUkkMVpIkSSUxWEnHfAMnAAAGN0lEQVSSJJXEYCVJklQSg5UkSVJJDFaSJEklMVhJkiSV
xGAlSZJUEoOVJElSSQxWkiRJJTFYSZIklcRgJUmSVBKDlSRJUkkMVpIkSSUxWEmSJJXEYCVJklQS
g5UkSVJJDFaSJEklMVhJkiSVxGAlSZJUEoOVJElSSQxWkiRJJTFYSZIklcRgJUmSVBKDlSRJUkkM
VpIkSSUxWEmSJJXEYCVJklQSg5UkSVJJOmpZKMZ4JrBfXv4LwLuA3YHleZGzUko/ijEeA5wE9AIX
pJQuGdvmS9LgrF+S6mnIYBVjfAuwS0ppnxjj5sDtwE+B01JKP6xYbgZwOrAnsAG4LcZ4VUppxZhv
hST1w/olqd5qORR4M3B0/nslMANo72e5vYDbUkqrUkrrgFuAfUturyQNh/VLUl0N2WOVUuoB1uS7
HwauBXqAE2OMJwPLgBOBBcDTFQ9dBmwxdk2XpMFZvyTVW82D12OMRwAfykXoUuDUlNJbgSXA54BQ
9ZAAFOU3WZKGx/olqV5qHbx+CPBp4NCU0irgxorZVwNfA64ADq+YviXw6/KbLEm1s35JqqdaBq/P
Bs4CDuobyBljvBI4JaX0IHAAcAdwK3BxjHEO0J3HJ5xUl62QpH5YvyTVWy09Vu8B5gMpxtg37RvA
5THGtcBq4IMppXUxxlOB63MX+hn526EkNYr1S1Jd1TJ4/ULgwn5mfaufZa/IXeqS1HDWL0n15pXX
JUmSSlLT4PWxcuqPT2jk00vSiFm/JPUnFIVnFEuSJJXBQ4GSJEklMVhJkiSVxGAlSZJUEoOVJElS
SRpyVmCM8Wxg73whvr9NKd3WiHYMV4zxAOB7wJ150h+AM/Nvj7UDTwDHppQ6G9zUfsUYdwF+AJyd
Ujovxriov7bHGI/JV53uBS5IKV3S6Lb36WcbvgnsDizPi5yVUvpRM28DG7fjTGC//B78AnBbC74W
1dvwrlZ8LYbL+tUY46F+MU5q2HioX4xhDat7j1WM8c3A9imlffKPop5T7zaM0s9TSgfk28eBzwPn
p5T2A+4Hjm90A/sTY5wBnFv1O2mbtD0vdzpwUP65j5NjjPMa2PQXDLANAKdVvCY/auZtYON2vAXY
Jb8HDgW+0oKvRX/bQKu9FsNl/WqM8VC/GCc1bDzUL8a4hjXiUOCBwFVsvNLxXcDcGOOsBrSjLAfk
H3IFuCbv/GbUCbwDWFoxrb+27wXcllJalVJaB9ySfzetGfS3Df1p5m0AuBk4Ov+9EpjRgq9Ff9vQ
3s9yzbwNI2H9aozxUL8YJzVsPNQvxrKGNeJQ4ALgNxX3n87TnmtAW0Zipxjj1cA84AxgRkXX+TJg
iwa3r18ppW6gu+L30hig7Qvya0LV9IYbYBsATowxnpzbemIzbwMbt6MHWJPvfhi4FjikxV6L/rah
p9VeixGwfjXAeKhfjJMaNh7qF2NcwxrRYxX6ud8qVym9LxejI4APAP8GTKqY30rbQlVb+9reaq/P
pcCpKaW3AkuAz7XKNsQYj8iHk05s1deiahta9rUYhlbeHutXc2rJ9814qF+MUQ1rRLB6PCfAPguB
JxvQjmFLKT2eUro8pVSklB7I7Z4TY5yWF9kyD9xrFWv6aXv169PU25RSujGltCTfvRrYtRW2IcZ4
CPBp4O0ppVWt+FpUb0OrvhbDZP1qHi33nulPK75vxkP9YgxrWCMOBd6QvzVdEGN8PbA0pfR8A9ox
bPnMgC1SSl+KMS4AXgF8AzgS+Hb+97pGt3MYftJP228FLo4xzgG687Hkkxrd0IHEGK8ETkkpPZiP
89/R7NsQY5wNnAUclFJakSe31GvR3za04msxAtav5tFS75mBtNr7ZjzUL8a4hjXktwJjjF8E9s+n
Ln4spfS7ujdiBGKMmwGXAXOAybnA3g78OzAV+BPwwZRSV6PbWi3GuDvwZWAx0JVT+DHAN6vbHmM8
Cjgld3eem1L6f41uPwNvw7nAqcBaYHXehmXNug1s3I6/yl3M91ZM/gBwcQu9Fv1twzdyd3rLvBYj
Yf2qv/FQvxgnNWw81C/GuIb5I8ySJEkl8crrkiRJJTFYSZIklcRgJUmSVBKDlSRJUkkMVpIkSSUx
WEmSJJXEYCVJklQSg5UkSVJJ/j8aiYrAsm1hZQAAAABJRU5ErkJggg==
"/>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div><div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<h2 id="Run-the-optimization">Run the optimization<a class="anchor-link" href="#Run-the-optimization"></a></h2><p>We run several iterations of the forward and backward pass and save outputs every 10 iterations. When this has finished take a look at <code>./teapot_optimization_demo.gif</code> for a cool gif of the optimization process!</p>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In [13]:</div>
<div class="inner_cell">
<div class="input_area">
<div class="highlight hl-ipython3"><pre><span></span><span class="n">loop</span> <span class="o">=</span> <span class="n">tqdm_notebook</span><span class="p">(</span><span class="nb">range</span><span class="p">(</span><span class="mi">200</span><span class="p">))</span>
<span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="n">loop</span><span class="p">:</span>
<span class="n">optimizer</span><span class="o">.</span><span class="n">zero_grad</span><span class="p">()</span>
<span class="n">loss</span><span class="p">,</span> <span class="n">_</span> <span class="o">=</span> <span class="n">model</span><span class="p">()</span>
<span class="n">loss</span><span class="o">.</span><span class="n">backward</span><span class="p">()</span>
<span class="n">optimizer</span><span class="o">.</span><span class="n">step</span><span class="p">()</span>
<span class="n">loop</span><span class="o">.</span><span class="n">set_description</span><span class="p">(</span><span class="s1">'Optimizing (loss </span><span class="si">%.4f</span><span class="s1">)'</span> <span class="o">%</span> <span class="n">loss</span><span class="o">.</span><span class="n">data</span><span class="p">)</span>
<span class="k">if</span> <span class="n">loss</span><span class="o">.</span><span class="n">item</span><span class="p">()</span> <span class="o">&lt;</span> <span class="mi">200</span><span class="p">:</span>
<span class="k">break</span>
<span class="c1"># Save outputs to create a GIF. </span>
<span class="k">if</span> <span class="n">i</span> <span class="o">%</span> <span class="mi">10</span> <span class="o">==</span> <span class="mi">0</span><span class="p">:</span>
<span class="n">R</span> <span class="o">=</span> <span class="n">look_at_rotation</span><span class="p">(</span><span class="n">model</span><span class="o">.</span><span class="n">camera_position</span><span class="p">[</span><span class="kc">None</span><span class="p">,</span> <span class="p">:],</span> <span class="n">device</span><span class="o">=</span><span class="n">model</span><span class="o">.</span><span class="n">device</span><span class="p">)</span>
<span class="n">T</span> <span class="o">=</span> <span class="o">-</span><span class="n">torch</span><span class="o">.</span><span class="n">bmm</span><span class="p">(</span><span class="n">R</span><span class="o">.</span><span class="n">transpose</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">),</span> <span class="n">model</span><span class="o">.</span><span class="n">camera_position</span><span class="p">[</span><span class="kc">None</span><span class="p">,</span> <span class="p">:,</span> <span class="kc">None</span><span class="p">])[:,</span> <span class="p">:,</span> <span class="mi">0</span><span class="p">]</span> <span class="c1"># (1, 3)</span>
<span class="n">image</span> <span class="o">=</span> <span class="n">phong_renderer</span><span class="p">(</span><span class="n">meshes_world</span><span class="o">=</span><span class="n">model</span><span class="o">.</span><span class="n">meshes</span><span class="o">.</span><span class="n">clone</span><span class="p">(),</span> <span class="n">R</span><span class="o">=</span><span class="n">R</span><span class="p">,</span> <span class="n">T</span><span class="o">=</span><span class="n">T</span><span class="p">)</span>
<span class="n">image</span> <span class="o">=</span> <span class="n">image</span><span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="o">...</span><span class="p">,</span> <span class="p">:</span><span class="mi">3</span><span class="p">]</span><span class="o">.</span><span class="n">detach</span><span class="p">()</span><span class="o">.</span><span class="n">squeeze</span><span class="p">()</span><span class="o">.</span><span class="n">cpu</span><span class="p">()</span><span class="o">.</span><span class="n">numpy</span><span class="p">()</span>
<span class="n">image</span> <span class="o">=</span> <span class="n">img_as_ubyte</span><span class="p">(</span><span class="n">image</span><span class="p">)</span>
<span class="n">writer</span><span class="o">.</span><span class="n">append_data</span><span class="p">(</span><span class="n">image</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">figure</span><span class="p">()</span>
<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">image</span><span class="p">[</span><span class="o">...</span><span class="p">,</span> <span class="p">:</span><span class="mi">3</span><span class="p">])</span>
<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">"iter: </span><span class="si">%d</span><span class="s2">, loss: </span><span class="si">%0.2f</span><span class="s2">"</span> <span class="o">%</span> <span class="p">(</span><span class="n">i</span><span class="p">,</span> <span class="n">loss</span><span class="o">.</span><span class="n">data</span><span class="p">))</span>
<span class="n">plt</span><span class="o">.</span><span class="n">grid</span><span class="p">(</span><span class="s2">"off"</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">axis</span><span class="p">(</span><span class="s2">"off"</span><span class="p">)</span>
<span class="n">writer</span><span class="o">.</span><span class="n">close</span><span class="p">()</span>
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area">
<div class="prompt"></div>
<div id="20db0c02-9b5e-4636-bcfa-2ae62c5b7f2b"></div>
<div class="output_subarea output_widget_view">
<script type="text/javascript">
var element = $('#20db0c02-9b5e-4636-bcfa-2ae62c5b7f2b');
</script>
<script type="application/vnd.jupyter.widget-view+json">
{"model_id": "2d3e3feb01f74f29a767dea9f99e1315", "version_major": 2, "version_minor": 0}
</script>
</div>
</div>
<div class="output_area">
<div class="prompt"></div>
<div class="output_subarea output_stream output_stdout output_text">
<pre>
</pre>
</div>
</div>
<div class="output_area">
<div class="prompt"></div>
<div class="output_png output_subarea">
<img src="
AAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo
dHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAD2JJREFUeJzt3X2M5PVdwPH3Z3Zmd2YfDrjdS7Fw
FyINyEMVailpaxMhgGnVQpEIhXC2xlofGmJtrRGbHliEVpNaLWpS1GDbqFXApq2aIwZbaXuUPohQ
CQ8eFfFIjuO43b2HmZ2nr3/w+01+N7d7zHJ3nT3m/Up+2b35zcNv5vb3nu/vYXYjpYSk0VYa9gJI
Gj5DIMkQSDIEkgyBJAyBJAzB6kREIyLeMezlGFREpIi4atjLobXPEKxCSqmaUvpHXlzJTouIa4/l
40XEuoj4TETsiIjnI+ILEfFDx/Ixj7aIuCMLaHFqRsT3B5mfXeeKiPhuROyNiEcj4pcK88Yi4qMR
8XRE7I+IJyLigy+xTNWI+OOI6C4Xyoh4d0T8V0Tsy+7vN4/+K7PGpJScXsYEfAD48jF+jL8F7gNe
DZwE/B3w9VXcPgFXDfu1Wma57gZ+f5D5wDnAEvDzwARwMbAfuDSbfzPwBHBW9sZ2EVAHrl7hvk8G
vgfcsdzrA1wO7AMuAcrZ1wZwxbBft2P6fzLsBTiepvwHB/gw0MmmBnAKEMBvA48DB7Kv1xdueyfw
OeCLwGJ22YeB76zwWHNAG3hT4bKN2TKct5rlzb4fBz4OPJWtKP8JvL1w3QuArwELwB7gn4CN2bwN
wD8Az2crybeAiwq3bQDvGHCZfgb4H2BykPnAJ4F7+67zl8AXsu/fClzQN/+7wG0r3P+5eSRWCMF1
wG/0XfYV4JPD/vk7pj/bw16A42nqW7HuLI4IgF8HngFeC4wBb8veyV5fuP5u4FqgNMBjXZo9XrXv
8ueA97yM5f14FqcfyaLwPqAJvCab/wTw0exdcB3wWeDz2bxPA1uzy8vZbXcA5VW+fmXgSeCaQecD
Xwc+1ne9XwN2LHP7CeCdWczesJrX5zDXKQHbgQ8O++fvWE7uIzh63gt8KqX0SEqpk1L6Z+DLwLsK
13khpfQ3KaXuAPe3AWiklBp9l7+QjRZW6z3AH6aUHkspNVNKtwP/B1yZzT8R2J9SaqeUFoFfSCld
XZjXBA5k828HTk0ptVe5DNcDLeDvVzF/QzZCKTrkNYiIO7KRzh8Bm1NKD65y2VZyK1AF/uIo3d+a
ZAiOnjOAW4o7vYCfBTYVrvP9w9x+UJG9kw1+g4iTsn0Mj/bN+m/gh7PvPwR8OCIei4hPAW8pXO9j
wHnAjoj4XES8Mxv1rNaHgE8cJoQvNb/3lPpfg5TSe4BaNjK7MyKuXPnmLy0iShHxCeDdwFtTSvNH
cn9rnSE4eurAe7MjC/k0nlJ6e+E6zVXc306gGhFTfZfPZfNWo7rC5ZF/k1K6EzgVuCV7F94aER/L
5n03C8a7gHngT4CvRMTAMYiIH8ti+cVVzt+5zAho2dcgpbSUUrob+Axww6DLtsyyVLJ9Ij8FvDGl
9PDLva/jhSE4ep7M3jV7ImLTalaWPv+R7Sx8feH+XgOsB7at8r52Anuz/Rf5fZWy/QVPZv+eSynN
p5Q+l1K6JtsO/9Vs3om8uKL9S0rpfcCFwJuBH13FMlwBfCul9Nwq5z9YfA0yFwLfyJbtGxHxy33z
J7JNjJfrs9nRhTenlJ46gvs5bhiCl68ObIyIEyNiHPhT4Bcj4tKIKEfEG4HvZJsHq5ZSeiE7fHhL
RLw6ImaBP8j2oD/GiyvBbRHx5wPcVxf4a+ADEfGaiJgAfiuLyucj4lTg2Yj4uey4fC2L2pPZXTyQ
LcdUFpALsx2h/7uKp3QBcLh31pXmfxp4U0RcGxETEXFZtl/j9mz+14DfjYjzs2V/S7bD8AvZa/SG
bHPnxEEWMiKuzjaLfvqVvjlwkGHvrTyepr698D+R7cHfC/x4Nsz+nWzlqGd76H+lcNs7+887ONzh
w2z+NPBX2XB8MduJNtt3n18ccHlrwJ9lyzcP/Ht+RCObfxXwSHaMfnd2+PDMbN5rgX/LlmExO3z4
tsJtX/LwYRbFW1/O/OwIzPey+DwJXFuYN56dS/Bs9ro/kUUusvk/mb0Oc4XXvJFNKdtca+SHKIF/
LRwWLk73Hu75He9T/mLpOBQRm4DfSym9a4CrSyty0+D4dmV2sot0RBwRSHJEIMkQSMrO7R6KiHCb
RDrGUkoxwNUcEUgyBJIMgSQMgSQMgSQMgSQMgSQMgSQMgSQMgSQMgSQMgSQMgSQMgSQMgSQMgSQM
gSQMgSQMgSQMgSQMgSQMgSQMgSQMgSQMgSQMgSQMgSQMgSQMgSQMgSQMgSQMgSQMgSQMgSQMgSQM
gSQMgSQMgSQMgSQMgSQMgSQMgSQMgSQMgSQMgSQMgSQMgSQMgSQMgSQMgSQMgSQMgSQMgSQMgSQM
gSQMgSQMgSQMgSQMgSQMgSQMgSQMgSQMgSQMgSQMgSQMgSQMgSQMgSQMgSQMgSQMgSQMgSQMgSQM
gSQMgSQMgSQMgSQMgSQMgSQMgSQMgSQMgSQMgSQMgSQMwWi66aabhr0IWmMipTScB44YzgOPuFtv
vZXx8XGazSbNZtMovMKllGKQ6xmCEXLbbbexYcMGWq0W7XabZrPJ4uIiN99887AXTceIIdCytm7d
ys6dO2m1WjSbTRqNBgsLC44MXqEMgZZ17733Mjk5ya5du3ohWFpa4tlnnz0oBnfccQfnnHMODz30
EO12m263S0qJiGBiYoLzzjuPBx54gPe///1DfT46PEOgFW3bto0DBw6wb98+lpaWqNfr7Nmzh/n5
eV71qlexadMmHnvsMfbv30+n0yHi4J+lPAjr1q3j7LPPZmlpicsvv3xoz0crMwRa0YMPPkij0WDv
3r10Oh3q9TqPPvoo559/Pk899RSLi4tEBJVKhfHx8UNun1JiaWmJdrsNwOTkJBdccAFf/epX3cRY
YwYNQfnYL4rWmohgbGyM8fFxFhcXmZyc5IwzzuChhx5ibGyMarVKpVLpjQQigv43jFqtRkqJVqvF
gQMHuP/++zn33HOH9Ix0pBwRjKD77ruPyclJGo0G+/bt45FHHqHRaPQCUC6/+P5QDEDx5yQPREqJ
lBKdTodms0mr1SKl5FGINWTQEYEnFI2giy++GIBSqcS3v/1tZmdnmZqaolqtMj4+TqlUYmxsrLfC
Lyws0Gg0qNfrLC4u9vYR5NerVCq925555pls2bJlyM9Qq+WIYERt2bKFcrnMhg0bmJ+fZ926dQfN
z9/tK5UKFEYH+ZTvHyjuSEwpsXv3bubm5ti1a5cjgzXAEYEOKyKYnZ2l3W5Tq9UolUrLTtVqlVqt
1vuaf082ouifZmZmaDabnHLKKY4MjiOGYAQV9+w3Gg3K5fIhK/TY2BhjY2PMzc1RrVapVqtMTExQ
rVZZv359b37/7crlMnv37qVWqxERHkU4TnjUYETlOwYnJiZ6IaBvqB8R7Nmzh9NPP52IoNvt0m63
efzxx3s7FItSSpTLZarVKvv37/+BPh8dGUMwgkqlUu/wYPGdnUII8p2B1WqV+fl5arUa3W6Xffv2
MT09Tb1eh8K+hPz7/LAkQKVSodVqDe15anDuLBwxW7ZsYWZmhlqtRqvV4oQTTqBUKh0yEsin/ChC
Pr/b7dLpdGi1Wr3Tjosh6Ha71Ot1ZmZmeO6556jX63S7XTcRhsQTirSs4mjgpJNO6o0K+s8TyKd8
5S6GoHj4sD8EZCOBfHRQLpdpNptDerYalCEYMeVyuTeNjY31Lut0OgddrxgCCit5/rV/BJFS6m1e
VCoVOp1Ob7NDa58hGCE33XRT78zBcrncW4Hz77vd7iG36f/AEYVILDe/2+0yMTFBvV7vjQiGtfmp
wXn4cITkK33xnbpWq/Hwww9TLpepVCqHHBLsl6/4yx027D/6UDwMqbXNEIyQfMUsrqApJV73utf1
DiPmI4aVTjDKV/D8azEg+aFD+kJQKpXcWbjGuWkwQvpX9vxrfsjv6aef5qyzzqLT6dBut3sfKFpu
aJ9vHuQx2bVrF7Ozs9Tr9V4giqcpexhxbXNEMEKazWbvnbr4rp5/f/bZZ9Ptdrn//vuZnp5mcnLy
oLMKi1N+qvG2bdsolUqcfPLJBx1t6H8MP3ewthmCEfKRj3wECu/m+Yqafw8wPj7OZZddRrfbZdeu
XdRqNaanp5mZmWF6eprp6WlqtVrvnf+iiy7qfTCJvkOPxcfQ2uamwQjqX1mXm8bHx9m4cSP0nTsA
MDY2xvr163snF/XfbzEw+e21thmCEVP8+HBx6r+Mvh1+ueLHkFfad0DfIcb8MbV2uWkwYm644YZD
LusPACucP1D8fQQr3Uf/bVNK3HjjjUfxGehYMAQjKP+VYoNY7leVLffvoohg586dbN++fdlzEbT2
+L80gjZv3ky32+1t+7+U1ZwZGBEsLCz09jPs2LHjCJdWPwjuIxhRS0tLh5wCXFzhl/tMweE2DXLF
Dxjl1yueTOSJRWuTI4IRdf3119NoNA76K0bLreiHW/n7L+8fYXQ6Haampti0aRObNm3ikksu4Utf
+tIP4NlptQzBCLvuuutYXFyk1Wr1ziBcbqIvCPlHk/t/menExMRB9z87O8vpp5/O3NwclUqF3bt3
MzMzw9atW4f0jLUSQzDiNm/ezPPPP0+73abT6dDpdHr7D/KVfbkRQ/+U7xTMz0Zcv349p512Giec
cAJTU1Ns3LiR7du3s7S0BMBdd9015GeuIn9DkQ5yzz33MDU11fuwUP4RZfpGBfmfVm+32xw4cICr
r74asj+ekkeh2WzywgsvcM011xz0GN/85jd55plnuOqqq4bwDEeLf/tQR+zuu+9mZmZm2RAsLCz0
Vn6tXYZAkn/gRNLgDIEkQyDJEEgyBJIwBJIwBJIwBJIwBJIwBJIwBJIwBJIwBJIwBJIwBJIwBJIw
BJIwBJIwBJIwBJIwBJIwBJIwBJIwBJIwBJIwBJIwBJIwBJIwBJIwBJIwBJIwBJIwBJIwBJIwBJIw
BJIwBJIwBJIwBJIwBJIwBJIwBJIwBJIwBJIwBJIwBJIwBJIwBJIwBJIwBJIwBJIwBJIwBJIwBJIw
BJIwBJIwBJIwBJIwBJIwBJIwBJIwBJIwBJIwBJIwBJIwBJIwBJIwBJIwBJIwBJIwBJIwBJIwBJIw
BJIwBJIwBJIwBJIwBJIwBJIwBJIwBJIwBJIwBJIwBJIwBJIwBJIwBJIwBJIwBJIwBJIwBJIwBJIw
BJIwBJIwBJIwBJIwBJIAIqU07GWQNGSOCCQZAkmGQJIhkIQhkIQhkIQhkIQhkIQhkIQhkIQhkIQh
kIQhkIQhkIQhkIQhkIQhkIQhkIQhkIQhkIQhkIQhkATw///mkSj4OiM4AAAAAElFTkSuQmCC
"/>
</div>
</div>
<div class="output_area">
<div class="prompt"></div>
<div class="output_png output_subarea">
<img src="
AAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo
dHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAEHVJREFUeJzt3X+Q3Hddx/Hn+/bH7d4laa5JSmjS
EuKkKFSLtrbjmGGw/orYIjpobJ2IVrQ6hRlUaK2NJEx1lEF0FB0QHcEfVAsCHegwFRqnKLWWCBNA
1EJt0rR2bMNBftzm9m5v9+Mf/X7X723u0r3zmr12n4+Z7+Ruv783+3l9P5/P9/Pdi5QSkobbyKAP
QNLgGQSSDAJJBoEkg0ASBoEkDIKzi4hmRPzooI9jpUTEkYh486CPQ6uPQXAWKaVaSumjPF2ItkXE
9c/2PiNia0QciIgUERt75lUi4g+yAv2NiLg3Ir7l2T6mlRQRe7OALU4zEZEKy1wfEV+MiEZEPBYR
74mIdf2uny336oh4KiLuXoHj2RkR90fEiYh4OCL2PjvvzgCllJz6mIBfBe5+lvfxCuAJ4C+BBGzs
mf/bwL8BO4A1wDuBR4DRPrd/BHjzoN/LBY7rncAHsp+vBk4DPwSUgG8C/hN4dz/rF37/d+CflvN/
1nM8FwAngDcBdeDlwP8APz/o921F/w8GfQCrecoK42uBvUA7m5rAFiCAW4CHsg/uQ8CewrrvB/4a
+BhwMnttL/C5s+zvtdkH7ZW9QZDV3r4OXF94rQY0gNf0eT7dIMi295bsuKeBrwA/V1h2B3AP8A3g
JHAf8G3ZvDrwZ1mBaGTh9OOFdR8C3tTnMb0cmAQ2F35/dc8yvwc80M/62Wu3AmPZ/8GSgmCB43kT
8JWeZX4DODToz+eKftYHfQCrecqDIP1fwb67MO8m4DHgW7Mr16uAGeCKwvKTwPXAyBL3u1AQ7Mhe
++aeZT8L/Faf2y0GwS8BTwFXAmXgx4A54BXZ/E8C78vCpgb8DvBgNu/XgS8Cm7JAeQ0wBWxYxnt8
H/Bri8wbAa7KjvuNy1h/OUEwb3vAB4C/7VnmVdlFoTboz+hKTfYRLN+NwLtSSl9KKbVTSp8A7gZ+
prDM11NKd6SUOiuwv03Zv9/oef3rwMYFln8mvwC8N6X02ZTSXErpI8A/Aj+ZzV+f1X5mUkpN4NaU
0lWFeS3gdEqpk1K6C1iXUppcygFExPcAlwJ/tMC8PcAs8GngfSmldy1l/eVYZHubFnnPR4CJldjv
amAQLN8lwG8WO5mAa4GLC8scPgfHEVlNYam2Z+3oooez1wHeCvwEcCQi/hT44YiIbN4fZ7WE/46I
v4uI12e/L9UtwHtSSlO9M1JKfwWMAt8N7I6I31/K+svU7/by9+F588SeQbB808CN2Z2FfKqmlF5d
WGZ2Bff3ZPZv79V/Y2HeUowu8Fr+ASeldA9wEfArWdPnDuBvsnmPZk2iH8k6K98KHIqItf3uPCI2
AN8LfHSxZbKa1ueA24A3RERlKesvxVm29+Qi7/lcVjN4XjAIlu+rWcdSV0RcHBGlZ2l/h4GvAVcU
9jcOvAz452Vs77+ywlz0suy8iIiNKaXTKaUPp5RuyPoBdkfE+dl+R1NKn04p3ZytdyHwfUvY/zXA
17KC3hUR74yI9/csO5q1yTvPtP7/w2Lb+2zxPc9cBfxrSmklg36gDIL+TQMXRcT6iKhm1eMbIuL7
I6IcEd8FfC5rHqy4rJ/h3cCtEbEju/r+Tlag7+XpQvSGiPhYn5v8c+D1EfEd2fiE67MP+F9ERB34
akS8MSJGsyvxFcAx4DjwEeC9ETGRNRe+PSusDy/hlL4T+NICr/8D8FMR8drsuLYDNwMfTym1+1j/
GWXjNH62z+O5AzgvIt4SEfWIuCLrH/rD5ex71Rp0b+VqnnruGuzMetlPAZdn1ehbgaNZSDwE/GJh
3TN6rPu4ffjJrINuNtt3M5v2ZvPLwO9mBfI08PfA9sL6+4EvnmX7vbcPb88K70ngIPCDhWVfCTyY
3Q04nnXaXZXNuwj4ePb6VHb78KcL6z7j7UPgw8Adi8y7DviP7NwfB/4EmOhnfeBFhfeteMu3Cbyo
933o83iuAv4l28ZjwC8P+rO50lMkv6HoeSMiysAnUko/MOhj0XOLTYPnl2uW2V+gIWeNQJI1AkkG
gaSsF3ogeh8blbTyUkrRx2LWCCQZBJIMAkkYBJIwCCRhEEjCIJCEQSAJg0ASBoEkDAJJGASSMAgk
YRBIwiCQhEEgCYNAEgaBJAwCSRgEkjAIJGEQSMIgkIRBIAmDQBIGgSQMAkkYBJIwCCRhEEjCIJCE
QSAJg0ASBoEkDAJJGASSMAgkYRBIwiCQhEEgCYNAEgaBJAwCSRgEkjAIJGEQSMIgkIRBIAmDQBIG
gSQMAkkYBJIwCCRhEEjCIJCEQSAJg0ASBoEkDAJJGASSMAgkYRBIwiCQhEEgCYNAEgaBJAwCSRgE
kjAIJGEQSMIgkIRBIAmDQBIGgSQMAkkYBJIwCCRhEEjCIJCEQSAJg0ASBoEkgPKgD0Dnxu233061
WqVUKtFsNtm7d++gD0mriDWCIbF582YmJiYYHx9nfHyct7/97YM+JK0iBsGQ2LJlC+vWrWN8fJyx
sTHq9TrveMc7Bn1YWiUMgiFRrVZ58YtfTL1ep1qtUqvVqNVqhoEAiJTSYHYcMZgdD7GDBw/Sbrc5
cuQIMzMzzM7OMjMzQ6PR4JZbbllwnX379jE2NkapVKJUKlEul5mcnGT//v3n/Pi1dCml6Gc5OwuH
SLvdZmRkhFqtRkQQ8fRnpPdisH//fi6//HLOP/98Dh06xNzcXHe5drvNpk2beOCBB2i1Whw4cIC3
ve1tAzkfrRxrBEPmwQcfpNls0mg0mJ2dpdls0mw2ueCCC2g0GjzyyCOcPn2aiOjWAEZGRuaFRqfT
odVq0W63iQhGR0dZv349W7du5dprrx30Kaqg3xqBQTBk7rzzTrZs2UKz2WRqagqAQ4cOMT4+ztTU
VLfwl8tlSqXSotvJawetVou5uTlSSpx33nmcPHnSZsMq0m8Q2Fk4ZHbv3s3IyAilUolKpcKhQ4e4
7LLLaDQajI6Odu8oVCoVRkZGzjpVKhXq9Xp3+RMnTnDllVeyb9++QZ+mlsggGEJ5EBw8eJBLL72U
w4cPU6/XqdVqZwRAsS+hdxv5VLwL8fnPf56dO3caBs8xBsEQmpqa4sCBA1x88cU88cQTTE1NUavV
uv0BxRAAOH78OI1Gg0ajwYkTJ7rbiYjusuVymdHRUebm5vjCF77A9u3bbSI8hxgEQ+gzn/kM9Xqd
VqvF5OQk4+PjlEqleTWAPATm5uZYs2ZN94o/Pj5Oq9Xqzi+GQalUol6vMzU1xalTpyiVStYMniO8
fTiESqUSExMTTE5OsmHDhm5NIJdS6t5SXL9+/bx183nT09PdzsQ8OFJK1Ot1yuUyx44d4wUveAFP
PfXUOT47LYd3DYbMvn372LhxI5VKhenpaarVKuXy09eD4i3C/Dbh2rVru4W8OO/kyZPzmg/5v51O
h7m5OaanpxkbGyMiHIA0QA4o0oIiglqtRqvVYnR0tNsk6F2GrENwYmKC06dPd+ellKjVajQajXlN
iDws8iZCrVaj2WyyYcMGJicnz/FZaqnsIxgieXs9v9oX+wWK7fx8qlQqNBoNLrroIi688EI2b97M
C1/4Qo4fP06lUukut9g2IoJKpQLZaEWtXtYIhkylUiGlNK+w9l7ZyWoDeUE+efIktVqNTqfTvcOQ
h0mxP4HCcOVioLDAMGatLvYRDIn9+/czOjraHQ6cX8EpFH4KHX/5/HxcQV7173Q63RGFvUGQ/1wc
dViv1zl69Gh3vs8lnFv2EWiecrlMpVLpDh0uBkGv3geSOp3OGQ8o5esXC38eFvk61WqV2dlZyuVy
98ElrU72EQyBffv2zXt+IC/U+e/F8QO9YwnyQp1PxULfW3so9hPkDy2RNRPy5ewrWJ2sEQyBiOgW
+mKhzAtqXsh71yk2GYrV/955eWAUaw15s2J2dra7X2sFq5c1giGQDwEuBsHo6Chf/vKX5zUXFhpe
fDa9NYHi9o8ePdoNl3xecTyCVhdrBEOg+AxBXuBTSlx22WXdtnze+ddbM+hVHC9ATw2h2JR4yUte
wszMTHefnU6HkZGRZ9y+BsMgGAL5Vb9SqXSn4liB6elp1qxZM+9OQLFPYCF5GBSbCSMjI7RaLcrl
8rwmQX7Lst1u0263z/HZqx8GwRDIr9oLdQqmlFizZk33OYF2u939opGFwmCxjkKyr0LL7xAs1omo
1cn/mSFw8803z2v7937BSN5x+Nhjj1GpVBgbG6NWq1GtVrtjD6rVavf3/Of891KpxIkTJ7rPLFDo
bOz9XgPvGqxOBsGQ6b2a51OlUmH79u0APProo1QqFdasWdMNhfybiIpTqVTiyJEjjIyMsGnTpjNu
PS42alGrj0EwRBYrpMWpWq2yY8eObnv/3nvvPaNA33fffXQ6HSqVCpdcckn3eYLF9pPzjsHqZR/B
kMjb/fQZCOVymWq1yjXXXDNvDAHArl275g0yKt4JKF79i3cSUkq0Wq2BnLuemTWCIXHTTTfRbDYX
7OxbqAofC3wD0dm+w3ChUYb5651Oh5mZGW677bZzfNbql0EwRG688Uba7fYZTwz242zLL9b2z19v
t9uL/iUlrQ4GwZDZs2fPOWurHzt2jMcff5zZ2dlzsj8tn30EQ+iZBgsVLfRdA/04derUgj9rdbJG
MIRmZmbOeJpwse8V6LXYssX5s7OzZzyk5PiB1c0vJhlSH/zgBxkbG5s3/LifTsHiF4/03jlot9vd
v6XYaDSYmppiamqKmZmZeesbDOeOf/tQffnQhz5EvV6f96fPe4cj0/MY8kJBkA8vzoPgxIkTnDp1
ipQS27Zto9VqMTIyQqPRYPPmzdTrdXbu3Dngs3/+Mwi0JPfccw/VavWMLyPtHRB0tiCg8OBRo9Gg
3W5Tq9VYu3Zt99mFJ598kk6nw9atWzl69Cg33HDDAM/6+c8/gqol2bVrF9PT08zOznb/wvHc3Fz3
icF8Khb8ubk5Wq0WMzMzTE9Ps2vXLiqVSvd7ETdu3MjExARk/RIA27Zt4/Dhwzz88MNs2rRpwGet
nDUCnSFvLlSr1e7w4d6mwezsLM1mk1OnTvG6172uu+5dd93FunXrurWJdrvN1VdfPW/7n/rUp7j/
/vt56UtfyszMDHv27DnHZzg8bBpoRdx5553dnzudDtddd92Kbnv37t0rtj2dySCQZB+BpP4ZBJIM
AkkGgSSDQBIGgSQMAkkYBJIwCCRhEEjCIJCEQSAJg0ASBoEkDAJJGASSMAgkYRBIwiCQhEEgCYNA
EgaBJAwCSRgEkjAIJGEQSMIgkIRBIAmDQBIGgSQMAkkYBJIwCCRhEEjCIJCEQSAJg0ASBoEkDAJJ
GASSMAgkYRBIwiCQhEEgCYNAEgaBJAwCSRgEkjAIJGEQSMIgkIRBIAmDQBIGgSQMAkkYBJIwCCRh
EEjCIJCEQSAJg0ASBoEkDAJJGASSMAgkYRBIwiCQhEEgCYNAEgaBJAwCSRgEkjAIJGEQSMIgkIRB
IAmDQBIGgSQMAkkYBJIwCCRhEEjCIJCEQSAJg0ASBoEkDAJJGASSMAgkYRBIwiCQhEEgCYNAEgaB
JIBIKQ36GCQNmDUCSQaBJINAkkEgCYNAEgaBJAwCSRgEkjAIJGEQSMIgkIRBIAmDQBIGgSQMAkkY
BJIwCCRhEEjCIJCEQSAJg0ASBoEkgP8FtdAvPCBp9f4AAAAASUVORK5CYII=
"/>
</div>
</div>
<div class="output_area">
<div class="prompt"></div>
<div class="output_png output_subarea">
<img src="
AAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo
dHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAEsdJREFUeJzt3X2QJGVhx/HvMzO7O7t7y152ucMj
dwdJgQkCCaIYQ4ghESO5VBlAKBSL6D8gSZTESgpJFO9MSCUmVZpCo0ZThlJiRKnEXDgppCLkwokG
lEqdevjCm1EI9+Lty93N7Lw9+YOnx965mb29C8csu99PVdfOzdPT3TM3/evnpbsnxBiRtLIV+r0B
kvrPIJBkEEgyCCQZBJIwCCRhECwshFANIVza7+14roQQYgjh8n5vh5Yeg2ABMcZyjPFfeHYnOjWE
cNXxXF8IYXUI4WMhhB+GEKZCCPeFEM7LlZ8QQvhkKt8bQvh8CGHd8dym4yGEsCaE8JkQwkwIYX96
T2O58utCCN8MIRwMITwSQnh9ruyLKaDzUz2EcO9iyrtsy60hhGaX17wkN8+5IYQdIYRKCOEHIYR3
Hf9P6fllECze64HjGgTAPwAvBs4DTga+AfxbCKGcyv8OWJ/KTweqwB3HeZuOh38GasCpwFnAicBv
8+xO9wbgA8AfAj8B/D7wiRDCS3k2nH89BXQ5xlgGRoCHgU8vpryHT+Vfk6Zvpe1ZC9wDfAaYAH4L
uDKE8Irn6bN6fsQYnXpMQAQuB94NNNNUBX4SCMA7gW8Dh9Lfq3OvvRW4DdgKzKTn3g18rce6AvBh
4GW5505N23BO2lkawPm58g1Z+dG8n/R4EHgf8BhQAf4beF1u3vOA+4FpYD+wDdiQytYAnwP2AgeA
B4Ffzb22ClzaYxt+GTgInNCj/LPAZzqe+wjw4R7zvx34ChCOsfxW4NYFPrObgPv7/V087t/1fm/A
Up46dpxbgTtzZb8H/A9wNlAENgFzwMtz8+9LtYjCMa7/whQ+JwGvSdtT7phnN3DNMbyf96Xw+tkU
Cm9LR+nTUvl3gD8DSsAJwKeA21PZx4C70/Ol9NofAqVFbMO7gP8CNgNPp9d9ABhK5Z8DPtvxmj8H
vtJlWatTSL2yx7oWLM/9P30d2JFC7zvZZ5TK70k1sX8EptJntqjP+4U02TQ4dm8FPhhj3BljbMYY
vwDcCbwlN8+PYoyfjjG2jnbhIYTV6Uj40RjjM+koXI0xVjtm/VGqLRyta4C/jjE+EmOsxRg/BPwA
uCyVrwYOxhgbMcYZ4M0xxitzZTXgUCr/ELA+xthYxHrXp+bAEHAacAlwZQoIgH8FXhdCeG0IYSCE
8ErgDcBkl2W9A/hqjPErPdZ1pHKAR4HvpqbJOuD9wGdDCOfntveNqQm2LgXYR0MIv7aI9/rC0e8k
WsrTEWoE1bQzVHNTDdiam/+Lx7jeDcDOtFMMpueuAipd5v02cOPRvJ/U9o75ZkYq/2IKHlKgHQAe
AT4I/EpuvnNTbeiZ1Px542JqA+m1H01H6ZB77l3A93L/vgH4HjADfB64EfhWx3LK6Qh9UY/1LFh+
hG28D/h4evwI8PmO8nuAv+/39/O5nKwRHLsK8NaODqbBGOPrcvPUjnahIYSzga8C/wFcFmPMlvEM
UA4hjHa85MRUdjTKPZ4P2YMY463paHhzqo3cHUL4y1T2deCnU1hMAbcA94UQiotY9/8C+2Ocd9nr
E6lzNFv3X8UYT4sxnhBjvCTVHn7QsZzXpjC7r8d6jlS+kEfT0T/b3h91lM/b3uXAIDh2302deG0h
hI2L3Bm6CiGcmo7KfxNjfFuMsZkrfjh1Fr48N/9pqSf7gaNc1TPAbOrfyJZVSP0F303/PjHGOBVj
vC3G+Abgd4Hf4cfNFmKMd8UY3wb8AvBLwM8tYt3fBNaHEPLNmZ8CnkzLPj0/XJj8BrC947lLgLsX
aI4cqZwQQiGE8P78EG3yklQjybb3pR3l7e1dNvpdJVnKU0fT4COpZ3116lx7c9qZXpM6zH4R2ANc
Ers0JRa5vi8Af7tA+SeB/0xHo8k0DHd3rvwvgI8s8v18MHWMnZaOuO9Mvfnr01RLQ6ZFYDgd9R+K
P64uvw8YTQeTN6am0eQi3mMZeBz4J2Ac+HngKeCPUvkFQB24KK37HemIvKZjOd8A/mSB9XQtB16R
tn91+vcdwENphKYMXJ/Wf0YqPyt9Fn+Qyq9IHbjn9fv7+Zx+1/u9AUt56thxLkg99LPAy1I1+o+B
76dmwreB63KvPSwIjjB8uD6tr7PfoZoNSwKrgE+k6vhMGmqb7Fjn1kW+n+E0XPn9tLzt2YhHKr88
9VMcTKMf24CfSWVnA/embZhJw4ebcq/tOXyYyl8M/Hsadt2dOuCKufK3pz6ISqrtvLzLMvYB1y6w
jq7laSQmAifGH48sfDyFUQX4Wr4/JM3zmylY5lJN4bJ+fzef6ylE71C0bIQQNgJ/GmN8yyJml9rs
I1heLjvGzjGtcNYIJFkjkGQQSErDXn0RQrBNIh1nMcawiNmsEUgyCCQZBJIwCCRhEEjCIJCEQSAJ
g0ASBoEkDAJJGASSMAgkYRBIwiCQhEEgCYNAEgaBJAwCSRgEkjAIJGEQSMIgkIRBIAmDQBIGgSQM
AkkYBJIwCCRhEEjCIJCEQSAJg0ASBoEkDAJJGASSMAgkYRBIwiCQhEEgCYNAEgaBJAwCSRgEkjAI
JGEQSMIgkIRBIAmDQBIGgSQMAkkYBJIwCCRhEEjCIJCEQSAJg0ASBoEkDAJJGASSMAgkYRBIwiCQ
hEEgCYNAEgaBJAwCSRgEkjAIJGEQSMIgkIRBIAmDQBIGgSQMAkkYBJIwCCRhEEjCIJAEUOr3Buj4
27JlCwAxRt773vf2e3O0BFkjWOa2bNlCCIFCoUChUGiHgpRnjWAZu/nmmxkZGaFQeDbvG40G9Xq9
35ulJcgawTK2YcMGVq9ezdjYGOVymeHhYUZGRti8eXO/N01LTIgx9mfFIfRnxSvMAw88QKFQ4Mkn
n6RWq1Gr1Th06BBzc3PMzs7aVFjmYoxhMfNZI1jmDh06RLFYZMOGDZTLZYaGhhgcHGRoaIixsTFr
BwJrBCvDgw8+SIyRubk5du/ezezsLPV6nbm5OSqVCgcPHuxaM9iyZQsXX3wxhUKBEAIhPHtwaTab
3HXXXe15tHQttkZgZ+EKUKlUGB4eplgs0mg0GBgYgDScGGOk0Wi0592yZQsXXXQRlUqFRx99lO3b
t9NqteYtr1gsctJJJ3HmmWeyadMmtm3b5rDkC5w1ghXiwQcfpNlsUqvV2LNnD5VKhXq9Tq1Wo1qt
sn//fi688EJ27drFzMwM1WqV7LsRY2zXBjofl8tlxsfHOffcc7nnnnu46aab+vo+Nd9iawQGwQpx
7733Mjo6Sq1WY9++fdTrdarVKrVajSeffJJ169YxPT1NpVKBZ/9/KBQKFIvF9vBjptVqUa/XyX93
yuUyJ5xwArt377a5sIQYBDrM1q1bWbt2LbOzs1QqFR5++GHOPPNMHn/8cebm5iiVShSLRYrF4hGX
lf/eNJvN9jkK5XKZs88+m4ceeoj3vOc9x/kd6UgMAnX15S9/mWq1yo4dO9i4cSN79uzhwIEDjI6O
UiqV2tX+Tr2+J/nmQ71ep1KpMDQ0xOTkJE899ZR9B33m8KG6Ov/889m+fTtnnHEGe/fu5cCBAwwP
DzM4ONgeHchOR873BXTKRhGyeQuFAkNDQwwNDTE3N8e+ffu44IILbCa8QDhqsMJs2bKFjRs38swz
zzA7O8vIyAgDAwOH9QNknYIxRqanp+eVjY+PQwqDTDZvNiIxNzfHzp07OeWUU56X96X/H2sEK1Cj
0WBmZoZVq1YxMDDQbhJ0TgBTU1MMDw8zPDzcPiEpHwz5+QuFAgMDA+0Tlqanpzl06JC1ghcAg2AF
yc4irNVqFAoFSqUSpVJpXvU+C4Ds7/j4eLvKn01jY2Pz5slCIPtbKpXatYxsFMIzGJc2OwtXiM2b
NxNCYGJigmq12j7BqFtfQHaiUbPZZGRkpL2MfPnevXsZHR097KzDbJ5sJGFmZobVq1czNTUFnon4
vLOzUG1ZCIQQGB0dpVwut4cJ8ztyvmZQLBYZGxtjcHCw65SFQL4mka8ZZMsfGRnhRS960bxt0dJj
Z+EKkB2ty+Uyc3Nz7Wp71kHYbcgwGw4cHR1tn2Kc1RRCCO1OwXxtgI5OxmKxyODgYM8hSS0d1giW
uewIXCwWKZVK1Ov1eUfxziHDbMra+WvXrmVycpKxsTHGxsaYmJhgcnKy3cnYq0aQX1a9Xp8XBtYK
lh5rBMtcVk3POgZrtRqjo6PzjuSdw4D5HXp6eprh4WHWrl1Lq9Viz549HDx4kFKpRKvVmtdvQEeN
IGtiVCqVdgh1rk9Lg52Fy9jmzZvbbfpSqcTw8DDNZpNVq1YdNm9nMGRH84GBgXZ7P7tSMTuduNVq
HRYG+cdZeblcZvfu3VQqlXlXMtpxePx5GbLaVfz8jjw8PHzYyUOZzvY+HTs06YKj/PyFQmFeAHSu
P19WLBZpNpvWCJYgg2AZywIgf75AFgx0HMHpUisgFwSZbP5uO3PWJMg3D1qtVvu8hayp0Gw2j/t7
19ExCJaxfADkhwuz2kGvI3n+bMHOHZuOexJ0062WkK23szmhpcFRg2UsHwLZ32wHzzcZ8r3+3ZoH
dHQGduo1WpCtJxtKzNcKtLQYBMtYZy0g6xvYtWtXu8mQn6dzKLCbfNMhHwDdhiAB9u7dC6lG0OtG
J+o/mwbLWLazZ2P+2Y5/zjnntE/9LRQKNBoNms3mUVXZu12inD9Bqdls0mw2Wb9+PQcOHKBYLDIw
MNBuYthPsLQYzcvYQkfqiYkJpqam2vcRyAdG5/ydzYbOWkA+ZLIzDhuNBuVyuX0+QbdJS4c1gmWs
W5s9f5HRmjVr2L9/PxMTEwwMDLRrBJ1/Fzr6d16xmN3PcGRkhEaj0fXyZkNg6TEIlrleO2L2eM2a
NUxNTTE5OUmr1aLRaLQDIB8GmSwYuvUVxBiZnZ1l1apV7Vukd97xaKH+B/WP0byMtVqtrvcM6KwZ
TE5OsmPHDgqFQvsGJIODgwwMDLRvNJL9u9vz2W3Onn766Xn3KugMCwNg6TIIlrHrr78eetQKOgPh
Va96FY1Ggy996Uvty4dHR0cZHh5u35Aku0NR/nGhUOD+++8nxsgpp5zSs7bQec8Cf5V5abFpsMzV
arV5lwz36ggsFousWrWKiy++uOvJRJ2y8wNKpRKvfvWr26MOmW5XI2bLq9fr3t14ibFGsMxdd911
PYcEj3QSUaFQoFwuMzIywsjIyLx7Fy5Uze+2zGwbWq0WN95443Py3vTcMQhWgLm5ucOuKejlSO35
zlDpdr1Cr9dl1x1o6TEIVoBrrrmGZrPZc4ftdl+ChSzmpKPOZZZKJZrNJjfccMNRb7+OP4NghXjT
m940b1gw81zu/L3mf+KJJ3jsscesDSxhBsEKUqvV2qf2LnQRUadu8yw2GKanpymVnu2Tnp2dPcot
1vPFOxStQHfeeedhpxNn1wF09hF0dvjlTzTKn4GYTfV6nUaj0f659YMHD7J3716q1eq8S5kdNXh+
eDtz9VStVmm1WvP6DTqbDJ3PL/QjqPl585cY5+9jkA+BEIK3KVtiDIIV6PLLL6darbavOswCoXOn
7wyGXlN+3qyG0e21IQSGhobatQzDYOnwhKIV6tJLL4XUTBgcHGzflyA7LbnXeQC9QiBrIuSvQswP
W46PjzM+Pt6uiYQQOOusswgheHvzJcA+AnHbbbexbt269o+h9rpAKL/jZ2cS5vsJ6vU65XK5/XNn
WR9Bo9FgZGSEcrncvgtyo9Fg3bp1lMtldu7cybXXXtvHT2D5WmwfgUGgw9xxxx2MjY21awmZfE0g
u6X51NQUV1999bzXb9u2jZGRkXn3IsjfCj17bteuXZx++umEEGg0GmzatKkP73Z5MwjUd1u3bm3/
lsL09DRXXnnlvPLsNxnXrVvHySefzOzsLFdddVXftnc5Mgj0gnDLLbcwMzPDmjVrmJiY4Iorruj3
Ji0r/sCJXhCyS6Vvv/12du3a1e/NWbGsEUjLmCcUSVo0g0CSQSDJIJBkEEjCIJCEQSAJg0ASBoEk
DAJJGASSMAgkYRBIwiCQhEEgCYNAEgaBJAwCSRgEkjAIJGEQSMIgkIRBIAmDQBIGgSQMAkkYBJIw
CCRhEEjCIJCEQSAJg0ASBoEkDAJJGASSMAgkYRBIwiCQhEEgCYNAEgaBJAwCSRgEkjAIJGEQSMIg
kIRBIAmDQBIGgSQMAkkYBJIwCCRhEEjCIJCEQSAJg0ASBoEkDAJJGASSMAgkYRBIwiCQhEEgCYNA
EgaBJAwCSRgEkjAIJGEQSMIgkIRBIAmDQBIGgSQMAkkYBJIwCCRhEEjCIJCEQSAJg0ASBoEkDAJJ
GASSMAgkYRBIwiCQhEEgCYNAEgaBJAwCSQAhxtjvbZDUZ9YIJBkEkgwCSQaBJAwCSRgEkjAIJGEQ
SMIgkIRBIAmDQBIGgSQMAkkYBJIwCCRhEEjCIJCEQSAJg0ASBoEkDAJJGASSAP4P9I8PjUbk6voA
AAAASUVORK5CYII=
"/>
</div>
</div>
<div class="output_area">
<div class="prompt"></div>
<div class="output_png output_subarea">
<img src="
AAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo
dHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAFFxJREFUeJzt3XuspGVhx/Hvc2bmzMzZOecsu8ty
WRaFojSmAo3alpWGNimVktSAaFBJgTQatWoa24ptpGWtNmprbVOstpSLwY21YmwL4gXTQAsR6daC
okVqQS4K7q7AuV/m9vQPnnfyzuyZs7MLyzk7fD/JG2bneWfmneE8v/e5vTMhxoikF7aRtT4ASWvP
IJBkEEgyCCQZBJIwCCRhEKwuhLAUQrhgrY/juRJCiCGE16/1cWj9MQhWEWOsxBj/mWcq0YtDCG8+
nK8XQjglhHBTCOGpEMLTIYTbQwi/lCufCCHcEEL4cQjhpyGEfwkhHHc4j+lwCCEcHUL4XAhhJr3P
G0II4yvsVwghfCuE8HDP/ZeGEL4bQpgLITwcQvhYCKGcK397COF7IYT5EML3QwgXrnIsD6TAz2/N
EML1g5QPC4NgcBcChy0IQggjwK3Aj4AXAduAbwO3hBCqabe/B04AXgW8BFgCvnC4jukw+iJQB14M
/BywBbhkhf3eA/xM/o4QwtnAPwC/B0wA56T/N1ek8jcCfwX8PnAU8LvAdSGEn1/pQGKMp6bAr8QY
K8Bm4MfAZwcpHxoxRrc+GxCB16c/slballIlDcD7gAeAhfTf38o99tPALuAmYCbddwXwrT6vNQ68
BZjI3XdaOoZTU2VpAjty5dtT+RkH837S7VHgo8BDwGIKndfm9n0VcCcwDTwN3AJsT2VHAzcCPwXm
gN3Ar+YeuwRc0OcYfhmYz7/PPvu9GNgH7AQezt3/XuDBnn2vAW5Otz8PfK6n/FPAJwf8jP4S+Pyh
lh+p25ofwHreeirOp4Ev5creCTwGvBwoAOcBy8Arc/s/mVoRI4fw2scCNwB3p+c/Jx1PpWe/vcBb
D+H9fDSF18+mUHhXOkufksr/F/ggUExn3s8A/5TKrga+lu4vpsf+GCgOcAzvB/4TuBJ4Ij3ur4By
z35fBS4HLusJgtNS8L4WKAEvBR4G3pLKb+ytqMCfAd8c4NhOSSF14qGUH8mbXYND9zbgqhjjfTHG
Vozxy8CX0h9u5qkY42djjO2DeeIQwnKqJCcA58cYW+ksvBRjXOrZ/anUWjhYbwX+Isb4/RhjPcb4
idQteV0q3wjMxxibMcYZ4NIY40W5sjqwkMo/AZwQY2wO8LonpO5AOVWs84GLUkBk7//iFIQf731w
jPE7wG+nM/9yCrMvxxivSbv8K/DaEMJrQgilNMbyxtSkP5A/Bj4TY3z0EMuPWAbBoXsp8KH8IBLw
m8CJuX1+eChPHGMsA8cB9wPfCCFMrrJ7SGf6gYUQjkr95//pKfo/4OR0+3LgijTYdlVq0mc+ApwB
/DiEsCuE8KbUahno5VMFfn+McT7GuBv422z8JYSwCfhYauXsFywhhLNSU/9CYAw4HTg7hPBBnvns
dgF/kp7zSeAP05hC4wCfyTbg4tT0P+jyI51BcOgWgbflB5JijKMxxtfm9qkf6pPHGH8CvBuYBC4A
9gCVEMKGnl23pLKDUelzf8i9/qfT2ftDqTXytRDCR1LZf6fAuAyYAv4GuD2EMEgY/AR4Osauy14f
Bo5Ptz+e+vi7+zz+ncBXYoy3xBiXUgvh46mFlh37n8cYT4kxTsQYz0+tjx8d4LheD9wfY/zBIZYf
0QyCQ/eDdFbsCCGcOGBl2E8IYUcI4bEVzv7ldDa7Jw0WvjL3mFOATcBdB/lye4DZNL6RPddIGi/4
Qfr3lhjjVIxxV4zxjcDvAO9IZRt5psJ9Jcb4LuAXgVen/vuBfA84IYSQ786cBDySbl8KXJamR38K
XAVsT/9+dRoX6P2M81OHL1lhuvA3gP84wHGdnwZED7X8yLbWgxTreesZXPtUGlnfmAbXLk2V6Zw0
YHZmGuU+P64wuDjAa42lrsQNqdk+Bnw4jdofn/a5AbgjnT03p2m4r+We48PApwZ8P1elAcFTUkV6
XxoIOyFt9dT8LgDVdNb/r/TY76fBxg3pZPKmNFOweYD3WUnv8x9Ta+d04HHgD1L5CT3be9Kg7Anp
OC9Og4XZ5/4S4LvA36XHn5WC89fSsb8njaMcncp/IR3/xp7jmgXevMpxr1p+pG9rfgDreeupOGel
EfpZ4BWpGf1HwKOpm/AA8PbcY/cLgtWmD1P5S4Cb05TcFPDvwJm58hpwXSqbSQNmm3te86YB308V
+GQ6/ql0xnxlbt/XA/elcHgynQ1PTWUvB25LxzCTpg/Pyz227/RhKn8p8G+pQu9NMwiFPvt2zRqk
+96RWhZzqVvx10AtV/7uFB6LqbWUf1+/kj6HLbn7xtN9v97nGFYtH4YtRL+haGiEEE4E/jTGeNkA
u0sdjhEMl9cBt6/1QejIY4tAki0CSQaBpDT9siZCCPZJpMMsxhgG2M0WgSSDQJJBIAmDQBIGgSQM
AkkYBJIwCCRhEEjCIJCEQSAJg0ASBoEkDAJJGASSMAgkYRBIwiCQhEEgCYNAEgaBJAwCSRgEkjAI
JGEQSMIgkIRBIAmDQBIGgSQMAkkYBJIwCCRhEEjCIJCEQSAJg0ASBoEkDAJJGASSMAgkYRBIwiCQ
hEEgCYNAEgaBJAwCSRgEkjAIJGEQSMIgkIRBIAmDQBIGgSQMAkkYBJIwCCRhEEjCIJCEQSAJg0AS
BoEkDAJJGASSMAgkYRBIwiCQhEEgCYNAEgaBJAwCSRgEkjAIJGEQSMIgkIRBIAmDQBIGgSSA4lof
gJ47O3fuXPG2dCC2CIZEVvFjjF3/lgYRsj+c5/2FQ1ibFx5CO3fupFgsdrYYI81mk+XlZQPhBS7G
GAbZzxbBEBgbG2N8fJxarUalUqFcLlOtVqlWqwaBBmKLYAhcc801FAoFQgg0m01arRYxRpaXl2k2
m8zOzj6rQHDs4cg1aIvAIBgS3/jGNygWizz00EOMjIzQarVYXFyk2WzSbDZpNBosLy+zsLDQtzLv
3LmTs88+mxgj999/f6d70Wq1aLfbhBAIITAyMsLo6CjVapWXvexlxBjZvXs3c3NzBsU6M2gQOGsw
JObn59m4cSMnnXQSjUaDvXv30mw2GRkZ6doKhcJ+j925cyfnnHMO09PTfPvb32ZhYYF6vb7q6y0u
LjI9Pc2TTz5JtVplw4YNnHnmmQbBEcoWwRD55je/SbFYpNFoUK/X2bdvH/V6vatV0Gg02LdvHx/4
wAcghcCOHTu49957WVhYIMZICM+cREIInS5Hdl/299JsNsn/7cQYqdVqnHbaadx1110Gwjph1+AF
6KabbuK4444jxthpFcQYqdfrnRBoNpvMzc0xMzNDsVhkx44dfOc732Fqagqgq+VQKBQYGVl5PLnd
bne2VqvVGZfYtGkTp556Kg8++CB79+7tBI7WhkHwAnXnnXdSqVRoNBrMzs4yOzvLyMgI9Xq90zp4
5JFHOPnkkxkbG+Ohhx5ifn6eQqFAqVTqVP6sBTCIdrvdGaRsNBpUq1U2btxIq9UyDNaYYwQvUGed
dRZ33313p2KPjY2xuLhIuVxmZGSE5eVljjrqKGZnZ/nhD39IjJFCoUC5XKZYLO4XAIMEQtaFaLVa
kMYP2u02mzdvZsuWLYftveq5Y4tgSH31q19lfHy80xJYWlrinnvuIcbI+Pg4c3NzlEolisUipVKp
0wXoHQvo9/eRjRuEELr2yboK2SxFrVZjYWGBdrvtuMEacEHRC9y5557b6esXi0XuueceAF7xilcw
NzfH6OgopVKp0x3IpgXzA4WZ6elppqammJ6eZnp6er/y/GOz18umF2dnZznttNPANQjrmkEwxGKM
FIvFzpRhtVrlscceo1wud1oDWXdgtRAYHR3trFisVCrMzMx07ZdfX5APg2KxSLVa5YknnmBychIM
g3XLIBhiO3bsAOC2224D4EUvehGNRqNTUUulUlcTPz9NCDA1NUWtVqNcLjM6Otr5b61W4+mnn4YB
WgalUol6vc727duf9/evwRkEQ+7WW28lhMDo6CjT09MsLi52pgZ7z+Tkzu6ZrPswOjq630ZP5e/X
Mpifn2ffvn1s2rQJbBWsSwbBENu5c2dnIG/btm20Wi3q9Xqnu7BSJc4HwsTERFfFz4dC1tSnZ+Aw
HwZZ4MQYabVa1Gq1rmPT+uH04RDLVgmWSiWWlpZYWFhgYmKia5aAVJHzswTZv8fHx/dbWZgplUo8
9dRT+5Xlb2fPNT4+3lndWKvVmJube17evwZnEAyxrFJmzfhszcBKA4O9FT3GSLVa3W/JcSYbbDzQ
62cDltny5Wq1ytzcXN9pSa0NuwZDKt/0LpfLndsrjQ3k/51tWeXdsmULExMTjI2NMTY2xuTkJEcf
fTQzMzOdUOndVnrO7HXzg5RXXnnlGn066mWL4AVgdHS000XIKiZ9WgP5SlwoFFhYWOCYY47pVPAY
I3v27KFYLHauLyC1ILLbvYuM8kGQtUqyhUdaHwyCIVcoFGg2m4yOju53xs70DhJm+2T/nZqaolQq
AdBoNGi3250wabfbKwZA/nb+dbNjMgjWF5cYD6GsW5CtGqzValSr1a41BKzSEsg36YvFYlcljjF2
LjLKbudbA/nbmexqyCwA5ufnqdfrnWsSnEE4fFxirK71Atllx/kxgtW2TFaxeyt8pt/U4UpjBI1G
o+u4VvqSFK0NuwZDKj+PH0JgcnKyb2XvXUyUP/tnIdA7xZiX33+l2Yh2u925wnFxcbFzbAd7ubMO
H4NgCOWnCbPmeFbheivfamMF/dYX9D42HwB5/Z5jkC8+0fPLIBhC+eZ4djs/iJefAcjrt8w40xsC
vQHQO0BIrkXQbrf3u8DJ7sH6YRAMoZXm9tvtNpVKpdNayFfiA53R++kXBr1bq9VibGxsxS9TtUWw
PhgEQyh/GXB2Ozvzjo6OdloK7XYbcjMBmUH67f1WJPYuWGq1WlSr1U4IZCGUrTjMv67WjnE8hPLz
9r1z+AD33XcfIyMjnQVG+f76Shch9a467LdlgZOFT77FsNLzMGDo6PCzRTCEeitd/naMkTPOOINm
s0mlUul812BWaXunCAepqPnwyAIlu+IwPwbQe1ys8lVoen7ZIhhSBzqbF4vFTnN9dHS060dUswuK
VltzkD1H/puOsq8oGxkZYffu3RSLRcrl8qrrFQyC9cEWwRDrXdyTr3zZkuF9+/axdetWyuVy14+W
9Ptv78xCdmbPD0ru27ev8+1I2TLifouWHCNYHwyCIdRoNKhUKiuGQL6LUCgUOPbYY1laWmLDhg2d
WYVsuq/3l4zoEwRZy6HdbjM7O8vxxx8PKQT6BUAWSJdffvmafEbqZtdgCF1xxRU0m80DDvRl5Rs2
bOgM7tXrdZ544gkKhQJjY2NMTEwwOTnJxo0bmZyc7GzVapVSqcQdd9zB8vJyp4uxZcuWzrhAvtKv
NBDZbDbX+JNSxouOhth1113XNY2YbfkrEVe6uCib+19cXGRubo56vc7s7CyPP/44xxxzDFu3bu1U
+N4LkprNZtdPobXbbRqNRudn0fK/iHTJJZes9Uc09PylI3VZqWnee1/+/ux7Co866ihIlfz000+H
3KrB7CTS243IPxc9C5Oy2w8++OBhf88anF2DIdZvIO5AqwhXCot8i+Jg5v5XCpk9e/ZQrVb9hqJ1
xCAYYlkzPdPv7P9sFvWsNKC4mqmpqa7ZDL+LYH1wjGDIXXvttZ0fJsn/6EjvRUm9FwT1Tg/2hkV+
8VF+y39hSf53EFutFvPz8ywuLrKwsMDS0lLn24yz1YeGwnPPn0VXx9VXX02tVussHMoGCw8mCOjz
A6mrBUF+sLBer7O8vMzS0lLnq9VnZma6Lm/OP78/pf7cMAjU5frrr+9ME5bL5a7vK+gNhX5z/3kr
hUG+8ue3RqPR+XXkpaUllpeXWVhYYGpqCtLgY34NQ6VSYcOGDTz++OO2Ep4lg0D72bVrF5VKpXON
QT4E8lOBK4VBr97vKcxmDnqDIPtlpawlkIXB4uIi09PTVCoVxsfHu34jYfv27YyNjVEsFpmenuau
u+6yhXCIDAKtaNeuXUxMTHRdnvxcdQ3yLYKsm5Bdalyv12k2mywuLjI/P8/y8jIhBMbGxqhWq11f
jz4/P8+mTZuo1WqMjIzQaDS49957ee9737tmn9uRyiBQX1/4whcol8srXjbcr3vQa7XBwt6uQalU
6iwoqtfrLC0tde7PlkKXSqXO/lNTU8zMzLBt2zYqlQoA9Xqd8847bw0+rSObQaADuvbaa9m6dWvX
AOJKS5AHCYLe8YD5+Xne8IY3dPb/+te/3tX8z1oazWaTmZkZLrjggq7nv/POO3nggQd49NFHKZfL
bN68mVqtxsUXX3xYP5NhYxBoYDfeeGOnn54fK8h3FejpGvSGQNYa2LNnz6qV9Ytf/CLj4+O0221e
85rXHPDY7r77bm6//XYKhQLbt2/noosueg7f+fAzCHTQbr755v2+iyAfCpl8CyC/XuDcc89d0+PX
/gwCPSu33HJL15Li3u8QaDQaLCwscOGFF671oWoVBoEkf/JM0uAMAkkGgSSDQJJBIAmDQBIGgSQM
AkkYBJIwCCRhEEjCIJCEQSAJg0ASBoEkDAJJGASSMAgkYRBIwiCQhEEgCYNAEgaBJAwCSRgEkjAI
JGEQSMIgkIRBIAmDQBIGgSQMAkkYBJIwCCRhEEjCIJCEQSAJg0ASBoEkDAJJGASSMAgkYRBIwiCQ
hEEgCYNAEgaBJAwCSRgEkjAIJGEQSMIgkIRBIAmDQBIGgSQMAkkYBJIwCCRhEEjCIJCEQSAJg0AS
BoEkDAJJGASSMAgkYRBIwiCQhEEgCYNAEgaBJAwCSRgEkjAIJGEQSMIgkIRBIAmDQBIGgSQMAkkY
BJIwCCRhEEjCIJCEQSAJg0ASBoEkDAJJGASSMAgkAYQY41ofg6Q1ZotAkkEgySCQZBBIwiCQhEEg
CYNAEgaBJAwCSRgEkjAIJGEQSMIgkIRBIAmDQBIGgSQMAkkYBJIwCCRhEEjCIJCEQSAJ4P8BW1H/
PHIbeOQAAAAASUVORK5CYII=
"/>
</div>
</div>
<div class="output_area">
<div class="prompt"></div>
<div class="output_png output_subarea">
<img src="
AAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo
dHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAFf1JREFUeJzt3X2QnVVhx/Hvue/37k12E0jYQEIZ
ihFpAGfqSyUwyCBibEk0OkBLHaNTR61p69gS2hnLbiqjWGpUoFULMhYYGaFTC74wMp0xOh2LAxYb
agaEpAGaZeKa7GZfct/v6R855+nZZ+/dvRuSvcnN7zPzzGbv83Kf+2TP7znnPOd5rrHWIiKnt0S3
d0BEuk9BICIKAhFREIiIgkBEUBCICAqCuRljysaY93Z7P44XY4w1xry/2/shJx8FwRystTlr7bc5
WojOM8b8wWK9tzHmva7gbgleW2qMud8Ys98Y82tjzL8aY1Yt1j4dD8aYLe5zlWPTx9z8e1rMqxpj
/ifYxgeNMf9tjJkyxuwzxvydMSbb6fpz7NsSY8wrxpidsdc/ZIz5hXu/XxpjPnVijk73KAg69z5g
UYLAGLMU+BIwHZv1NWA18GbgdUAZ+OfF2Kfj7CUXsuH0VY6G70fi84DvAN/k6LG5ErgH+BSwFLjG
/d98upP15/E5YEn4gjFmE3AX8GfAAPDHwGeNMe85QcemO6y1mtpMgAXe7/7IGm4qA+cABrgFeB44
4n5+IFj3G8CDwGPAhHvt08DPOnjff3DTPmCLe+1MoA5cFiy3xu3jGxfyedy/M8Dngb1ACfgvYGOw
7JuBfwcOA2PA94A1bt4K4BHg18AU8BRwVbBuGXhvm33YAuxbwP/B77njUHC/3wzsiS1zL/CdTtaf
431+B9gP7AB2Bq/fBHwytuxO4Evd/vs8rn/r3d6Bk3mKFZxvAN8N5n0CeAW4GEgC7wYqwJuC5Q+6
WkRiAe95GfC/QH8sCK5x+5OLLf8r4CPH8Hk+78LrQhcKW4EqcIGb/0vgM0DKnXkfAL7l5v0j8AP3
esqtux9IdbAPW9xx+TYwCrwKDLVa1237BeDG4LVLXPBuBNLAWnec/qiT9dvsUxp4FrgeGA6DoMWy
CWAP8Bfd/vs8npOaBsfuo8Bd1tpnrbUNa+33ge+6P3TvkLX2m9baZicbNMakXSH7pLX2cGz2CqBs
rS3HXj/kagsL9RHgDmvtc9baqrX2bhdAm938AWDaWlu31k4AH7TW3hDMqwJH3Py7gdXW2noH7zsK
7AK+CJztgvJPgW0tlv0AUAMe9i9Ya3cBH3avVVyYfd9ae28n67exzTVX5lsO4LNAztVCeoaC4Nit
BW4LO6WA64Bzg2Xm7aCK+Utgr7V2Ie1+4870na9gzDJgGbA7NutF4Hz3723Ap40xzxlj7gKuCJa7
HXgjsN8Y86Ax5vddrWhe1trvWWuvstb+2Fpbs9b+0LXBP9Ri8W3AjjBIjTGXA19x/QIF4FLgSmPM
ZzpZv8WxeB3wSdf2b8sYkzDG7HD7ucFaO97J5z1VKAiOXQn4aKxjKmOt3RgsU+10Y8aY1wN/4poc
rRwAcsaYvtjrZ7p5C5Frtxv+H9bab7iOydtcbeQHxpjb3bz/dIGxBRgH7gR2GmM6CoMW9gAzrn4Y
Yy51YftYbNlPAI+7QCm7GsIOV0PrZP24rwG3WWtfbreAq6k9AlwLvM29Z09REBy7F9xZMWKMOfc1
FIYbXb/AM+7S4K9dZ+BdxphHgWdcZ+Gbgve7AFgO/McC3+sAMOn6N/y2Eq6/4AX3+5nW2nFr7YPW
2hvdGfPjbt4ARwPhcWvtVuCtwHrXfp+TMebjxpg/jL18kauNhN4DPGWt/VXs9XSL2ke2xVu1Wz/c
l98ArgL+Ojjm24D17vc1btEHgEFgvbV273yf8VSkIOhcCVhjjBkwxmSAvwc+bIy5xhiTMsa8DfiZ
ax4ciy8Cv+nCxU8jwK2uI+wQ8JBrjpxtjDkD+FvgCWvtcxz9w/6cMeYr872Rqyr/E/DnxpgL3DX4
m12ofMsYsxoYMca8zxiTNMbk3f684DbxpNuPPhcgb3Xt9bZn1UDShdvl7rhd7QLm7thyb3Z9CXHf
Bq4LjvvrXEj9SyfrG2POcc2d33J9Imtix/yrwNP++BtjbnDNot/ttebADN3urTyZp1gv++Wuh34S
+G1Xjf4r98dfcp1WHwvWnXGVwS7g8mGwfHTVwP1eBO5z1fEJ1wl2Ruw9H+vw8+TdJcqX3fZ+7K94
uPnvdz3p066X/3vA6928i4Efun2YcJcP3x2sO9flQ3/Z9UV33Pa5IDCx5X4GfLbNNj4O/MJdutzn
xlwUO1kfOM8dhze12fZw7PLhvwWXjcPpiW7/fR7PyVg9oahnGGPOBf7GWrulg8VFImoa9JbNbrCL
yIKoRiAiqhGIiIJARNxY7K4wxqhNInKCWWtNB4upRiAiCgIRURCICAoCEUFBICIoCEQEBYGIoCAQ
ERQEIoKCQERQEIgICgIRQUEgIigIRAQFgYigIBARFAQigoJARFAQiAgKAhFBQSAiKAhEBAWBiKAg
EBEUBCKCgkBEUBCICAoCEUFBICIoCEQEBYGIoCAQERQEIoKCQERQEIgICgIRQUEgIigIRAQFgYig
IBARFAQigoJARFAQiAgKAhFBQSAiKAhEBAWBiKAgEBEUBCKCgkBEUBCICAoCEUFBICIoCEQEBYGI
oCAQERQEIoKCQERQEIgICgIRQUEgIigIRAQFgYigIBARFAQigoJARFAQiAgKAhFBQSAiKAhEBAWB
iKAgEBEUBCKCgkBEUBCICAoCEUFBICIAqW7vgJx8hoaGMMawevVqLr30Uqy1s6Znn32WkZERtm/f
3u3dlePAWGu788bGdOeNpaXh4WHOO+881q1bR7VaZcmSJSQSCZ544gk4+v8V/TTGsGbNGtLpNMVi
kUajwZ49exgZGWF4eLjLn0RC1lrTyXIKAmFoaIgNGzZw1lln8dhjj1Gv16lWq1QqlbbrJBIJMpkM
2WyWTCbDmWeeSX9/P08++aTC4CSiIJB5DQ0NcdVVV5FIJHj66acplUpUq9Xo7I8r8GFtwGs2mzOa
CqlUimKxyNq1azl06BB79uxRIJwEFAQyp+HhYTZs2BAFwOTkJLjCnkwmSSQSJBIJUqnUjADwyzQa
Day1USA0m03q9Tr9/f0MDAywfPlyXnnlFbZu3dqlTygoCHqL77zL5XLRa9Za6vU6jUZjQWfeoaEh
3vKWt/Dcc88xMTERFfJcLkcymZx19vd9Al6rUPB8GDQaDcrlMsuXLyebzapTsYsUBD1iaGgoao/n
8/mo4Pn/t2azyZEjR6jVavMWtqGhId7whjewb98+SqUSxpjorJ/JZOYNgfi8VprNJs1mk0ajwdTU
FGeccQaDg4Ps3r1bTYUuUBD0iOHhYfr6+kin02SzWQgKoW+f12q1qABOT0/TaDRmhcLw8DD9/f3k
83leffVVjDGkUqloSiQSM7YdF68VzFVT8PvSbDaZmJjg7LPPJpvNsnfvXtUMFlmnQaABRSe5QqHA
kiVL6OvrI5/Pk8vlZvTWZzIZcrlcNA0MDDAwMMDtt98ebcOfidetWxc1B3wtIJ1ORx2CrWoAAIcP
H2Z8fJzx8XHGxsZmzPO1inD9ZDIZBczAwADVapXR0VHOOusshoaGFuGoyUKpRnCSu++++6LCmkwm
IWgWNBqNqBruO+z8a/V6nUqlwvT0NNZarrjiCnbt2sX4+DjpdDqaaNEECP8mpqeno47DsNCHtZNw
/fh2ms0mk5OTDAwMkMvlOHjwIJOTk6oZLJJOawQaWXiSSyaTrFy5kmKxSLPZpFKpMDY2RjKZjKrf
tVptVhD46v7U1BSrVq1i9+7djI+PR7WBdDo9qy8gflI4fPgw+Xw+CoLwzD8xMUF/f/+sEGjVhCgU
CjQaDWq1GitXrpxzfIJ0h2oEp4C7776bSy65hFwuFxWocrlMqVRiZGSEFStWkMlkoiDw0/PPP082
m2XJkiWMjo5ijCGTyVAoFKBNTcBP4+Pj9Pf3R7WReBgkEgmazSbVanXWWIN488IHVrVapa+vj2Qy
yejoKNu2bVvkI3n6UY2gh2zdupWHH36Y888/H1yB9VXzc845h40bN0bLPvroo6TT6ai5cMEFF/Dy
yy9jjCGdTkeXCONVeWvtjFqBXz4eBD4E/JWMsbGxOZsHBIOSEokE1loajQb5fH6Rjp50Qp2Fp4jr
r7+eer0e9RX4zr5cLseDDz4YLbdp0yY2btwYFUzfV4BrZoRBEJ8ICrFfNryy4JsUqVSKXC7XstkQ
7zj0nYfJZDIKr0QiQTab5bbbbuvKsZTZFASnkJGRERqNxqww6O/v55FHHuHLX/4yuKsEzzzzDP39
/Rw8eJBqtUomk2kbBMQ6/fzZ3r+HL/zhNDAwQCaTmTcEwnm+XwOIrnio0/DkoCA4hWzevJmXXnqJ
RqMx44ydzWbJ5/OsXr2ae++9F1zBzmQy1Go1iFXP5yqsfvIjDbPZ7KwQ8JcxDxw4QCqVahswrS4r
hqMX/WVQ6T51Fp6ifvKTn5BKpaLhvLVajVqtRqVSYdeuXQCsWrWKUqnE+Pg4hUIhKsjxfgIv/Fvw
fQbnnntudDZPJpNR4d23bx/1en3GzUfthO/TaDSi16anpymXy0xPT3PrrbeegKMk6izscZdddhm4
zsGVK1dGVfinnnoqKsR9fX2Uy+UZbX1/Q1G7kYHxM3qpVCKXy0WXI+v1OuVymVTq6J9OeONRu0CI
1wr8VQ0/rNmPj5DuUdPgFLdp0ybq9TqpVIof/ehHUQiE5uogjBd8P/kaAMENTrVajWq1GjU3WoXH
XNs2wZ2N8ebNHXfc0YWjJ56CoAdcccUVjI+PzzobT01NRfcQ+J+0KLjtLg+GYwX8g0oqlQrVajUK
nIWEQPjT1zLCJod0j4KgR2zYsGHW4KBSqTTr1uJOC23YdPA1An+LsQ+cePB0UsvwgZTNZqMQCGsf
0h0Kgh4Rv5nHuIeH+LOvtbZlIZ9rTIHn2/7t+gIW0uTwg4p8n0MYBDt27FikoyVx6izsMfEe+mQy
ST6fp1KpzDrrM08hxg0PjgdH/P3Cfol4B6Rx9zb4963X6zPGNIS1i3q9vghHSFpRjaCHNRoNSqXS
jDNx+NyBuWoBtCj07bQq/OFVAv/wE78PuVxuVn9E2GyQxacj3yNaFVp/OzKuTe6Xma+JMN92273/
XCEQ9gGENQQTjDpUP0H3KAh6mL9MV6/XmZycbDmqcL6mQSdarRteEfAFf+/evRSLxZZXJ4zGE3SV
+gh6RHjXIMFZ39/t558dQFBwaVOtD39vp91yJvYUZF/gy+Uya9eujQYUhf0Vvh9CTYPuURD0CF/o
w+v7vjCGDysJ59GmQM8VGO1+er4vIHwcur8Dsq+vb0bHYjwEFATdoyPfQ8JCHl6WSyQS1Go16vV6
NL/dXYXxgtzJFN4Snc1myWazFAoF+vr6AMjn86xcuTIa09BqbIG/41FPOu4O1Qh6UKvr977G4DsQ
43cCzre9+M9WowUTiUT08BPfHCiVShQKhWgMQqvOSb+NkZERCB622i4U/Ot+ewqP1053H/YIXxhM
8BTh+Og9fwYuFApYa9mzZw8XXXTRjOv53nxNhvj9C37b2WyWZrNJuVymXq+zdOlSCL4izTdT/LMW
/WjFAwcOUC6XqVQqlEqlWZ8v3geCq2msX7+earXK2NgYe/fu5eabbz4hx/dUpbsPTzNhQWk3+TOv
7y+48MILKZfLUZU+vi1a9Bf43+PVfH+VoFKpMDo6yuDgIMViEeNGOIYDj1p1UPrHqzWbzSgI4p8J
1weRTqfJ5/Pk83mstaTTaVasWMGyZct4/PHHOXToEDfddNOiHPdeoRpBDxkeHo4KVasaga8V+Op7
+GwC/3s46tBrVSOIP8vQP2E5fM4hrjCHtYBwCmsEhw8fplKpUC6XmZycjO5wDJsTy5Yti7bvH5hS
KBQoFArRpUff9PnpT3+qJoNqBNLJOAHfZ+CvJpRKJY4cOcKLL77I+vXrZz27ID75OxN37tzJunXr
GBwcnPX9jHPtk3+tVqtFD1nxBd0POfbLZbNZBgYGZj1H8ec//zmrV68mkUgwODgYPQ7t4osvXuQj
fmpTEPSY+W4PbnW7Ma5A5vN5+vr6GBwcnLFcvPASjA7M5XJcd911s/YhrlXTwP87/N5Ff7kzlUpR
q9VIJpMsXbqUJUuWMDAwMOP7GAAuv/xyCL7E9cCBA+zfv5/ly5efoCPcm9Q06DHDw8PRg0F99Tne
PIhX68NmQTwo4sOB4/0NtBhLEN5I5JsG4R2M4fcc+O9u9A8+qdVqTE1NRUOj8/k8xWKRYrEYXX2o
1Wq8613v6sLRPfWoaXCamu/5gaH4WT4+71jfnxYdjq32qdFozLoHwvc3hM8tKBaL0Ze7vOMd7zim
/ZK5aUBRj9m+fXt0qS7Uqrc+Pm+uZeZyrLVK/70IfkCS/+r3vr6+6Mtfly5dGi2nEDhxVCPoQfV6
vW3h7KSwt7tqcKKY4P4EP+TYN2t8beLKK688oftwulONoAdt3759zjDwXmsBjz/+vJPlw6aD//JW
HwS+XyOfz0dPSa5UKrz97W9/Tfsp81NnYQ/7whe+QDabjcYVhA8KjY/1b9dZGA4canUVgg46C+Pj
B/yt0ddee21XjsvppNPOQtUIetjExEQ0mGchZ+9W8+daZ75th8Hgg0BfjX5yURD0sO3bt1Mul6PL
d2EgtHsScbxQt/q91bpzLRvWCvw3M4Xf4CzdpyDocbfccgvVajX6erJ2YTDXZcf5zvLx11tNfujv
2NiYQuAkpD6C08Sdd95JJpMhnU5Ho/Di9x+0eoRYu29JavVgEy8eAI1Gg2q1yjXXXNOFT35667SP
QEFwGvr6178ehUL4XMFWjxjrpLMwFA+ARqPB1Vdf3ZXPKQoCmUc8DMIHirSqEcx130HIDyn2Vwbe
+c53Lvpnk/+nIJCO3H///bNuWT7WIPB3DDYaDTUDThIKAlmQhx56aFYzIXycWbu+gXh/wKFDh7jh
hhu6/GnEUxDIMbnnnnsoFoszagitagQEzYByuczmzZu7vevSgoJAjqsHHnhgRkfijTfe2O1dkg4o
CEREQ4xFpHMKAhFREIiIgkBEFAQigoJARFAQiAgKAhFBQSAiKAhEBAWBiKAgEBEUBCKCgkBEUBCI
CAoCEUFBICIoCEQEBYGIoCAQERQEIoKCQERQEIgICgIRQUEgIigIRAQFgYigIBARFAQigoJARFAQ
iAgKAhFBQSAiKAhEBAWBiKAgEBEUBCKCgkBEUBCICAoCEUFBICIoCEQEBYGIoCAQERQEIoKCQERQ
EIgICgIRQUEgIigIRAQFgYigIBARFAQigoJARFAQiAgKAhFBQSAiKAhEBAWBiKAgEBEUBCKCgkBE
UBCICAoCEUFBICIoCEQEBYGIoCAQERQEIoKCQERQEIgICgIRQUEgIigIRAQFgYigIBARFAQigoJA
RFAQiAgKAhFBQSAiKAhEBAWBiKAgEBEUBCKCgkBEUBCICAoCEQEw1tpu74OIdJlqBCKiIBARBYGI
KAhEBAWBiKAgEBEUBCKCgkBEUBCICAoCEUFBICIoCEQEBYGIoCAQERQEIoKCQERQEIgICgIRQUEg
IigIRAQFgYigIBARgP8Dgs6M0ev77boAAAAASUVORK5CYII=
"/>
</div>
</div>
<div class="output_area">
<div class="prompt"></div>
<div class="output_png output_subarea">
<img src="
AAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo
dHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAGURJREFUeJzt3XuQXOWd3vHvr3v6Nj0zGknoLhQQ
QqhcrGyyJsSL44AxZcAOBawDJomDbBcFxjgpV5L1prAzI5tNWDa7uMwibWrJXrwkcTkUWe+y62wq
cexd20nZxkTekgswGKKFeHSfkWame/oyb/7gfc++c3S6pyUktTR6PlVdPdOnL+ecmfc57+2cNucc
InJhy/V7BUSk/xQEIqIgEBEFgYgoCEQEBYGIoCDozszqZnZ7v9fjdDEzZ2Yf6vd6yLlHQdCFc67s
nPsvvFmILjGzf3AmP8/MXjOzpg+gcHs9Wj5iZl82szfM7JCZ/aGZrTuT63QmmVnezJ4zs9dSj68y
s6+Y2TEzO+q3eThafr+Z7TWzGTN7wcx+MfWeD5nZT8xs1syeN7O/22UdvmlmrdQ+r5tZNVqXf+/3
+bSZ/YmZXXzm9kp/KAh694vAGQ0C714fQOG2MVr274CNwNXA5UAdePosrNOZ8mngsozHnwEawCXA
lcBFwD/mzYL5YeAx4J8By4F/CvyOmV3lX/svgH8CfMQv/3Xgj81sfZf1eDi1z8vOuRm/7A+AK4Bf
ANYBrwB/aGZ2+ndHHznndOtwAxzwIeCzQNvf6sAGwIDPAC8Cs/7+I9Frfw94Cvgj4Jh/7LPAc10+
7zVgR4dlFwEt4Beixy726/iOk9ke/3MR+FXgp0AN2APcGj33auDbwBRwFPgT4GK/bBXwn4FDwDTw
feD66LV14PZF1uUS4CAwDrwWPf53gBlgpMPrvgp8JfXYbmCX//l7wCOp5V8HfqnD+30TGO+wrArM
AzdFjxX8Pvlb/f7/PJ031Qh64Jx72B8Zvu6PFm8ADwAP+qAY9ke3J83sndFLbwa+AoyG93HO/fwi
H3eXmf3YV0P/wsy2+8evAvLAD6P1+itfmK4+hc36AnAbcAuwDPht4Gkz2+KX/wfgfwIrgb8BHAH+
rV/2K8AIsNlv2+8DT5nZAKkmVRe/BfyaD7/Ye4C9wKfN7Ge+Sv6YmZX8csuoyR4B/maPy7Ncb2Y/
NLPjZvZ/oqZEOOon7+eca/rw6/Z+5x0Fwam7D3jcOfeXzrm2c+5PgWeBHdFzjjjn/qNzbr7H93we
+BHwbl/4fgL8dzNb5o/CdedcPfWaI762cLLuBX7NOfeCc67hnPtN4HXgDr98FJhxzrWcc8eAe5xz
d0XLGsCsX/6bwEbnXKuXDzazfwisBX4jY/FG3xwoAVt8WN0FPOSXfw241czeb2YFM/vbwId9YIXl
O8zsGr/8FuDGaHnaj4GXgA8A6/3f8L+a2aXOuWngG8BnzexiM6uY2S/7Jken9zsvKQhO3Vbg4biD
Cfh7wKboOa+ezBs65253zn3GOXfEOXfY1ziGgA92eZn5Kn/PzGy5/2f+cWrRy/4oD/BLvgC8YGaP
+yp78AjwDuANM3vKzO72tZVePnuFr1nc2yE4DJgDHnLOzTjnvg88EfpnnHNPAf/KP3YY+GVfm2n6
1z8K/K5vuhwA7gS+HC1fwDn3gHPuXufcz5xzx4HPAT+L+oM+ArzhQ/onvsz8707vd75SEJy6GnBf
qoOp6Jy7NXpO4618gHNu1v9TrgP2A+XQmx25yC87GeUOjycdYM653/NH54d9beTPzOwRv+yHPjB2
AJPAl4BvmlkvYfAbvo3//Q7LJ4Cjzi04LfY1f7QO6/aoc26Lc27EOXebrz287pc1fJhucs4td87t
8Efv1zM/LcV/7qt+n+MD4u875y5yzm10zv1r4NJe3+98oSA4dT/xR8WEmW3qsTCcwA9P/paZDUWP
jfjC+LI/IrWAd0bLtwArgP91kh+3HzgO/Fz0Xjlgm98uzOwi59ykc+4p59yHfZ/IJ/yy0Ofxdefc
g8A1wLXA9i6fGdzjq+6HzOwQ8Dhwsf/9Wt8/sNHM4ubOpcD/9Z99eTxc6N0M/Llf/g4zuynarrxv
Gvx5ekXMbJmZPWFml6Sev9Xvc8zsZjN7e7R8m2+2/UWvO/u80O/eynP5lupl3+171kd9j/s9vjDd
CAwA7/Idd7e5vx41ePYkPqsM/BXwO77zbrkfdXgFKPnnfNn/A673R7lngD+L3uPfALt73J7Hfdt4
iz+ifsb31m/0t4YfMs0DFX/U/4F/7Qt+xKHqDyZ3+5GClT1s58bU7dN+uzf69Sj7I/J/8vvh7cD/
A/65f/27fbX8fX7dPu37SVb55f/I11Le7t/v132hDvvw9njkxo94/Cmw2jfDHvWvv8gvf9I/Z5Wv
fX0T+IN+/2+e9v/1fq/AuXxLFZx3+zbnceDnfTX6XwL7fDPhReD+6LUnBEEPw4dv80NdR3zP9B8D
l0TLh3xQTALH/FDaytRn/lGP21MBdvn1n/RHzHdGz/0Q8Jc+HA774cMr/LKf8yMKx/zt+8At0WsX
HT6MnrsjHj70j20F/ocflj0AjAH5aPmnfHjUfG3onanX/4qv9cwA/w24LPV509HvG/1+POA/71vA
9mj5Mj9XY8r/XX4bqPb7f/N038zpCkVLhpltAj7v28UiPVMfwdJyh6+6ipwU1QhERDUCEVEQiIgf
9uoLM1ObROQMc871dJakagQioiAQEQWBiCgIRAQFgYigIBARFAQigoJARFAQiAgKAhFBQSAiKAhE
BAWBiKAgEBEUBCKCgkBEUBCICAoCEUFBICIoCEQEBYGIoCAQERQEIoKCQERQEIgICgIRQUEgIigI
RAQFgYigIBARFAQigoJARFAQiAgKAhFBQSAiKAhEBAWBiKAgEBEUBCKCgkBEUBCICAoCEUFBICIo
CEQEBYGIoCAQERQEIoKCQERQEIgICgIRQUEgIigIRAQFgYigIBARFAQigoJARFAQiAgKAhFBQSAi
KAhEBAWBiKAgEBEUBCKCgkBEUBCICAoCEUFBICIoCEQEBYGIoCAQERQEIgIw0O8VkHPT2NgY5XKZ
iy++GDPDzACS+5dffpnPfe5zfV5LOV3MOdefDzbrzwdLpvHxcdavX89ll11GtVql1WoxOztLvV7H
OYdzjvn5+eS+UChQKpXI5XLMzc0xMTHBwYMHeeihh/q9KRJxzlkvz1MQCI8//jjbt2+n2WzSaDQw
M1555RWazSbNZjPzNeVymUKhQLVaxTlHPp9nYGCAo0eP8olPfOKsb4NkUxBIV+Pj42zatInt27dT
q9V47rnnaDQaSeF3zi1oDqSbB+12G+dcEggDAwMUCgUqlQojIyNMTU2xb98+xsfH+7ylFzYFgXT0
1FNPsW3bNorFIt/97nep1WpMTk5iZkkA5PN5crkc+Xw+s4+AN//JknvnHPV6nVWrVlEsFmm32wwP
D9NsNtmxY0fftvVCpyCQE4yPj/OBD3yAb3/720xPT9NqtZKCXSqVGBgYOKHQpwOg0z0+EEI/QqPR
oFKpUCwWKZVKNBoN7rvvvrO+zRc6BYEssHv3bq666iqef/55JiYmksdDtX5g4M0BpKwgyCr08ePp
ZXEgzM3NsWLFCmq1GtVqlY997GNnZXvlTQoCSezevZtt27axd+9epqenqdfrmFnSrs/lcovWBEjV
AhZ7DpCEQehIPHDgAOvXr+ejH/3oWdv2C52CQAD4/Oc/z/ve9z6+973vJc2BXC6X1ATiQh0XYnyh
npycBN90yOVy1Go1nHOsWrUq83Xx7+F/q9lsUiwWyefzHDp0iDVr1igMzhIFgTA+Ps773/9+fvCD
HzA1NUWr1QI/9JduCqRDAGBqaopisZh0Gsb3U1NTrFy5MvM90u/lnKPValEoFMjn80xNTTE8PMy9
9957FvbCha3XINDMwiXsXe96F88//3xSEwDI5XJJTYCMtn4wNTWV9B2kQyCXy7FmzRrm5ua6djAS
hUIul6PZbJLL5RgdHWVubu4s7QXphWoES9T4+Hgynh8KZ6FQSI7K6aN3/H8wNTWVzByMawRxEISQ
KBQKHD16tKeRhqDVaiUBoqHFM6vXGoFOOlqCxsbGGBoaYnp6OimEoeDGHYNZNYH5+fnk+aHwxzWD
8HO4DQ4OQqp50OkWhwhAPp/nySefPKv7RrIpCJaY8fFxzIwrrrgiKdShAHabHBQmExEN/4WCHwIh
fatUKkknYlzQFwuDEAQHDx6kXC6za9euvuwr+WsKgiWqWCwmBTsU3KwRgvBzHAJmlgRBHAZxKBQK
BYaHh5OmQy8hkA6DFStWJIHypS99qa/760KnzsJzwNjYWFIwQ4GNO+Ha7Tbz8/MnnACUnsc/NjYG
wNq1a3nxxRcXTBXOmisQpM8rqFarNBqNBWGQ7ixcsWIFlUqFF154gXw+n7ldWX0F4TYwMMD8/Dwz
MzNUq9WOJzfJ2aHOwj4LhTmXyyXV7LjQxeK/VZjfH4bm2u120hN/zTXX8KMf/YharZZ0EBYKhUX7
BuLTjefm5li2bBnLly9fEATFYpFyuczo6CivvPJKcvJRev1iWUFgZrRaLSYmJti0aRP1ep1jx47x
4IMPnsa9Kxo+PA+Mj48zMDCQ9M7Hs/ziIb4g3cMfhwHAG2+8kTyvVqstGPoLoRKq5mlx8wDfWdhs
Njl+/DjOOdauXUuxWGR2dpY1a9Zw6NAhSqVScqZiPK04S7rGE27T09MUCoVk2RNPPMEnP/nJ07J/
pXcKgj4rlUoLgiAU1HiIj1T1nS5h4Jyj3W5Dh4k+nYb00r+HIKpUKgwODlIulymXy1SrVWZmZpif
n0/WNe6UDD+nxe8fwi5els/nabfbVKvVU96XcuoUBH02ODiYhEAcBOk2fSwu/OkgAJJzCRa7xdIF
M9RKisUiZkaz2UwKbDj6hzCIaypZ8xI6zS0IfQvh59AJKWefgqDPSqUS5XL5hAIaF6p4eC7dwx/u
9+zZA75QTUxMdOzJJ6MTj4zaQ/qzQmdl6BMIMxVjWetOKgjS67R161aIRjY61SjkzFIQ9Nno6Cil
Uolt27YxMTFBs9lkdnaWD37wg11ft2vXLlavXp0M66Vl1STocnSOf46DJxT60ORIN0+y+gQ61Tbi
AAg/v/TSS1x99dVJrUBB0B8aNeizZ599ltHRUQYGBpLC1mg0OHjwIHfddVdP7xFGHsKReNu2bbz6
6qtJ9T6ERdY4P11mBcaTh+LCmxUGWbUUMmoD6eHMffv2sXnz5iRwGo0G09PT3HPPPW9pv46NjZHP
59mwYQNbtmwhn88nF2Sdm5ujVqvx0ksvLflLqensw/PE7t27ueSSS5IwAGi329TrdRqNBo1GI7lK
cFZvepiDEFfHq9UqpVKJ48ePUy6XMws0GYW0UxhkhUB6lCGWnpdAanZjOA06DG+WSiXm5+eTYdDp
6Wnuvvvuk9qPcYF2zrFu3TqKxSIbNmxYsM2hb6PRaDAzMwNw0p91PlEQnEd27drF5s2bF9QMGo0G
7XY7ubJws9nk9ddf54EHHkheNz4+njmaMDAwwNq1a9m/fz+Dg4MnTAjKqhXEPflZQdBp9KGbdMdg
Ogi+853vcO211yYjBu12m1arxczMDNPT03z84x9f9DPSAVAsFqlUKqxcuZJSqQTAxMQEo6OjtNtt
jh8/zuzsbLIu5XKZT33qUyfx1zq/aB7BeeSBBx7gi1/8Ilu3bmX58uXJCT3pKvX69et5+umnmZyc
5PDhw9RqNcg4Arfbbcrl8oJzBsiori/WaZgOmPRzO1msNhCaKevXrz8haOKJS92kq/TOOarVanL+
Q7gVCgW2bdsG/gIpMzMzySSpZcuWsWbNmkW350KgGsE55plnnmH16tVJdTlML261WtTrdVqtFq1W
i2azyd69e0+oEeALxcjICI1Gg1wuR7lcXjCKkHVRkk5H/U5TkzvVCrKem76mQaFQSPoEQmCFGkFo
FtXrdV588cVkexYLoGq1ytDQUDIKMzQ0lJxyHW97rVbj5ptvPg1/qfODTkM+T91xxx3s3bs36aGP
O/vCFYHL5TKVSqXje5gZs7OzVKvVJEy6dRDSpVZwMjoFRlwQQ+FstVpUKpXMpkrozxgaGlpwNSUy
pjHHzYFqtcrIyEgSCOFybM45arUa11133QUVAidDNYJz3Fe/+lVWrlyZnPcfagjtdptvfetbJ1TZ
w9EzXFcwn89Tr9eTQtitr6DTcGK3GkG3x+P+gFwul5ypGGYmjo6OJtOS4+2am5uj2Wxy+PDhpH8k
1BRCrSEYGhpiZGSEkZERBgcHkwB473vfexb/Sucu1QiWiDvvvJMbbriBPXv2LLhGQHoGXlag1+v1
pFc+9BfQoZ1/OkMgvqJRuBWLRQYGBmg0Ghw4cICRkZGOnxXeI27rh9pQuA/9DENDQwwNDVGpVCiX
ywtOv5beqbPwPHH//fcD8LWvfY3R0dEkCNLDeHHBCp1jYf5+OOqSUfDoUrVP33d7TdwmDz+XSiXy
+TyNRoP9+/dz6aWXJlX2rHUJtzjswuSmcD5DuA0NDTE4OMjg4CCFQoH5+XluuOGGM/q3WIrUNDiP
pYcP051qYXisVCpRqVSS6cHxdQvjnv1uhT5rJCD9ezwiYNEFSCqVCnNzc8n3GoRzKsL6xAU7nAId
hk1Dx2iYbNRqtZLmRKFQYPXq1Ulfwvz8PNdff/1Z/Ruc6zR8eIGIQyDNOZdcOTi00elS0BcbHehW
jY+bBOkLnIbvVty4cWMyLBr3ZXRaj9BJGD83BFDoCAz9AoBC4C1QECwRoaBkTe1ttVpJAQ1nE8av
iwszPdQI0oU/vk9f7BRgenqadevWdTwnIquJkL7qUXwSVAiZUOPJ5XK85z3vOUN79sKgIFiC0r32
oRo+NzeHc45KpZI8FnfsdWoCZB2t4yHB9IzBVqvFT3/6UzZs2MDg4CDr169fsH5xwY9rBEEo6PH8
gvi1zn8d+8DAAPV6nZtuuuks7dmlS0GwhMS1gk4FOEzjDf0EALVajeHh4czXdHqf0BcQ3wD27NnD
5s2b2bJlS/KcXtbZUudLpNchvV2hdqEQOD0UBEtA1kk+QVYhDjMVQ0Etl8tJR9y+ffu48sorTxgB
SIdCPG35G9/4BpdffjnDw8NceeWVCy651km6SZA18hHEnx/Mz89z/Pjx07QHRUGwBKQ7DLt1AMa/
hwk8oSpeLBZ529velpz01Gg0OHLkSPLauECG8fvBwUGuu+66E5oYb1VWkyEMf87NzS16vQY5ORo+
PM9lnXwTjxLkMr7ANH1R03jqb7oWEPcdxDWCuGnQrRlBxhE+vupRfOHTcAtDh+lOzMnJSe68886z
tm+XAg0fXiDSU4x7uc8aNQjvFV8hKCsE0oU/vS6L1QYWu8pxeM7+/fsXPKbvSDyzFARLTDzWvlgT
oVNHYBwM6Y689NWIuhX8+DW9rHe4v/HGG0/LvpDe6VyD89zOnTtP6HgjdYTN+nmxI3en5b22/xcr
/J0mQOk8gf5QECwRvRTQXkMg6z1PtQOwl0CIawO6eGl/KAiWmPhior2GQ7pJcLKf18tjWcvj54V1
bjQaJ70O8tYpCJaAeOQg3el2NqQLdPpn1+GLWIhqAWEoUxcO6Q8FwRLSqbCxyDUIen3vrPv0Z3d6
frd1DWGg2kD/aB7BEhNqB2aWzMdPzyUIM//S1zFMP2bRl7FmnVy02OgDHcIm/M+FU4qbzaauIXCG
aB7BBSo9zLfYkXmx9+lledb04MWGDsNkovCNy9JfahosMTt37sxsmwe9DNF1q+J36g/Iev9Onx2H
wLFjx7jtttvewhbL6aAgWIJ27twJqSm8vQRCp5BYLAyyah+dfo+nEk9OTnL77befkX0gJ0dBsESN
j48nXyGWvhRYt0IbdGpa9FrbSD8v/uzQL3DHHXecpb0hi1Fn4QXgC1/4QnJpr0KhQLFYPOEEo3Ad
wU4XHEl3DKa/oahbJ2Eo/CGUjhw50vMXvMpbo+8+lAXGxsaoVCoUCgUqlUrmGYnpEEgHQfp6BN3O
Y4iF0YFarcatt97apz1wYVIQSKaHH36Y4eHhpIYQ1wgWC4KsGgGLfF+i898ypOsH9IeCQDp69NFH
T/i69HDtglOtEZBxpSHnv9/wlltu6ePWXtgUBLKoxx57LLkgSXxhkrjZEAp8ulbQ7VJkzl90dHZ2
Vn0BfaYgkJ498sgjDA8PJ52IudRXlvUaBO12m1qtxt133923bZGFFAQi0nMQaB6BiCgIRERBICIK
AhFBQSAiKAhEBAWBiKAgEBEUBCKCgkBEUBCICAoCEUFBICIoCEQEBYGIoCAQERQEIoKCQERQEIgI
CgIRQUEgIigIRAQFgYigIBARFAQigoJARFAQiAgKAhFBQSAiKAhEBAWBiKAgEBEUBCKCgkBEUBCI
CAoCEUFBICIoCEQEBYGIoCAQERQEIoKCQERQEIgICgIRQUEgIigIRAQFgYigIBARFAQigoJARFAQ
iAgKAhFBQSAiKAhEBAWBiKAgEBEUBCKCgkBEUBCICAoCEUFBICIoCEQEBYGIoCAQERQEIoKCQERQ
EIgICgIRQUEgIigIRAQFgYigIBARFAQigoJARFAQiAgKAhFBQSAiKAhEBAWBiKAgEBEUBCKCgkBE
UBCICAoCEUFBICIoCEQEBYGIoCAQEQBzzvV7HUSkz1QjEBEFgYgoCEREQSAiKAhEBAWBiKAgEBEU
BCKCgkBEUBCICAoCEUFBICIoCEQEBYGIoCAQERQEIoKCQERQEIgICgIRQUEgIigIRAQFgYgA/H/q
rjLOdPQ9nwAAAABJRU5ErkJggg==
"/>
</div>
</div>
<div class="output_area">
<div class="prompt"></div>
<div class="output_png output_subarea">
<img src="
AAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo
dHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAHMJJREFUeJztnXuQHVd95z/nPufOjEajx8iWNcKS
CmyTxY+tza5tYBd7jQ0ySwJeV8DCi+UiLj+WxZUiGJKC0vUDrwObkFpYUhtXtuwsIrFDWZCNEjCw
SWUdEseJgwNrRGwjjK01EpY0M5rHfZ/9g3Oac1vd996R5qE78/1Udc29/e6eez79O79zuttYaxFC
rG4yy70DQojlRyIQQkgEQgiJQAghEQghkAiEEEgEnTHGVIwx717u/VgojDHWGHP9cu+HOPOQCDpg
rR2w1u7jp4VomzFm12Jv0xizyxjzfWPMnDHm/xpjfjGYNmKM+X1jzCFjzKvGmC8bYzYv9j4tNMaY
O40x/2SMmTHGHDTGPGCMybtpu52wKrHhtoT1ZI0xf2+M+WFs/LuMMU8bY04YY541xvxyh30ZNMb8
N2PM/zPGTBtjvmOMeX/KvFvdOh9amDNxBmGt1dDDAHwY+JNF3sbVwDHgKmAAuBH4B2DYTf8D4H8D
5wDrgD8E/moe67fA9ct8Hm8GfgJc6i5EFwNHgI+66buBH/a4rl8FJsL5gX8GVIFfAorAvwVmgKtT
1vEw8FfAa4As8F6gBVyWMO//ctt7aLl/jwv+f1nuHTiTB19wgI8DTTdUgC2AAT4KfB+YdX//Q7Ds
Q8AXgD8Gpty4jwN/32F73wTuS5m2EWgAbwzGbXX7eMl8jsd9LgC/AfwAmAOeAX4hmPdfAk8Ak8Bx
YD+w1U0bA/4IeBWYBp4CrgyWrQDvTtmHN4fzunGPAX9g5yECYJsTSjkmgt8GHo/N+3vAl1PW80vA
BbFxx4BbE+b7R+B/SgSrbIgVnIfCiAD4j8BLwIXuSnKtuxL9fDD/UWAXkOlhW1lXIH/VFcAp4Elf
8F20YIGB2HJHgFtO4Xh+w8nrAieFDwI14LVu+j8B9wI5YMQVgEfctN8FvubG59yyh4DcPM9vDnib
E8q77M9EcBTY5wr6K8Ce+LqBrwJ3xcXhru4PxOa9AzjUw/4MAXe67Z8bjB91x3eZ+7+uOBEoR3Dq
3Ap81lr7HWtt01r7p8CfuB+m55i19ovW2lYP69voqgMfcJIZdz/q/caYDe4qXLHWVmLLHXPLzpdb
gE9baw9Ya2vW2s8BLwPXuemjwIy1tmGtnQJusta+J5hWA2bd9M8B49baRq8bN8Z83InzUeDXrbVf
dpN+4q68n3FVoF3Ah1yh98u+Dzgb+K2EVY+5CCak6zkyxjzuopv/5CKjF4PJnwb2WWv/ptfj6zck
glPnPOC+MKEFvNPVNT0H57E+4/7+d2vtM67w/RqQB3Z2WW5ed44ZY9a5HMOzsUnPAzvc57uAjxtj
DhhjPgv862C+B4BLgEPGmC8YY25wEU3PWGvvc+J7F1A2xtzpxu+31l5prf1La23dWvvnwGddbgFj
zHrgv7goqFfxdD1H1tprgDXAp4A/NcZc5rb3b4C3A78+n+PrNySCU2fO1SMHgqFgrf2FYJ7aPNb3
E5eDOOZHWGurLjQ+BzgMDBhjhmLLbXTT5sNAyngvI6y1D7mo5D53lf2aMeYBN+1pJ4zdLnn2X4G/
MMbMVwa+oH8a+JUOs74A+NaR3wL+0Fr7VMq8hxOu/j2dI2vttLX2d4G/AG4zxhRdNeiDTswrFong
1HnOXRUjjDGvmW9h8Fhrm67O/s+D9RVdAXjRtR40gJ8Ppr8WWA/89Tw3dxg44fIbfl0Zly94zn3f
aK2dsNZ+wVr7XlfPvt1NG3X7/GfW2g+6FoA3ARd127Ax5lFjzL2x0UWg7qbfboy5MTb951y0AnAT
sNs1n77qooWt7vubgL8Nz5HjUuBbCfsyYIx5zhgTj7j8/lzmIr/fC7b3XuC97vPKYbmTFGfyEEuu
/Y7LrI+65NpNrjBd7ZJel7uruk96PTTf5kaXdzjhmrwGgd8EfgwMuem/D/wfFyFscNn2rwXL/2fg
d3o8ns+6hOBr3Q//o66ZbdwNNeDfu5C/5K76f+eWPeCSjUPuYnKDaynY0MMx3uFaIq5w677Yie7T
bvoHXR3/ze68XuWijl9208djw6+4pO24O47zXe5hl/t+jWvVeZNb/l+5/R913x91kn2d2967nQT+
nVs+vr1H3TC+3L/PBf2tL/cOnMlDrOC82WXoTwD/woXRvwb8yFUTvg/cFix7kgi6NR+6eT7mknYV
lyx8QzBtGPgfrmBMuR/khtg2/7jH4ykBn3f7PwH8pW/xcNOvB77j5HDUNR+e76ZdCPy524cp13x4
bbBsp+ZD45J/B918P3Q5h4Fg+kddBDDnpt8OmJT1ndTc6FpwvuuE8BywK5h2hTsPG933EeBzTuIz
7ph3dziHK7LVwFg9oWjFYIx5DXCPtXZ3D7MLEaEcwcriOpfoEmJeKCIQQigiEEJIBEII11yyLBhj
VCcRYpGx1poeZlNEIISQCIQQEoEQAolACIFEIIRAIhBCIBEIIZAIhBBIBEIIJAIhBBKBEAKJQAiB
RCCEQCIQQiARCCGQCIQQSARCCCQCIQQSgRACiUAIgUQghEAiEEIgEQghkAiEEEgEQggkAiEEEoEQ
AolACIFEIIRAIhBCIBEIIZAIhBBIBEIIJAIhBBKBEAKJQAiBRCCEQCIQQiARCCGQCIQQSARCCCQC
IQQSgRACiUAIgUQghEAiEEIgEQghkAiEEEgEQggkAiEEEoEQAolACIFEIIRAIhBCIBEIIZAIhBBI
BEIIJAIhBBKBEAKJQAiBRCCEQCIQQgDklnsHxJlNuVwGYGBggMHBQebm5pidneXuu+9e7l0TC4ix
1i7Pho1Zng2LRMrlMps3b2bHjh0MDAxgjMFaS7PZjIZGo4ExhkzmZ4Fko9Fgbm6OmZkZDh8+zF13
3bWsxyHasdaaXuaTCFY5999/P+eddx5btmxhbm6OarUaFfxWq0Wz2cRai7WWVqsVfU763QwMDFCv
1zl8+DB33nnnshyPaEciEImUy2V27tzJ7OwstVoNgBdeeIHp6WlqtRr1eh1jfvbbyWazGGOiIU6r
1aLRaDA8PEw+n6dUKkXryGQyDAwMUKlUuO2225b0OMVPkQhEG3v27OGyyy5j48aN1Go1nn76aWq1
GtVqlXq9Hl3hs9ksmUwmKsj+c5oIwt+PtZZcLkc2myWXy5HL5ZiZmWFkZIShoSGOHDnChz70oSU9
7tWORCDACeCSSy5h69atVCoVRkZG+OpXv8rs7CzW2qhw5/P5qOAnRQGhBOJS8L+hsNrQbDYpFAqR
DHK5HCMjIxQKBQ4fPsxHPvKRJT8XqxGJQHDPPfewc+dOKpUKW7duZf/+/VQqFaampqLCnM1myWaz
5PP5kwp9ryLoJoVisUgul+PIkSMUi0VGR0cxxvCBD3xgyc7FaqVXEaj5cAVz7bXXMj4+zmOPPcZT
Tz3F3NxcVH/34XtYFThdEcSrDl4Es7OzlEolNm7cSC6X49ChQ4yOji7JORC9oYhghfL5z3+e6667
jkcffZSZmRmq1Wo0zYfsvhkwrRrgxx07dqytGgEwNjYWfU5aLiQUwpo1a8hms7z00kts27aNm2++
eVHPw2pHVYNVyJ49e7j44os5++yzWb9+PV/60pdoNBrgCmcul4tyAfHCHhbe48ePQyAMHzWEQy73
02ByamqKNWvWpMogSQqtVotsNsuhQ4fI5XKMj4+ze/fuJTlHqw2JYJVRLpcZHR3l0ksv5ZlnnmF2
dpapqSmAqOD6KCAt5AeYnJwElzz0uYO4BHxewX+em5vrmlwM//oIIZPJ8KMf/QhjDOeeey61Wo1b
b711ic7Y6qBXEehegxXEpZdeyre//W2mp6ejAp3JZMjn822RQKfmQFwk4At7OHiZxPML69evT8wh
pA1eINZazj33XKy1vPzyy5RKpSU7V6IdiWAFsGfPHi688EJmZmaYm5vjxIkTUYHL5/PkcrmOUYAn
lEd4xe82FIvFSAbx7XQavAy2bdtGs9mkUqnw8MMPL+GZEx6JYAWwdu1azj77bL73ve9RqVSi+wR8
QU0qhGn45ZJk0KmKMDg42LXgE8ghXA/Atm3bOHToENlsdsnOm/gZyhH0Ob7H4IEDB5iYmIgKXDab
pVQqJRZCT/i/b7VaUf+CwcFBBgYGohxBWrIwk8lQKpUYHh7GGMPzzz/fNU8Qfg6Tlv7ehoMHD3Le
eefxvve9b9HP3WpAOYJVxPPPP8/s7Gz0Pd47kAQJECuc1lqGh4fBFcqws1FSFOCrBENDQxSLRV54
4YWTuiTHt9utmpDNZtmxY0fUIiGWDomgjymXy2QymaijkCcskCQUwJCkaoK/4zBcV1hV8JHAyMgI
g4ODbcLoVj1I66sQrsNayyOPPLKo5060I/X2KeVyGWstmzZtYmJiIurwE9a/6RIJpN1K3Gg0aDQa
UddgH1341oJCocDIyAjFYpFMJsOBAwfanlHQiW6tCwC1Wo3BwcHTOj9ifigi6GOMMZxzzjnUarWT
6t2dMvjh8uFn/73VakW3KBcKBQqFAkNDQwwPD7NmzRqGh4cpFAoA/OAHP0jsqtxLwjCtejAxMUE2
m1VUsIRIBH2IjwZwLQa4q3s8G5+WH+jWxp/P56nX67zyyittrQ9hP4Lp6WmOHDnS1vswSQYhaVWU
cNvZbJZjx44BkMvl2Lt375Kc09WOWg36jD179kSFaNOmTTSbTY4ePQqu4ISFNS6DToRPHfJ/c7kc
Q0ND0TA4OEixWMRay9zcHI1Gg3q9TqPRiLL+/ilGpFQ9iOUH4q0RANPT0xhjWLt2LdVqlUqlsqit
CP6cjo6Osm3btuiGqFqtFh2XP9ZqtdpXLRq6+/AMwl/B4/3205JnIfEHfwBRh6EwhCchQx+OT1p3
SDgt3Ld8Pg/u2YSVSoVGo0Emk4kKfbhf4fbjNyklbSspOvDnx1d3vNgWi3K5TD6fZ926dbz+9a+P
RNdsNqPcSKvVaotYHnnkEd7znvcs2j4tBxLBIuGf/ovrt+/b3eOhe6eC64lfYaenpyFoe48vl9Z0
l7TupG2HEvCFwd8s5EUQPtC02/pDmaXlCcLzkcvlonsRvAj27t27oFfi8P8zOjrK4OBgVCUKBRcO
lUqF2dlZGo0G+/fv5x3veMeC7c9yIxEsAuGPrFgsniQCEzwJuNfC6gvToUOH2pJ6vptuuL6k9XZK
EpJwdfb76bcbSsBfJZvNZuo5CJdNa7VIkoG/6vp9IKjyLATh/wYnaZ/4fOqppzj//PPbpDQ5OcnL
L78cVXmMMYyNja0oCSARLDx79uwB9yP3GXf/Q47Xiekigm75m1arFa03afm0z91EEBYEHyb7q2I4
3pP2VOP4caRFLPHt+mqUH+8TkaeL/9/44xgYGIiGfD7P+Pg4k5OTUS6gUqkwOTkZRT0Amzdv5v3v
f/9p78uZhkSwwPgfub/jz0cD8dzAfCMCgh9wWFXwEUFaNr7bNuLzJGX9fbWAhMghvn90EECn7Ybb
x0UBvnNR+PyDU8VHAl4yXgC+r4T/X/lnK4Tb9DJvNpu88Y1vPK39OFORCBYY4/rqFwqFKOz0t/WG
hazXZGHaNnBZ7U637narJqQVxnD/SHgOYZIIOkUESd/9lT6p5+J3v/tdLr/88rYoIJ/P8+CDD3LL
Lbd0PT8en6QNj2PdunUUi8W2oVQqtd1ghcu/XHnllT1vq9+RCBYY3/02jAbC3nl06fIbroeUq6mn
Wq1GNxbFC2KvV+Ok/ekUkZwqSduMJ09D+STdNTkyMtLTtnwVgNjxZzKZqHNUsViMZO2TorjWkbe9
7W2nfJz9ikSwwPhut/7uPf9DPHr0KHfccccprzee5PJMTk6SzWajtvykELpb1aCXcD+N+UQwSdWQ
+M1MrVaLN7zhDW05lVarFXV0SiK88ndqtiwUCpEABgYG2p7dWKvV2LlzZ9djWalIBAuMDzdzuRyt
Vov169czNDTE2rVrefjhh7nppptOa/3hD90Yw/T0NMVisWtTYtK4pMLfTQphmN2t4CVtI01APjSv
1+usXbu2LSLyMsjlcqlCDNeb1Fzpo4Hw/+Plc+zYMa6//vrUY1gNqIvxAtNqtSiVSgwODnLWWWex
YcMGcrkcpVKJsbEx9u3bN+91poW6uFDWX9l8Ui+tcNNBEJ2SjXHSqiFx0raR9GwDn/T0L0aJJy39
vGvXrmV4eJhSqUShUEjcx/gxZjIZisVilCAMe2Baa1e9BJAIFh5/hfRdcn1bfz6fZ2BggFKpxFe+
8hUefPDBntfZ7Yrrk5Jhdp+EZr1TSUyeKp0SlfEOVT4aaDabPPnkk21Nh/Fh+/bt0VXdJ2LDjk8k
RE3+nYw+d+OXA7jqqqsW7Rz0E7rXYBG49957ed3rXsfGjRsZGhqKElG+E46/zbder3PixAleffVV
br/99tT1heFwUig+MjLC2NgYr7zyCrVarS0JltRkmdb5qFPh7ZRj8KTNlxYJhIm6Wq3G7OwsuVyO
0dHRqAOP78rcbDajl7QeP348Ooe1Wq1tnvB+B2sthUKB4eHhSMzr1q0jk8nwlre85bT/z/2A7jVY
Rj7xiU/wwAMPRIm7oaGhkxJdYd23WCzy2GOPcfz4cSYmJvjwhz8czRevEyddxWdnZ5mYmIhaEHwP
wPg203ogJv1NIy0n0EkYSYlBE3RhttZGhdrfTZlU1/dDKLhQFtlsNur85KtIYfTgE7jh/Rnip6hq
sEh87GMf49lnn+XYsWPMzMxEhTC8nTefz7fVXcfGxti+fTt79+7lU5/6VE/bsdZSr9ejF4368Dct
0uulqtAtmZi0fKekZNhfIGyv96Ks1WpMTEwwNjbWJq+06kHYAcgPYb8NXw3zuQR/fguFAs1mk7e+
9a09ndvVhKoGi0y5XOaCCy5g69at0ZUsvIrV6/W2W119M2C1WqVWq/Hcc891XH/4HIJSqcTo6CjV
apVqtZrYkcmk9B7sdkXvNK5bPiDp4ae+j0W1WuXHP/5x4vmJ/63VatFdkP6mp7BqEA6+ZSCXy0XP
ViwUClxxxRWL9r8+E1HV4AzBh/b79u1j3bp1lEqltnq7L8g+lPXhrQluAabLbb2+oPjIYM2aNeBy
EnHRJ7UQzFcC8XUljQ/zEr4qEJdArVbjpZdeYvv27VFLAQlNk/HbnMPORnEB+NyArwaEUVKvj1Nb
jSgiWAa++MUvMjo6ysjISJTt901n/sfcaDRotVo88cQTHdcVD/XDTjNeKklheZIE5iOCtLA9LPQm
6LMfvh3JGEO1WqXZbEbJVBO70zG8/dd/T3oISqPROEmQ4f0E/nXvjUZjVbYQKCI4g9m1axcAe/fu
ZXx8PGoP9wXVNwHGmwLTknThPD5RCDA8PEytVku9cy+tMMenp31Oqm7EmwZ9BOA77zSbTb7+9a9z
0UUXsWXLljYppR1TGB2Y4HkFPopKOi8+V4Dra7EaJTAfFBEsM/51ZeGjwQnC/W984xvR97SqQYgX
Sj6fjx624e+cC6/QaRKIX/nT7pKM5xmSwnZf+L3oGo0GBw8eZPPmzVGdPV7oCfo/hBGBv/r74yAQ
X9I5CLe5mpODehtyH3Lfffdx4YUXRm3eAI8//njH7rzxceFV2YsgbKbLxF5+Er+id7rqh+PTROD7
7ocJQoBvfvObXHLJJVFPSz89fiwkiCB8OlJcBOHThOI3LjUaDa6++upF+3/1AxJBn7Nv3z6Ghob4
1re+FY0Lk2ZpEUKYmfddj31U4JsVw5aEtOcjhBFBkhzSugDHX6NureXFF1/krLPOolQqnRSNhMxX
BAQiDNdnraVarfL2t799Ef4z/YVEsEKI9yokCNs7RQOZ4P2ESbdDNxqNKLPeLYGYlhNIkomXjbWW
J598kh07drBp06a2bcerHyFh4Se46nsRhHmTtGUbjYYk4JAIVhDx3oVp0UC8mS7pOYn+nYXxtn1f
yGZnZzly5AgXXXRRW4ifJAKAJ554AuMePb5lyxY2bNhw0jsOkqoddBFB+DlsNWg2m8zNzbWto9ls
Mj09zQ033LAIZ7+/UavBCiYpIki7mofL+O/hQ0d9NaNYLGLczVKbNm06qYOTDV50Esrk8ssvjwq6
byJM6rAU398kOt3FGE6bnJyMOhTdfPPNp3EmhUci6AOSOtikNZvF6VQfD4XgH/4RbwHwgohf2bs9
ei2pK3Pacc33XPTTC0b6BYmgD4hfEUnJD6Rl+uPzhN9xEojXveOFO6l6EN8fEvIYSdiEB5z0Qvw2
a7FwqM9lH9DpNuRuOZ5u1QRihTYpWx8m7JIy+r3kmTrNk7SOpPl9a4BYeCSCFcp8IoK05T29yGYx
CYXzzne+c1G3tVqRCPqEu+++O/rc7UaitCpDfFzS9E7Z/VMt8OH+xqsQ3ZYLB3UTXjwkgj4iqePM
qSwffo9PX0x6kUC8mjAfcYhTR8nCPuVUZXCq21kM4j0l49Pi/QnE4qGIoI/pNVHYbZ6F2I+0hF/8
ip50he8WISS1aoiFRSLoc5KupstJkhTms39prRZJdxmKhUMi6COSHmTarZCdaZJI+ktKbiCUwGq/
i3CxkQj6jPCtvsRyBQtd6Dtd2bv1IUi6eSjtb1IU4Ls4VyoVtRYsARJBH1Iul7v27It/TiOt407a
97T5O3Uw6kUC4ffw/Q/XXHNN12MQp49E0KfEI4Okq28SnQr1qS7XiflEAuGw2p8stNRIBH1OmCdI
k8F8ugL3Si99AXppMYjP76sEqg4sLRJBH+OjAi+DtFA7ibRE3XwTet2qBfHtdYsI/GPZxdIiEfQ5
8RuS/KO+/TMEehnC5dP+9iKAtIKdlgz0+9lsNqnX69GLWZQXWHokghVAmDxMK3zdknndEnlp45JI
i0zShOATg9VqVc2Ey4REsEIol8tRwUt6K3CnwunpJQJIGtdt/UnRQSiAer3O1NQU11577ZKdL9GO
nlm4AvHVBf9w0vjzCcPHiZvY+wnjDyKJv7konJ70SLJen09oXctAs9nUg0YXkV6fWaiIYAXiowNf
/w5fpRYPyztd0eN/u0UF4bikl5iGkUCz2WRmZkYSOENQRLCCueeee9oeOOqH+LsH4hFB/PVlvUQD
8YiAlCjA/95arZYksAToceaijXK5TC6Xo1AoRC8+ib8YNeldBZ2qBt2ekxhGCf4V5rVaLXr3o1h8
JAKRSLlcZs2aNW0RQlwEoRDibyby7zPo9Iq08DfVarWYnp7Wk4eXCYlAdOSTn/xk9NrwtJehhC9M
jb8SLelVaASdm+r1OvV6XQJYZiQC0RP3339/2wtL0iKFXh6X7lsCbrzxxmU7HtGORCBOi8985jNt
guiU+LvllluWaS9FNyQCIYT6EQghekciEEJIBEIIiUAIIREIIZAIhBBIBEIIJAIhBBKBEAKJQAiB
RCCEQCIQQiARCCGQCIQQSARCCCQCIQQSgRACiUAIgUQghEAiEEIgEQghkAiEEEgEQggkAiEEEoEQ
AolACIFEIIRAIhBCIBEIIZAIhBBIBEIIJAIhBBKBEAKJQAiBRCCEQCIQQiARCCGQCIQQSARCCCQC
IQQSgRACiUAIgUQghEAiEEIgEQghkAiEEEgEQggkAiEEEoEQAolACIFEIIRAIhBCIBEIIZAIhBBI
BEIIJAIhBBKBEAKJQAiBRCCEQCIQQiARCCGQCIQQSARCCCQCIQQSgRACiUAIgUQghEAiEEIgEQgh
kAiEEEgEQggkAiEEEoEQAolACIFEIIRAIhBCIBEIIZAIhBBIBEIIJAIhBBKBEAKJQAiBRCCEADDW
2uXeByHEMqOIQAghEQghJAIhhEQghEAiEEIgEQghkAiEEEgEQggkAiEEEoEQAolACIFEIIRAIhBC
IBEIIZAIhBBIBEIIJAIhBBKBEAKJQAiBRCCEQCIQQiARCCEA/j/vO61DccTq4AAAAABJRU5ErkJg
gg==
"/>
</div>
</div>
<div class="output_area">
<div class="prompt"></div>
<div class="output_png output_subarea">
<img src="
AAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo
dHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAHh5JREFUeJztnXuwZVWd3z/rvO/73n7R0N1IRwxB
GEFnaAkaK4NiEBEdwAJ5FBiHGpw2aI2TV4Wqe1upRMeKzgDO4BRGkyiB6aEYKIYprIqhUoKpUYgJ
6ZERsBvs7vJKX7tv39d5r/zBXrvWXb33edxH39f3U7XrnrP3Pnuvs+9Z3/X7/dZvrWWstQghNjaZ
lS6AEGLlkRAIISQEQggJgRBCQiCEQEIghEBC0BpjTNkY8zsrXY6lwhhjjTHXr3Q5xOpDQtACa23J
WvsYb1aic4wxNy3XvYwxb4mEJ9yaxpjbonMGjTH/xRhzxBhzzBjzV8aYM5erTMuFMeZqY8yPjTFT
xphDxph/b4zJBuf8rjFm2hhzf7D/7oRnVDHG2E6Op5TnY8aYF6Ly/J0x5neD41ljzL8zxtSMMX+4
9E9k5ZEQdM51wLIJgbX2tUh44g24FJgA/iY67RvATuAS4G1AGfjL5SrTcmCM+c2ozP8RGAGuBe4A
/oV3zqPAJ4HXws9ba+9JeE73Aw91cjyhPBcAjwBfArYAnwH+xBhzRXS8B3gG2AP8enmfzgpirdWW
sgEWuB64G2hEWxnYARjgXwN/D8xGf2/1Pvtt4DvAE8DJaN/dwPMd3jsD/C3w+9H7LUAduMw7Z1dU
xou7+T7R6wLwZeDnwBzwf4BrvHMvAX4ATALHgb8GdkXHtgL7gWPANPAj4Le9z5aB30kpw5XAF4N9
3wb+yns/BuSiCnh/m+90cSSW2xd4/I+B7wX7vunKEz33z0WvDwF/uNK/y2X5ra90AVbzFlScbwNP
esf2Ar8AfgPIAlcBFeC3vPMnIisis4B73w4ccJ8FrojKUwrO+xVwxwK+z5cj8fpHkSh8BqgC50bH
fwZ8MaqQg8B/BR6Jjv058HS0Pxd99giQW+BzTqzwHQrBM8C/WcTxZ4EvBft+HziScO66FQK5Bgvn
94D7rLUvWmsb1tqngCejCuz4tbX2IWtts5sLG2NykfXwRe+zW4GytbYcnP7rqNXqljuAr1hrX7LW
Vq219wOHI1MdYBiYsdbWrbUngdustTd4x6rAbHT8fmCntbbebSGMMXcC7wK+toDP/jZwYWT6d308
Ymtk8fgs9JmuWSQEC+cfAvf4QSngI8DZ3jkHF3jt66NW+i86ONdELX3HGGNGIv/874JDrwD/IHr9
r4C7jTEvGWPuA/6Jd96XIpP7iDHmO8aYT0RWUVcYY/4A+KPIjXi1289HrtkD1trpBR5PLVq3z3St
IyFYOHPA7wWBqYK19hrvnOoCr30D8HhgSYwDJWNMX3DuluhYN5RS9hv3wlr77SgweU/Uaj5tjPlS
dOyFSDBuB04A9wLPhJH/Vhhj7gX+APin1tr/3mX5McZsBt4PPLaQ4x7jCa3/Qp7pmkZCsHBejlrF
GGPM2d1UhiSiKPU/i4JzPv87Chb+lnfuucAm4Idd3mYcmIriG+5amShe8HL0fou19oS19jvW2hsj
v/nT0bFh3hSEv7HWfgZ4N/Ae4B0dfscvR9/x0khUFsLVwDFr7fMLPO74W/+ZRrwbeG6B5VqTSAg6
Zw7YZYwZNsYUgK8D/9wYc4UxJmeM+cfA85F7sBguAHqA/+vvtNb+GvhvkTtyVtTi/VEU8X6JNyvY
fzDG/Fm7G0SWxn8GPm+MOdcYUwT+ZSQqjxhjdgJHjTHXRX3oPZHovRxd4n9F5eiLBOTdUaD09Xb3
NsZcGonKldbaw4t4TpcALy7keOTufDB6++fAZcaYm4wxxWj/tW3iCuuPlY5WruYtiLK/N4rQTwG/
GZnR/zb68c9FEfg7vc/O62WwHXYfRkJigULCsX7gP0Xm+MkohrA5uOcTHX6fHuBPo/KfAP6n6/GI
jl8fVaSZqPfjr4HzomO/AfyPqAwno+7Dq7zPtuo+fBBoRuf4299Hx9/n7WtGVlA5CpT613kUeKjF
d0097j+H6P1VwP+LxOxl4Cbv2K1eeSxQ88u7XjZjNUPRusEYczbwBWvt7R2cLkSMXIP1xbVRv7kQ
XSGLQAghi0AIISEQQkR54itCq2GhQoilwVprOjhNFoEQQkIghJAQCCGQEAghkBAIIZAQCCGQEAgh
kBAIIZAQCCGQEAghkBAIIZAQCCGQEAghkBAIIZAQCCGQEAghkBAIIZAQCCGQEAghkBAIIZAQCCGQ
EAghkBAIIZAQCCGQEAghkBAIIZAQCCGQEAghkBAIIZAQCCGQEAghkBAIIZAQCCGQEAghkBAIIZAQ
CCGQEAghkBAIIZAQCCGQEAghkBAIIZAQCCGQEAghkBAIIZAQCCGQEAghkBAIIZAQCCGQEAghkBAI
IZAQCCGQEAghkBAIIZAQCCEAcitdALF6GBsb48wzz+SMM85geHiYXC6HtRYAa+28rdFoMDs7y+Tk
JBMTE3zuc59b6eKLRWDcP/q039iYlbmxiHnwwQc566yzGB4eJpvN0mg0qNfrVKtVGo0G1lqazSbN
ZvMUIXC/m0wmQzabxRiDMQZrLeVymSNHjnDXXXet9Ffc8FhrTSfnSQg2IM8++yyFQoFarUa1WqXZ
bFKr1Wg0GnHFJ7ICDhw4QCaTiTdjDJlMhjPPPDMWiCSKxSLZbJZsNss111xzmr+hcEgIxDy+9a1v
cd5551EoFJiZmSGbzVKpVOKW31rLwYMHqdfrTExMkMvlyGaz5HK5U0TAtwLGx8fZunUruVyOQqEw
TxycldDb20s2m2Vubo5bb711pR/FhkJCIAB46qmn2LZtG7VajXq9zuDgILVaDYAf/vCHTExMYK2N
K3ytVqNQKJDNZslkMvOEwBcEJwSZTAZrLSdOnIhdid7eXvL5fGxZEIlCLpejVCphjOHmm29ewaey
cZAQbGC++c1v8o53vANjDLt27WJmZoannnqKY8eOAZDL5eIW35g3fyfT09MA9PX1xSKQyWTI5/OJ
roEfF8hkMvT09FCpVOJ74AUYm80m+XyebDbLyZMnIYotDA0NUSwWZSUsIxKCDchXvvIV3vve92KM
oVarsWPHDp588knm5uaYm5uLW/hCoQBRK+3+Tk5OYoyhr6+PQqEQV/bQIgiFwF2zp6eHZrPJ66+/
Pu/aBILgxGViYgJjDIVCgf7+fowx3HHHHSv05NYvEoINxv33388ll1zC7OwsQ0ND9Pf38/jjjzMz
MxOb5aEV4Fp0gMnJSYgsgp6enlTXIEkI+vr6KJVK1Ot1Xn311VPK5u7h9zgYY3jjjTew1pLJZBge
Hqa/v59PfvKTp/W5rXckBBuIBx98kAsvvJDZ2Vn6+vp4/vnnmZ2dZXp6OhaAXO7NlBFX+f0W23Hi
xAlKpRIDAwOxKd8qWJjP5+np6aFUKpHJZHjxxRdPuXbSffxgYiaT4fDhwwD09/ezZcsWbr/99mV8
WhuLToVACUXrgAsuuIDp6WlKpRLPPfccs7OzVKtVisUi+Xx+XuVMEwH/WKPRiAOGuVxuXizAiUB/
fz/FYjE+r9lsniIy4X3C966rcufOnRw+fJjp6WkqlcqyPSeRjiyCNc7+/fsZHBzk4MGDzMzMMDU1
BVEwrqenh0zmzSzytMrp02w2KZfLDAwM0NPTQ6FQiLv+3Oasi97e3thaaDabvPDCCy2FoNV9K5VK
HJd47bXXOOOMMygWi3zqU59asue0UZFrsM7Zt28fl19+OZOTk/z0pz9lZmYGoh6BfD4/ryWnRUX0
U4b91/V6nZGREbZv306pVIqv6Sp/vV5nZmaGo0ePzhObTq2BNJfBWsvrr79OJpPhrW99q7oZF4mE
YB0zNjbGhRdeSF9fHwcPHmR8fDzu23dC4Hz6pIrp/89DIajX61QqlThdePPmzfT29lIoFGIhaDQa
bN++nddeey3OFWjlbrTaHx6v1+sYY2LLYGBggFtuuWUJntrGRDGCdczg4CBbtmzhpZdeinsFnO/u
ov2tgoJ+FN/f57r4/H3OZ6/VauTzeYrFIgMDA1hr6e/vp16vU6/XTxmD0I7QbXDvC4UC9Xqdc845
h0OHDtHb27uIJyU6RcOQ1xijo6Ocf/75nDx5knK5zNzcXGwNuC3JVw+3tP0uz8AFBnt6ehgYGGDT
pk1s27aN7du3s3nzZgqFQtxj4KwFvwyhGHWy+b0TREL185//nIcffnhFn/lGQEKwxjjrrLPiLrdy
uUyj0UisgCRUdJ+wAvp5A6VSid7eXoaGhhgeHmZoaIiBgQEGBwfjQGK1Wo0rv4sfhCLkV+xWW1gu
F4fYvXt33IvxyCOPnNbnvNGQa7CGGB0dZXBwkKmpKcrlMuVyObYGwkrn8F+7oF6S+W68cQO+KPjX
bjabVKtVKpVKnBQU5hgQJA61Iiyn+3w+n4/3uWHNQ0NDi35+Ih0JwRKzb9++xIE62Wy27Wf9SUBc
H3utVosHCVlrGRoa4sCBA0xPT8+riK1a3xBX4cJ9oYXgNmttPEeBO88FGF05WwlBmiAkxQn851Wv
13nb297Gyy+/zMUXX9zx/0B0j4RgiRgbG4MoOy7MwvMrSVrwLm0mILdvYmKCUql0SkubJgK0iMwn
VcDQpPev02g04nL4ld2fsKTTnIGk755WFicGrgwPPfQQN910U8fXFp0jIVgko6Oj84JshUJhXmVK
M9lpk36b1JqWSqU4iu8+284KSBKDJKFIug5RBfQre5I1gSdg4ffzRSLspWhXHuemnHvuuXHSkVge
JASLIEkEXEpvaA2ktZj+67B/P9xXLBYZHx+fV4ZWVkDSfv9Y2vlJ0Xs3cjAtb6CV+e+PLQiPOZKs
GpcXUa/X42crlgcJwSIwxpDP52MRcFsr1yDpGqRYAqEwVCoVisViWzM8zTUIK33SvrS4Ai0qe9Lx
JAFo5UIkCRFR2vMrr7zCO9/5TnK5HA8//DA33nhjy3IsB2NjY/GgqG3btkFkLTUajTiO87Of/Sx2
EdcayixcBPfccw8jIyPz0m+TKmooBGmtto8vCD/5yU/i/W95y1s4duxYHCwsFArx6L+0/vuke6a9
bhcvSIs7tCNNBHwXx23+GIZarcbExAQ7duyIg5ZTU1PLnno8NjZGqVSiv7+fXC5HX18fu3fvPiUd
2wVLXY+KLwzFYpHrr79+WcvZDmUWngbcBJ3ur4kmBKnX6/NmAQ59bFdh0yb+CGMMPrOzs3Eascvo
axcX6NRCSBKlbroAOzkvTSTDvy5GYK2NZ01yORPLHSsYGxvDWkuxWIxHcAI888wzXHbZZZAQ1LXW
MjU1FU/wAjA8PLys5VxKJASLwK/QANVqlc2bNy/JrL1f+9rXyOfz86b+Ihqp59wRF1FPYiFiEH7W
J2zR2+1PKktS2ZJiKX4XpbU2tnhcN+VyxQp8s75UKsUjMJ3Qv/3tb+fkyZMcOnSI888/H2MM09PT
HD16lMnJSer1Orlcjq1bt7J161b6+vqWpZzLgVyDRfCNb3xj3tRebrae6elprrvuukVf37VMvo/d
09PDrl27GB8fZ2ZmhkwmQ29vb+IsQmmjAjsJLLYLOrYTjvBY0vlplpCr6JVKhfHxcXbt2kU+n4+n
XK/X60xNTfGJT3xi0c/Y4QK/QJw6PTQ0FAcp3eZcwFC4nHVXLpd53/vet2TlWixyDU4DrgVwfrrr
MSiVSkty/SS/2vnMvntAi8qYVIlJqaCtrpNWprR9SfcI759kDTgrq9Fo8KMf/Yg9e/bMm1zFbUtp
FThLwI2tKJVK8aQrTgjCLEv3XZw41Wo1rr766iUr0+lGQrAI3I+yp6cnnuev0WhQKpV44oknlmVh
j0ajwczMDMPDw+Tz+ThyHVoAtGn90/Z1Slj5/fdJcQD/PZ4Q+IKQ8eZCbDabXHTRRfHEKEQVdbnc
g2w2G/8fnQD4MzD5gVgXHHRzMqx0QHApkGuwCMbGxti9ezebN29mcHAwDmI583Vubo7Z2Vmuvfba
BV07KUHH4WYPGhgYiC0E32w13toDnboG4b5u/obXSTvXb1H9yuVXtu9///u85z3viWdYcrECN+TZ
Pd9KpbKgZxs+42KxSF9fH319ffT29sYBQn99B6KuzHq9zoc+9KEF3/N006lroNGHi2BsbIzjx49T
qVRiE933F13Aaf/+/Qu6fqtofqPRoFqtUi6X50XRk3oR/OuFr9tV3E7/pgmC7/v7ld1/7c+wDPCu
d72LUqk0T8iSnslirALnDpioC9Z3A/zXTohqtRpXXHHFmhKBbpAQLJLjx48zNzdHuVyOZ9fx+8Nd
X/RiCa0D5xJUq9VTWk4/++90WQRp9wlb+9ANCIcw/+AHP2BkZCS2bBzhd1mIO+MIk37CgKBvBThX
7Morr1zQvdYKEoJFsm/fPg4dOsTU1BSzs7PgWQXOMigWizz22GNdXTcp3TjEmci1Wi1eJCQUA5+k
StpOBFoJR6vPhSMYQ2sgyRL4xS9+waWXXpo41Vp43zBtu1NCETBeUpbrJnRldAlNH/3oR7u+z1pD
QrAE3H333Rw+fJipqal4pJ7vIuTzeUqlEo8//njH12zlezucz+r85TCrMSnHv5UYJFXu8P7tWumw
9Q9fu/e+JdBsNnnjjTfYuXNnbN0klTnpnt0wOjp6yjMuFovxLEvhnI+NRoMPf/jDXd1jraJegyXi
85//PA888ABbt26dFwhzI+jc4p9PPPEER48e5c4771z0PV26a6PRiCuFy2lwbkq7ik+C0LQTgVZu
QFKKs78qUtg78L3vfY89e/bEKyr7yUQ+ad+jE5ICr0QzPjtLwHcN3P9tvbsDPuo1WGK+/vWvs3Pn
TkZGRmJT0wWbnCnvzPlqtcrHPvaxU66RNHAlqa/ej0X4/rY/f+DU1BRDQ0OplZUOE4rC12GyUpoQ
ZIKFVI0xPP3001x00UVs27btlPERBAOufFfHT9v2e2ZeeeWVeJIUf7KUVsOei8Ui/f399Pf3s3nz
5nl5IPV6nfe///2L/i2sBpRQtELs3buXe++9FyAWg0wwQ5HfOj766KP88pe/ZO/evanXTBKBsAI6
6yBsiYeGhuJ4QVghO6343QiBX7FD9+DVV19lZGSEyy+/PBauTlt2/3v6710SkOtWDIXAFxX/XmHS
kLNGGo0Gx48f7/j/vV6QRbBMfPWrX+Wcc85heHg4Torxf6TuRzs3NxcPVHrjjTf49Kc/PS/dFU8I
fEHwK3Q4cMm3EMJRiS7hqZP4QCs3IskCSEpzNsZw5MgRhoaG4ueQJEY+SRaBPzWaswrq9Trlcplf
/epXsYXgP2P/XL9b1aVluwVfN23aFK8NOTc3t65cAi1wsgoYGxvjvPPOY2RkhE2bNoHn1zsxqFar
sbvgtgMHDpxyrTDwlzRsN6yEfkJMaIK7inLy5Ml4ZuR2lT5t8z+bzWZ57rnnOPvss+N0XTd6MG38
Q9J3TRMCf+hvo9GgXC4zOTk5TwiSRn/68yq6rMHe3l56e3sZHBwkk8lQq9XWjUvgkGuwCnC+/n33
3cfFF18cT2PmL03uKrHfxdaOtJY8PB4uVkKUSusvbtrb20uz2aRSqcQCdfjwYS666KJEnz9p+/GP
f8zOnTspFosMDg6yZ8+eUyyWJIuj3XdsNfWZfz0/yOgLki8CTgj8wKA/kUyj0YjXjdyIyCI4Tezf
v5/h4WH6+vrm5azXarV5Ldyzzz7b9lphy59mEaQl8YRLnYcV3uFbIUlBwKS4QNLkKEljIGghCEmz
NCVZBM1mM07m8gOIzu0KJw9xLoFLGnKZn7lcjkqlwgc/+MFF/59XG7IIVhkf//jH49cPPPAAO3bs
mDc+wf1Yk2g1uq/Tzb+W31Im+ethsK+dO9DJPTuxApIwQYAwtAicqe+enxuR6YTAJ5PJxL0DzjLI
ZDKcOHFiWQaIrSUkBCuAyyH47ne/y86dO+dl0qVN9OnopOIl7U8TEhLWIfAnKm3XaqddsxMWIxD+
/XxXi8hVSHKxTJRF6M86ZK3d8CKAMgtXlptvvplDhw7FA5cIKqej08qSFoBLEoO01yEr5TqmkRQP
8eMebnMVPpxXoFgsxj0ERPMJCFkEK85tt90GwL333svu3bvj/eEPPjSJ2wULk66RtK+dSCwlSd2g
nZIWEMWLmfixg7TrO0vBDWv+wAc+sODvs56QRbBKuOuuu/jIRz6SerxdxUlyD5L+pu1b6H0Xy0Is
jvC7hIHQpCXnnJXgPisRmI8sglVIq8rXiTWQJgLtXIM012K56VQMTEKXYjgzko2WZUt7Pi4JaS1P
K7YcSAjWEO0CiJ18Ns1y6OZ+ndDO/F+KQGESoej53Y/NZlMikIKEYB2xUPO/m/MWymLiA7TppUib
UNXfXEqyRCAZxQhWGatlyayVcBEWgonGT4TjDFxSkZurYWZmZsPMLbAQZBGsAbppRVdDBQ7XYlhK
CyCJWq12iuvjLIBqtbouZhlebiQEa4ClqtxpXYdJLKYCp3V9pv1td73wdZiCXKlUEoOClUqFW265
pevvsBGREKxCOqkgrXoOks49HbRa6yDt3KRMyqSegRCXJn3s2DFuuummJfwWGxPFCFYh+/bti1+H
reBS0u6and7TBku4J3223fcI05zDc9MsA4nA0iAhWOUk9Z2zDMKw0OudzhTkpHkKxNIgIVgDOPO/
E5M5ieWqMK1a91bndGLlpJ0TTlQilgYJwSolyVROO28p79mqHOHWzTXaHWt1ftK9Xa+AWBokBGuM
xbgJSRVyOYWkU1FoJTBpsYFGo8H4+PiSlX2joxmKVjH+fPx+Hn24WIg/VVc4G1E4kWg4k5HbwgVT
TYcTkxD0YCTNSej2kZLxmNZjEAqESxiq1Wrrcjah5UCLoK4D/IU6CQKH7SLsrXzspP1JtPPh21kn
nboEaT0GSe6AyxgUS4uEYJXjdyU6knzn8Fir150eD+/RTXygEwFqd8/wvUsfXq8rEq8kEoI1SFqL
366CtvvMYroQu7FOkroBk4QmyRpQgHB5kBCsAcKBSJ200t24BmkVtx2dBve6uW+SO+CLwFVXXdVR
2UR3SAjWCGliQEolooPWvp0p325LKw9tKn4riyFJBPzFWMTyoLEGaxR/kU8/Ku/jVvW1QV6/+xsm
KXXjGoTnumul7W/3eX9/aAlUq1Wmp6e58cYbOy6f6A5ZBGuIJKvAX+zT39/O9yalNQ7p1hpo1cK3
K1s4l0Cj0aBSqTA1NcUNN9ywxE9T+CiPYA0yOjoKXl+9W7YrXOcwXOnIeCsghfkAYR5BmH/QyUbC
Ksmk5A6EJAlCuVxuOaGraI8WQd0AOEFIEwJ/4RRfDFylD5ctC0WglRCkLYveSgBaDUn2N7e4qRYe
WTxKKNoAuByDcCnwcFlwOgz+LeTcTs9POi90A/yl4iUCpxdZBOsAP3bg5vXPZrPxYp9JC6GGrX5a
OrFvKeBZAO2WUaeDNGInVE4AarUatVpN8YAlRK7BBmR0dDSupG55r6RYQdIYhCRxSHMN8BZKTRIC
2sQD8AYO1et16vW6BGCZkBBsYJyF0NPTc4pVYIwhl8slxg2SKn83MQJaWAE+1ltjoF6vSwCWEQmB
4Atf+AL5fJ58Ph+7C6dTCBx+joH15hK47rrrTvsz2WhICARE1oETA783Iaz43QpBJ70EBLkO7m+9
Xldy0GlCQiDmMTo6SqlUmtet6Hc3hguHthICghgBKUuM+d2BTghuvvnmFXwKGw8JgegIZzH09fWl
9ip0aglYa6nVapTLZfbu3bvC30wgIRAL5Z577qFYLMZLiLdLDnJ/q9Uqn/3sZ1es3CIZCYEQQpmF
QojOkRAIISQEQggJgRBCQiCEQEIghEBCIIRAQiCEQEIghEBCIIRAQiCEQEIghEBCIIRAQiCEQEIg
hEBCIIRAQiCEQEIghEBCIIRAQiCEQEIghEBCIIRAQiCEQEIghEBCIIRAQiCEQEIghEBCIIRAQiCE
QEIghEBCIIRAQiCEQEIghEBCIIRAQiCEQEIghEBCIIRAQiCEQEIghEBCIIRAQiCEQEIghEBCIIRA
QiCEQEIghEBCIIRAQiCEQEIghEBCIIRAQiCEQEIghEBCIIRAQiCEQEIghEBCIIRAQiCEQEIghEBC
IIRAQiCEQEIghEBCIIRAQiCEQEIghEBCIIRAQiCEQEIghEBCIIRAQiCEQEIghEBCIIRAQiCEQEIg
hEBCIIRAQiCEQEIghEBCIIRAQiCEQEIghEBCIIRAQiCEQEIghEBCIIRAQiCEQEIghEBCIIRAQiCE
ADDW2pUugxBihZFFIISQEAghJARCCAmBEAIJgRACCYEQAgmBEAIJgRACCYEQAgmBEAIJgRACCYEQ
AgmBEAIJgRACCYEQAgmBEAIJgRACCYEQAgmBEAIJgRACCYEQAgmBEALg/wOjJkKb2+iFswAAAABJ
RU5ErkJggg==
"/>
</div>
</div>
<div class="output_area">
<div class="prompt"></div>
<div class="output_png output_subarea">
<img src="
AAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo
dHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAH4JJREFUeJztnXuQXNV957+/fvfMaGakEVJJSEbC
GLaSyuJ1HLMObLSuJKzXD4qn14ApRCwciCnQugysbWK1AgHyUqgQr0jh8mKvLWvt2AGBjB/likmy
5Ufi4E2yXgzJCiHQEw0zmpl+d5/9g3Punj6ce/v2TPf0zPT3U3Wrb99z7z333u7zPb/f7zyuKKVA
CBlsEv2+AEJI/6EQEEIoBIQQCgEhhEJACAGFgBACCkFniEhZRK7o93V0CxFRInJ1v6+D9B8KQQco
pXJKqb/A64Voi4hc18v8RGSjiOwXkRMiMiUify0il1jpoyLyBRF5RUReFZHHRWRDL6+p24jIdi1I
ZWe5xdrnDhF5XkTmROSQiDwoImkr/UYR+ScRmRWRF0XkD0UkGyPvVSJyRES+Z21LisinROQFESmK
yLMisq1Ht79koBDMn6sA9FQIAHwRwDCAfwVgHYBvA/iGiKzW6X8GYBOAXwLwFgBlAH/e42vqBYe1
yNrLI3i9YN4E4B4ANwBYBeByAL8B4GM6fRuAR/X3UQC/rn+be2Lk+4A+p82dAG7X+a0G8EcAnhSR
jT2586WCUopLzAWAAnC1/pM19FIGcDYAAXA3gJ8BKOrPG6xjH9MF+wCAM3rbPQB+HJHfnHOOTfoa
fhHAWgB1AL9spW/W6W/t5H70egbA7wH4vwBKAP4XgMusfX8JwN8AmAbwGoCDADbrtLMAfBXAqwBm
AfwtgHdZx5YBXBFyDdsBvBhxjZfY59Lbvg7gy3r9TgD/4qR/FsCTbe793wJ4BcAeAN+ztv8IwIPO
vk8DuKvf/79eLrQI5oFS6j4A/x3A07r2egXAbwG4TQvFKgD/GcBnReTt1qH/EcB+AOPmPEqpX4zI
6gCAD4nIehHJANihC+o/Afg3AJIA/t66riMATulC2yn36tr2PQDGdC375yJynk7/EoC/BDAB4BwA
kwD+UKf9rq6Nz9X39nkAXxSRFByXKoRVIvIXInJKRI6JyC7r2L9RSv0lXq/9UyLyHwD8CoD/oY/9
FoANInKZiKRF5HwAvwbgibDMtFvxqP6NzrjJHkt5EsDbOnyeywoKQff4TQAPK6X+USnVUEp9A8BT
usYzTCql9imlmjHPebN2DY7rWnUHgGuUUhVdC5eVUmXnmEltLXTKzQD+QCn1nFKqqpT6UwAvA7hS
p48DmFNK1ZVSZwDcqJT6T1ZaFUBRp/8pgE1KqXqMfE8B+AcAfwxgo3a3bgdwl72TiNwDoALgKwA+
qZR6HK8LxT9oV+ErOv1nAL6hlPpsRJ53aXfkK560JwBsF5GLtLC8R7sbE7Gf5DKEQtA9zgdwnx3w
AvB+AG+y9jnU4Tn3AzipXY9xAA8D+JaIrI84RrTJHxsdc1gN4KdO0j/rWh668NwjIs+JyMMA/p21
34MA3grgFRH5oohcq62VtiilDiql3qWU+iulVE3X/g8DuMnZ7z4AOW21FETkDn3tlwDYq+MCQwAu
BLBNRO4Nude3ANipLTgfvw/gv2lX5ySADwD4AoBanPtZrlAIukcJwG86Aa+MUuoya59q3JOJyAUA
3gvgvyiljiqlziilfk9bBlcBOAEgJyLDzqFrdVon5MIuw6wopR7TMYr7tDXyLRF5UKf9vRaM7QCm
APwJgO+JSCwx8PAvAN7Q+mEJxR9osx4APqpdtINKqbK2EPZoC83HnwG4Tyn1ki9RW0N3K6XepJRa
rZTarq2Bl+d5L8sCCkH3eEHXigEi8qYFFAbTPOYen9Gfz+pgYRCD0P78GgDf7zCvEwBmAPyCda6E
bq14QX9fq5SaUkp9USn1QV2j3qrTTMzjaaXUbQAuAnAxgH/dLmMRuVVEPuRs/jltjUBEvuKp3bNW
DZ32PCNv06GInAPgXQB+Wze3vqotnYv1980i8lYRebd1TFK7Bn/V7l6WNf2OVi6nxYmy79WR9XFd
OG/UhenXAaQAvFP7v5er/99q8FQHeaUA/B9toq4FkNdNZEUAW/U+XwDw19q3ntDR9G9Z53gAwN6Y
9/MwgOcBnKcL0t261WKTXqraEknqa/kTAH+nj31OtzgM68rlWm25TMS4z9t0K8Ql+p5/VVsVO3T6
b+mWin+v874QwGEdzwCA6/UzMc/9LTqY+ohOP1tf38/r4zc5yx4tnJt0+od0/hfq5/BHWpSy/f7/
9fS/3e8LWE6LU3Au0T7kjG7OEwCfAPCSdhN+BuAW69g3CEGM5sNzAXxN19hTAP6n0yw3AuBzOu2M
DphNOHkeiHk/eQD/VV//lK4B327tezWAf9TicFo3H16g035Btyic0cvfAniPdWxU86Fpdv1n/dxe
1JaGWOm36/hKWac/CCBnneNWAP9bN12+COAhACM6bYu+z7eH5F+wmw/1tt/Vz3xO9914c7//e71e
zMMmKxAReROA39F+LiGhMEawsrkSwPdi7EcGHFoEhBBaBIQQCgEhRDe39AURoU9CSI9RSkmM3WgR
EEIoBIQQCgEhBBQCQggoBIQQUAgIIaAQEEJAISCEgEJACAGFgBACCgEhBBQCQggoBIQQUAgIIaAQ
EEJAISCEgEJACAGFgBACCgEhBBQCQggoBIQQUAgIIaAQEEJAISCEgEJACAGFgBACCgEhBBQCQggo
BIQQUAgIIaAQEEJAISCEgEJACAGFgBACCgEhBBQCQggoBIQQUAgIIaAQEEJAISCEgEJACAGFgBAC
CgEhBBQCQggoBIQQAEj1+wLI0uW+++5DKpVCIpFAIpGAiLR83n777f2+RNIlRCnVn4xF+pMxacuD
Dz6IZDKJRCKBdDrdIgRmMd8BYMeOHf2+ZBKCUkri7EchIAGFQgGrVq1CIpEIhMC2CGwxsNcBIJlM
4tprr+33LRAHCgHpiEKhgEQigbGxMWQyGWQymUAIXJdARJBMJpFOp4MlkUigXq/j0ksv7fetEIu4
QsAYAQFe/8MgmUyi2WwG1oARBPPd/sxms0ilUkgmkxARNJtN1Ov1ft8GmSe0CEhAoVDA+Pg4hoaG
kMvlkMvlkM/nkUqlgiWZTAbWQCLxeqNTs9lEqVTCtm3b+n0LxCGuRcDmQ4InnngCP/jBD6CUwtTU
FIrFIqrVKur1euAOuAsANBoNVCoVTE9P49ChQ/jOd76Dz3/+8/2+HTIPaBEMEJ/73OewceNGrF27
FtA1eaPRQK1WQ6PRgFIKzzzzDEQEIyMjGBkZwfj4ODKZTBALMK6AUgr1eh2VSgVnzpzByMhI4F7Y
QUQAKBaL+OAHP9jHOx9cGCwcYPbv349zzjkHiUQC1WoVADAyMoJ169YhlUph7969QeE2BdbU8ub7
9PQ0AGD16tVBPMAIQT6fx+bNm/Hcc88F+9nHQsccGo0G6vU6xsbGgm2GVCqF4eFhzM7O4sMf/vCi
PJdBhEIwgDz11FM466yzUK/XUavVMDo6irVr1yKdTuORRx5BOp1GNpttKfR24XWZnp7G+Pg40uk0
MpkMUqkUMpkM1q1bh5mZGRw9ejQ4T7vzNRoNNBoNJJPJQBCUUsF58/k8rr/++h48lcGGQjBAfPe7
38XQ0FDg15sC//TTTwfrsApqWGFVSgVLs9nE3Nwc1q9fj1wuh2w2i2w2G7gItVoNL730Uku/Ajii
EIZxScrlciAKIoJMJoNcLoePfOQjPXhKgwmFYAAoFArYtm1bULBM+34+n8e3v/1tjIyMAE5N7RZQ
8/s3Gg00m00opVAqlYL0TZs2YWhoCENDQy1i0Gw2cejQIVQqlZbCHCY0Jq5g02w20Ww2MTk52WIl
bN68Gdu3b+/68xpEKAQrnIceeghve9vbUK1WUa1WISL44Q9/2NLRJ8wFsH9z2wIwPr1SColEAvl8
Hhs2bMDIyEhgFZh+BaVSCdPT0yiVSiiXy0GhbjaboddsrsEnCMeOHWs5dmhoCOvWraMgLBAKwQrm
S1/6Es4++2wUi8XA7/7Rj34UCIDpDRhVQ9s1sG0VmOZBc641a9Ygn88HlkAq9XoftEqlglqtFrgj
5tO0PsBT4MO22WlKKRw5cgRKKYgI1q9fj1tvvbVrz27QoBCsQB599FFs3rw5qIGPHz+OmZkZQEfh
TdMddO1rLAIbVxTsVgPjWpiuxalUCrlcrqWrcTKZBHShNRaACQSa7ybNJzbtEJGgpePw4cOBS7Fl
yxbcdNNNC3p+gwi7GK9Azj77bMzNzUEphWPHjuHMmTNQSiGXy7W037uWQFjhd/e1xxPAagIEgFqt
hkQiEcQibJfCjRFAC4vZx44PRAmCOTaXy6FcLmPLli148cUXISI4fPhwD54oMbBn4TJh165dqFQq
aDQaePnll3H69GkopQJLwDdC0B0l6OshaBZ3PIHde7BerwdNkmax3QC3cPsEyb0G3/XY24aGhpBI
JLB169bg/F/96lf78uwHAVoEi8ADDzyAdDodfFdK4c477+zoHMPDwyiXyzhx4gSmpqYAyx1wCz88
EXxfW7+77g4tDgvumVre3eYS1YQYlmZfw9DQEEqlErZu3YpDhw4hmUziy1/+Moc79wDGCLrMnj17
vDVuWJManPZ7s9jNeVNTU8hkMpiYmMDs7CxmZ2dbWgbMkOF2YuDbFlVzt+sj4GsSdFskfOthuHlD
tygYS2hsbAyNRgNXXXVVR7/JIMMYwSJSKBSQzWaDEXuu2RvVtg4ngg9HGKB7+Jm+/bVaLTjWLbAL
sQrcfW2/v9lsvqH50ScCUfcXxzoIuyfTFbrZbLZYVqR70CJYAA888EDQycaM3Td/Wl8BNbRrzoMl
Bj/96U+hlEI6ncbIyEgwMtDka88i5NamUW6AKw5Rtb5vW9S9hBEWtDTrvnkRjQD+5Cc/wTvf+U4o
pVAul3H55ZfHzneQoUWwCAwPD7e0r5vFEFVTwylkBl90XURQr9eDbsSmA5Fb08YtxGEFO871IUYN
bxMlGlFuiREDExC94IILkEgklqRV8JnPfAb5fB5TU1MolUr41Kc+1e9L6hhaBPNk165d2LBhQ0vT
nWles816t2ktLGruM4t//OMft+Q5OjqK0dFRHDt2rKUHYSaTieUmYIFC0Ol6uzRfK4f9XMzz+/73
v493vOMdyOVywUxIs7OzuOaaa+bxyy2cvXv34pxzzsGaNWuQTCaD3pgmlmH3sjRDvKvVal+GYtMi
6DHun9aMzS8WiyiXyyiVSvj0pz/tPbZQKAQj78wQX3cxA4VsarUaisUiNm7ciJMnTwKO0IRdI9oI
gbvdd74oy2M+674p0k266byklMKpU6dw8cUXB1aAsUZ8z6fX3HvvvRgfH0cul8Px48cxNjYWiID9
O9gducz3ZDKJffv2Bb97v0QsDFoE8+T+++/Hpk2bAisAAEqlEm655ZaunL9QKATr5s9vRucZAZma
mgpEw1eo5uP3x40HRKVHFX635vdZAua6zTBos589HqJer2N6ehrXXXddV553O+69914MDw9jeHg4
uCbTdFur1VCpVLBhw4aWjlbNZhMnTpzA9PR0MI5i/fr1i3bNoEXQexqNBnK5XDASr9lsIp/P9yQv
U5jsCUKVUhgeHkYmkwlGAMZxCxBTCDpNi9oW5rL4OjuJCJ555hlcdNFFgeltcO9xMayCQqEQTKJi
5nK03TK7a7fdp8NsW7NmDer1Ok6ePIkjR44sqgh0AoVgnpgBOsPDw8GEHRs2bMBTTz2F973vfV3J
ww3KGV/TCE8qlUKz2UQ2m0UymcSpU6cwMTHhLXSuCCy0wEe5HXEWu0YVEbz88stYvXo1hoaGcOml
l7aY16Y/hXtsLpfrynMO4/7778fw8DDy+XxghaXT6aDXoxvLMDGCWq2GmZkZvPbaa7jtttt6eo3d
gkKwAOyJOkQEk5OTyGQyXTt/mJ9uB6PMIiI466yzgn3DLIRO4wZhnz5xgdMM6booviDpq6++irGx
MWzevNk736HbZ8F3H72gUCgEw6+NCJhmYrezmHEFqtUq5ubmMDk5uexGTFII5kmhUMDXvvY1NBqN
4M9hZgd68skn8f73v7/redoFwPZDjf9p5hGw/6D1eh3ZbPYNBRJthKBdWlwh8LWMvPTSSxgeHsbE
xATWrVvXUrNKyAClKEHrNsYdMB3EjAiY/hrGkoE1oUuj0cDRo0eX7exKFIIFUK1Wg0Ch+WOYl38s
BF+gECG1ofkTGsQaGWgmHDXbzHDhoaGhYF94CnscgfB1XHL9frOcPHkSQ0NDyOfzSKfT2LJlS4sf
7bN82o1SNMv+/fu72iy3a9cuAEA+nw9mZTKTsdhjO+zJXMrlMiYnJ5etCIBCsDDK5TJqtVrwpzW1
RSaTwcGDB/He9753wXn4Com7mD8lnAJrDwM2BdQ0w7niMDIy0nHN76a98sorQQDVxE2y2Sw2btzo
FQnf/flGMkZZBt0OGIpunbEnazX347ZeVKtVTE5OrohZlCgEC+Dw4cNBDTE2NtYSLxARfPOb38S7
3/3ujs5pWwM2UZ1vXFGwayvz3fbPYUXz23WJDiu8vv3PPfdcr3D4Cn0cs16c3pNu/ub69+3bt+Bo
vLEEMpkMRkZGWiwYu8doo9HA9PQ0rr766gXlt9TgfAQLoFAo4MSJEygWi6hUKkHQzpiR2WwWBw8e
7Pi8YWZxmI/sFjDfdnd0o28moTj5hQmSfYybd68weXer2da2BkzfDGPlwZqVycwKtZKgECyQO++8
M5jE07wizBWDAwcOLCgPX2GLMtsRUiDDzHDfMGh3BKR9TNyhx90mLCZhj++YD7Y1YETAjgskrHc8
1mq1FTllGoWgCxw7dgxzc3PBPP12TWJ6A8bBdD32Bct8ta+b5q67+0RtiyrAYaLQD3xi0A3rwwR5
TXOh/WYnWNO2FYvFBee1FKEQdIF77rkHR48exZkzZ1qCdubNwdlsFo8//nisc/kKZ9ifP8wKQISL
EGa6L4Ypb9OJqLQTQBGZ9zRmhUIBooOodl8Be8Zm4xKUSiV84AMfmFc+Sx0KQZfYuXMnjh8/3hIr
sMUgl8vFFgNDlFkfNwjXL/+9F/iChmaZT0cuE5g1Ym2LgBnRaayzcrmMK664ost3tHTgoKMus2/f
PqxduxYjIyNBU53pdWbeA+CbWGPXrl1ea8B2M4y/6i5mtJ47os8eHh0W7PMNVvJtR0R/ATctTuzC
XXfvG54Yhgls2uvmfQr1ej12Jy4jAMYNGx8fx6pVq4I3Ohn3QERQq9WWdStB3EFHtAi6zPPPP4/T
p09jZmYm6GNgF1gTM3jiiScizxNVqOK4Bb51Xx5h+cbZNyptsSoY+1l8/etfb7u/EYGEnuvRN8OU
EVwzX+JyFYFOYD+CLlMoFFAoFHD++edDKYXR0dGgR5qNiODAgQO47LLLgu9RhKXHLfRx9p2vyxA1
Y1EnsxlFYZvp5rs7nsJ9xgY7CGtbVaYPiBEAdzRhvV5fscFBF7oGPaJQKODNb34z1q5di7GxsWCk
oOnJZyYinZ2dxVVXXfUG18Bgv2fA7esuzig+d1CP3YXXNuV9L0MJe0FKnA5FiLBg4FgZ7YKUYa4B
rFGI9qd5v4J5nocOHQq+m5ex2M/F7uthRMB2C8xITuj5EIxQL1c4H0GfMSboY489BhHB6tWrW4bW
GnK5XGhvwqgAIZyCFnbMUmc+FoPPGjDL6OgoGo1GS9DWzstsMyJg9xtwuxEPijUAxgh6z/bt23Hk
yJHgfYVujR2nr3yY344QMeiUxRQPnwW6kH4KrtWRz+eDAUPm5a2mwNtLLpdDPp8PAoOmz4A9arMf
cwz2C1oEi8DNN9+MQqGA8847DxMTE1i1alXQrGhPbBHHAvAFCu10tDG/F1LofdcYt0bvVqzAYMcL
bJPfTHCaSqUiJ5I1MYFkMhn8HkYEzMQigwSFYJEw5v9DDz2ErVu3YmxsLOjGinkGC/vtBoQVbrt3
ZFR6NzHiaGIxcMTC3c80xxqXAFbvwWq1itnZ2a5e31KHrsEis3PnTjz77LM4ceJES63TbuBPFJ1Y
B/Mljtm+2IFn3z3abpc93btpJrQ7DZk0gwk+FotF3HDDDYt6L/2GFkEfMNbBnj17cOGFFwId1Pjz
bWaMol0BXohLEHZMu+M7FRVj7tsBQdsy8LVkmHdHmvyMCAxCvwEXWgR95GMf+xheeOGF2IGyfrQS
xC2QvunFOj1HHKLu125mtRcTj7Ff/W73FzAiUKlUMD093bVrXU5QCPrMLbfcMm/zv5P0xSZKGOIe
Gwe3b4PtGrgCYIuEEQEAqNfrqFarmJmZwY033tjx9a4E6BosAXoRPIvKq5PtcYJ9ca7fF0B0pyDz
XYcrKO3mPjDnsSdwdTs/2cc2Gg3MzMys6AFFcaAQLAHmIwL9sgCiRMAt7J20GnQ70Ojr1eibiMW8
MWnQoRAsETq1CvrRfj8fSyDs+LhWRJxztrseex+7e7LpirwSJh9dKBSCJcJS8/Fd2olAlBUw3xYG
33rUvr5WAnsfWwCMCAxaf4EwKARLiHYmdbfz6dX+iLiXOFZBnDiGL3ZgzxnpugRmqdVqwbwQr732
2rJ7I1GvoBAsAewBNHACZ2HNcT6/1/XPffvb29DGElHWexHa5e+LDYQV+rCAoS9/d93XZdhsK5VK
bxABcd6ifOzYMezcuTM0z0GFzYdLgN27d7dtf4+Kmi+k158rNqrNAKBOTPY41x7nen1BPndpNpso
l8uhS6lUwuTkJEUgBFoESwhfLe3WgO1q8HZ+fCd5R52/XYwgrmvgyzOO2Ln7mMlFfa0F9Xodp0+f
xt133x16b4MOhWCJ4BsgE1WDRolCp9H5drQTiTitCe1EJCpfn0UASwDMUiwWAxfAvI5u9+7dC7r3
QYEzFC0hfLMUud1i3YlLRY+4E8/EpGEzFPkmLI37yjN3O5za1/emZd+nu+4SJQLKmbzUFP7lPptQ
L+DkpcuUMKsgrh8fx7f3nce3hO3vrvuuM65JHxajCDuXnW4sASMEZP5QCJYQu3fvbnERbNO3XaDM
V0g7DQT6CDuPm442YhB1fb779M1PaC9mTsJarYa5uTlceeWVC3r2gw6FYIlhz19oTGdXCAxxvvu2
I2bhDDumXV7tPtuJUdQxtmCYloJBmlKsVzBYuATxBdp8VoHb38DXNm/WfcFIe584/nqnwULfJyIG
GLn5wSMCthg0Gg2USqXQ6ybxoUWwBPHNahwmBlGmf5QJH1Urz8cqCMu73b5h9xPmOthLtVod2GHD
3YYWwTLBrg1h1fCuheDWvnZBto/x9Uy09zO4QuCeI47FAY8VEGVdIEIsbBGgNdA9KARLFF+BMVNw
RQmCTwSiXIaw7wafKIQJgNtPIMxdaeem2NfvBhDtfgLXXXddzKdJ2sF+BEucXbt2BevuW418/Qvs
vgPuG5F8/Qui+hGY7Qh576KvH4G77vt0CXNvXAGoVCqo1+u45ppreva8VxrsR7BCME2K0IXENJu5
AbR239s1Qbbz2RFSSOHU4giJD/iOd1sAfE2F9uvMqtUqRaBH0CJYRthBRHs+PjMbr/sqdF/PQrdX
oq9HYlTPQljzAyKGNeCuu/gExAiCPW8ALYH5wXcfrkBs39u2CuzZeJvNZsubf8R6+ae93XyHZ0IP
e3ELali8wY4J+GIIviZRd918GgGwRaBarfbwyRJaBMsMdzyCiARv8LVjBWExgihLISwOELXAiQF0
YhGEuQym8Jueg8ViETt27Ojpc12pxLUIKATLELefgZme23zaU3f7CrvtPsQJFrZzDdzPuG5BWDyj
VqsFnYXm5ubw0Y9+tCfPcRCgEAwQpmXBFQN3tKIpwK7lEEcIEOI6IEIE7DRf7W/cG3dC0euvv35R
n99Khq0GA4QZc29e4GlMa3dx/W57m6/nnr1ERfrdCL/r49dqteDTt5jOQcViEVNTU/1+nAMJLYIV
hrEOEolE8Npvdw4D37a4rkGYNRAHtxmzUqm0CBNdgO5D12DAMXEEExMIewXYYgiB3SxoWwuVSgWl
Ugkf//jHe/w0BhcKAXlDUNF+XbhPEOYjBFHYAuC6DsViEXfddVfP7p28DoWAeCkUCi1t+LaV4Cv8
7YQgapCQPUDok5/8ZN/ueZChEJC2GFFIp9MtU335mhpdUYDj85vPTCaDbDaLZrOJO+64o493R0Ah
IPOhUCgETYvGbQhrLVi1ahVSqVRLy8AnPvGJft8CcaAQEELYj4AQEh8KASGEQkAIoRAQQigEhBBQ
CAghoBAQQkAhIISAQkAIAYWAEAIKASEEFAJCCCgEhBBQCAghoBAQQkAhIISAQkAIAYWAEAIKASEE
FAJCCCgEhBBQCAghoBAQQkAhIISAQkAIAYWAEAIKASEEFAJCCCgEhBBQCAghoBAQQkAhIISAQkAI
AYWAEAIKASEEFAJCCCgEhBBQCAghoBAQQkAhIISAQkAIAYWAEAIKASEEFAJCCCgEhBBQCAghoBAQ
QkAhIISAQkAIAYWAEAIKASEEFAJCCCgEhBBQCAghoBAQQkAhIISAQkAIAYWAEAIKASEEFAJCCCgE
hBBQCAghoBAQQkAhIISAQkAIAYWAEAIKASEEFAJCCCgEhBBQCAghoBAQQkAhIISAQkAIAYWAEAIK
ASEEFAJCCCgEhBBQCAghoBAQQkAhIISAQkAIAYWAEAIKASEEFAJCCCgEhBBQCAghoBAQQkAhIISA
QkAIAYWAEAIKASEEAEQp1e9rIIT0GVoEhBAKASGEQkAIoRAQQkAhIISAQkAIAYWAEAIKASEEFAJC
CCgEhBBQCAghoBAQQkAhIISAQkAIAYWAEAIKASEEFAJCCCgEhBBQCAghoBAQQkAhIISAQkAIAYD/
B2h30LjPguQAAAAAAElFTkSuQmCC
"/>
</div>
</div>
<div class="output_area">
<div class="prompt"></div>
<div class="output_png output_subarea">
<img src="
AAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo
dHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAH2FJREFUeJztnXmwZFV9x7+/3rvfm33eQxlgBlS0
JJFNg0o0idG4pJQlCKIgAyXMZMYgRCKRIk5PCRIoY1JhURYDKqUQFKbACFVJLKLGJFBgMEo5TlnM
DMwbZmXe1tvt7pM/OOd63nn33r7dr/v1W76fqlt9+27n3Nt9vuf3+53lilIKhJDFTaLfGSCE9B8K
ASGEQkAIoRAQQigEhBBQCAghoBC0h4hUROScfuejG4jIOhFRIvLWfueF9B8KQRsopXJKqUfw24L0
8V6mp9P4rojsE5FREfm2iCy39q8RkW0isl9E9orIN0VkSS/z1EtEZImIvCgiT1rbkiLyRRHZJSKT
IvJrEbnGOe8KEfmliIyLyM9E5CMt0nmviPyviJRF5Dcicrm1b0hEvi4ie0RkQkT+RUSO7dEtzxko
BJ3zZwB6JgQikgTwff0b/Q6AEwBkAPyTddh3AZQAvAnAaQCOA/C1XuVpFrgJgCtkXwBwAYAP6H0b
AHxRRC7Aq8/p/QC+AuDTAFYD+FsAD4nIm4MSEJGTADwM4EsAVujrfVZEjtOHfAvAGwG8E8BrAfwG
wDYRkZ7ffT9RSnGJuQBQAM4DcD2Ahl4qANYAEADXAtiuC+d2ABdb594H4H4AjwIY09uuB/BMSFpv
1um9ydp2FIAmgNcAOEXvX2PtfxeAOoBVMe5lnT7/rfr7UgB3A3hR5/+nAN5pHf8BAM8CGAdwCMC3
ASzX+94A4AkArwAYA/AkgLfofWv1MzqtRX7eDmCPLtRPWts/COBtzrHPArhJr28DcJez/98B/ENI
Ol8HcH/IvgH9fD9gbUsDGAXwe/3+//VyoUXQAUqpG3TN8bh2F/YA2KRrpfN0zXU1gHscH/yDAB4A
sNxcRyl1ekgypgayf6NR/Uc9BcDbAOzTaRueAZDU1kG73A3gJF0gVwH4MYDvi8gyEUlr6+OrAJZp
C2QYwHX63NsB7NU16DCA/9bXg1Jql35Gz4YlrK9/t35mY/Y+pdTjSqmn9XFZEbkQwOsAPKIPeZsW
Bptn9PYg3g1gl4j8QLtbP7dciWnPXCnlAZjo8JnOGygE3WMDgFuVUv+nlGoopX6gTfv11jGHlVLf
Vko1Y1xvu15uFJHVIrIMwM0APF1Qh3QN7KOUKgGoahM5Njru8FEAX1BK7VFKlbVJngfwfgA5vT6u
lGoqpQ4A+BOl1Of0JZbrWr+qlKoA+LxS6ow2svA5ALuUUv8ckce7AZQB/D2ATyqlntK7pj0HAIcj
nsExAC7TLsTRAL4B4Hsi8kal1ASAHwK4XkSOFZG8iPy1diFWtXE/8w4KQfc4EcANumWhIiIVAB/W
frvhhbgXU0rVAZylC+AOXev9XNe8XsSpok3+djhen/e8lX5VuwknKKXGtTB8UwfjbgFwsnX+FwCc
D2CnLrB/GtenFpE3ALhKW1ShKKUu189iM4D7RORcsyvoshHPQAA8qJT6kVJqUin1dwB2aiEEgIu1
i/Iz/dwT2sKJeubzHgpB9ygD2KDNYLNklFJ2BLvWzgWVUtuVUh9QSq1QSr0OwDd1POIlAPvcWk+3
GGT0vnbIhWz3C7NS6kYtando1+BpEflzve8JAMcC+EvtmnwbwHdipn0ngBuUUrtbHaiUqiqlvqef
w5V68/6A2n91xDN4WVsMNju1dQCl1F6l1EeVUquVUscopb6khfKlmPczL6EQdI8d2nf3EZHjdPS/
I0TkfBE53tr0x1pMfgbgKQCrRWSdtf8M7Ro802ZSv9Gfv2ulvUQX7h36+2ql1MtKqbu1uH0JwEZr
X0kp9T2l1GUAzgZwgYisbHF/awH8EYC/EZGDInJQuwln6u/HishPReQK59SsVUM/BcDtC3GGDnYG
8UsApzrb1gHYpfP0QRHxrR0ReZMOeP448gnOd/odrZxPi2k10OtfBfCc9o8zAC7REfX3AUgBeAeA
AwDOVr9tNfh+m+n9G4DHdPBxrf4Tf9Ha/yMADwFYqS2F/wRwp7X/mwCuD7m222rwmC48r9HR89sA
jOj1d+h7+wNdeSzTwcPvanP9FQB/oQtoWhfm/QASLe4vqX12e/kKgP/S60kAt+hCeqr+/i4dNN2s
r/Ee3crxXp3+Rfr7CXr/OXbLjG798LQrk9NuSRnAMXr/PQCe1rGH1boF5Fv9/u/1/L/d7wzMp8UR
gt/Xf/ZxAKdrM/rzAHbrP9Z2AButc6cJQVTzod5/HIB/1Wns0wGupLX/KN0mPq4L410A8tb+JwH8
Y8i1XSFYpU36vQAOAvgBgDdYx2/S1kFJ3/eDAF6j9/0hgP/R0fUjAP4DwBmqjeZDK52i03yYAbBV
i1IZwK8B/BUAsY5Zr62aqhbn9zn7Jpw0LrWO/zmAd1n7jMiNahfibgAD/f7v9XoRxRmKFiwi8m4A
71FKFfudFzK3YYxgYXOutgoIiYQWASGEFgEhhEJACNHNXH1BROiTENJjlFKxenjSIiCEUAgIIRQC
QgiFgBACCgEhBBQCQggoBIQQUAgIIaAQEEJAISCEgEJACAGFgBACCgEhBBQCQggoBIQQUAgIIaAQ
EEJAISCEgEJACAGFgBACCgEhBBQCQggoBIQQUAgIIaAQEEJAISCEgEJACAGFgBACCgEhBBQCQggo
BIQQUAgIIaAQEEJAISCEgEJACAGFgBACCgEhBBQCQggoBIQQUAgIIaAQEEJAISCEgEJACAGFgBAC
CgEhBBQCQggApPqdATI3ufHGG5FIJJBKpSAiSCQSSCQSEBH/u4hg8+bN/c4q6QKilOpPwiL9SZhE
csMNNyCdTiOZTPpCYEQgSAjw6m+Jyy67rN9ZJwEopSTOcRQCAgAoFotIJBJYvny5LwK2ENiFP0gU
MpkMms0mzjnnnH7fCrGIKwR0DYhPIpGAUgrJZNIXAFsUXDEQEWQyGWSzWaRSKTQajX7fAukQCgHx
SSQSaDabEBEkk0kkk0mk0+kpQmCEIZfLIZ1OI5VKIZlMAgA8z+v3LZAOoWuwCLnjjjuwdu1arFq1
CslkEkopNBoN/PCHP8SSJUuQy+WQy+WQzWaRy+V868D+zGQySCaTEBEopVCv1zE6Oup/V0qhVqth
fHwcF198cb9vedFC14BM4YknnsDq1asBAPV6HZ7noVqt+vs9z4PneZiYmEAqlYKpIFKp1JTFWAqp
1Kt/HVPgDxw4gFqt5p+nlIKIIJvN4pFHHkEymcTExAQ+/vGP9+X+STS0CBYYt912G0499VRkMhmU
y2UkEgmsXLkSw8PD8DwPd955J9LpNDKZzJSov71+5MgRJJNJDAwMYPny5chms74bYFyE5cuXY2Bg
ADt27MChQ4f8822MpZHP5/3v9mehUEAul8MFF1wwi09occFWg0XGrbfeitNPPx2JRMIXgGOPPRaZ
TAb33HMPRATpdNr3+eEIgMvo6CgSiQRWrFiBTCYzxSLIZDI4+eST8fTTT+PIkSOR1zLbms0mms0m
Go2GH5Q0+7PZrO9qfPKTn+zhU1p8UAgWET/5yU+QSCRQqVT8gpXL5fDoo48ik8kgk8kAVmENK/wG
4+OPjY1h2bJlvkVgrIIlS5ZARLB79+5p13TXgzCiUCqVYP//0uk0stksNm3a1MWns7ihECwCbrrp
Jpx55plTfHMjAo8//jgGBgZCCyksEx26cBoBMOuVSgVDQ0PIZrN+rW0EQSk1TQjCRCBMEBqNBpRS
OHz4sJ82AKxZswa1Wg0bN27s0ZNbPFAIFji333473vKWt6BUKqHRaCCZTOKFF17Avn37/ALr9v4z
EX0bu/A3m03U63VfWEQEr33tazEwMIB8Pu+3JKTTaQDA7t27UalUplwvyj0IwqSfSCTw0ksv+fkb
HBzE0NAQLrnkkq48r8UKhWABc9999+H4449HqVRCvV7Hnj178PLLLyOVSvk1NnS/AEQURFMIjRDU
63VfEExfAVsITOehZDKJarWKI0eOoFKp+C0OxpKAY224hFklZv3FF1/0j1u1ahUKhQK7MHcIhWAB
cv/992N4eBiVSgWNRgMjIyMYHx+HUsofH2Cb50YIorCDdgD8DkMmeDcwMOBbGKbpUER8wfA8D/V6
3V+MuW8LQtz/mMlDrVbzYxCGdevWYf369R08tcUN+xEsQIaHhzE5OYlms4mRkRGMjY1BKeXX0m5r
QBwz3XUdTGFPJBK+e2EKvSnUxsUwhd5g0retDNsdaSUIJi/ZbBbVahVr167Frl27AAAvvPDCDJ8e
iYLzEcwTisUiyuWy7wocOXLEN+FNwQ0K3NkDg9xBQ2YxHYRM86DZ5sYOTEekWq02xRJoNpuAI0BB
4xLC8ujmLZlMolAoQESwbt06/9oPPvhgn3+FhQuFYJ6QzWZRqVTw0ksv4fDhw36A0BWBoMIWtN8d
UGRfy3YpjLlv4gBGBDzPQ6PRmBIXQIAYxBGksOPy+fwUMUgkEnjggQf68vwXOnQNuswtt9wypUC5
BQshATK3+e6zn/2sf0yxWMTQ0BAOHz6MSqUCpZTvwwdZAwhxD8La+sNEw+4MZDoBuee6Zr8rClGE
uS52a0cul0OtVsPxxx8P6L4GpPtQCLpAsVhEoVCY4qu7tR1aRO/dz6997Wu+MOzbt8+vgev1uu/L
BwUGw4Qg6DOOaLh5jNoWdIwRC7elICyQ6QqBOc64IoVCIfA8MjPYajADbr75Zr+jjREBu4Z2hSCM
oCi7+b5jxw4AwLJly1Cv1zE5OQnofvr2AKAg0QkTgqD1oG7HYVaGodV92ffnEnRuWCyh0WigVqsh
lUohl8uhXq/jrLPOipX2YofNhz2mWCxi5cqVfhded1COW7MhRsFxxeAXv/iFv2/p0qVoNpuYmJiA
iCCfz/tRfXfyEHQgBHHXgz47wT3XjV+YT2jXxPM85PN5vxVjdHQUF154YcfpLxbYfDgL5PP5aTUy
AprPghZYf/4gXIGuVqv+ZCD2dYNo5RYErbdTuO0mxLhiEFTwg/LrBhMN7tBnM36CdAcKQQcUi0Xk
cjl/VJ7oDjbVatUP5rmLG6E365lMJnRyUBvP8zA0NORH7U2znkk/LPiHkJo8LFAX5zibKDFoZQ25
lpMrBvYoxb179+LEE0/0RbCfQlAsFjE4OIg1a9Zg3bp1vvtix3FMk2u5XEatVsNFF13Ut/zGgULQ
IUYElFJ+s1qlUsGVV17Z0fW+/OUv+2356XQaIyMjUwpPs9nE5OQkVq1ahf37908ZHBQU7DO0cg3Q
wgpop9YPulaUGISJnx1naTabeOqpp3Daaaf5x5hWjAceeAAf+9jHYuetGxSLRRx11FHIZDI46qij
AP3bwLLwzP/C3Ec+n8e2bdv85lbP8+bcBC0Ugg5QSmFwcBBiRe8BYGBgoONrXnPNNVO+F4vFacfU
ajWk02m/SQ0xauQ4QuBud48POjZsW9z1oAlRzWK3iPzqV7/CGWecgVwu5wuDOWe2rYJisYiBgQF/
+ra9e/eiXq/jhBNOmNb70g74NhoNlEolv/+FmeNxLkEh6ABjCi5dutTvg3/SSSfh+eef72m6nudh
cnIS6XQag4ODSKfTKJfLaDabfuEJqmFbmfy9EAG30LumfyuX4MCBA1i9ejVOOeUU30UwBc18z2az
XX/GLlu2bPHHXJgm4oGBgSnzM1QqFT+G4d6jyffBgwexa9cufOYzn+l5njuBQtAhiUTCH6efSCTw
yiuvIJVK4eGHH8a5557bkzTNDD92Ycvn86jX61NqoTiWwEwLfpQQtFpcsXKFYWxsDMPDw1OsrbDr
95JisYhUKoVCoeCLgD0ngz2+w0zgagp+o9FAo9HAiy++OC/mVWAX4w4w/f5hmbijo6NIJpPI5XIz
vv6WLVsCtxvz0572q16vI5fLoVQqTSsgcQpe1DiAVuMX3Frc9GtwF3vSUztQateqqVQKe/bsQalU
wooVK6YUtKj077///hk/7zDS6fQUS8Dk1/TqDOrvYCaFHRsbw8jIyLwQAdAi6JyxsTHU63XAaQbM
ZDLYtm0bzj777K6l5XZJNlaBWZrNJpYvXz5NAIJqz6DaNMiCQISlEGZdxLEGbPEwhWlkZAQrVqzA
cccd528PuvegNHoVJ7DjAcbyM2Jg59/cuxGBcrmMw4cP4/LLL+9JvnoFhaBDTPTXbsIztVy3fFfb
zA/qpmtbBm4TpduaECYKCBGCVp+teiIGFXzX0jh48CCWLVuGo48+elqHqKBnYei1EJhArbEEbJcg
Yb3fwf4dzPwQn/rUp7qen9mAPQtnwDe+8Q0MDQ1h6dKl/vTg9jsDJicn27YMtmzZMq0wmEJt10b2
Ypvedk0b1PXYtG83Gg0sW7YMaNGVOEwkXCEIcyd27tyJoaEhv/NVkDsCxxIJ63JtBM/2wavVKkql
Es4///wOf8Xpzz+RSGDp0qV+vs0r3Yzgm7x4nof9+/fP6dmT2LNwFnj55ZdRKBR8n9F+X2Amk0Gj
0cBtt92GT3/607GvGVT7I4bZbQoIrEJlBw/NdvOWIvsYU6BMQRsaGgp1JYLSHhkZ8QtKPp+fMrfB
unXrplhMQQLTCbbwdMsCMyLsztrsWjSm9WY+ugBhUAhmwLXXXou77rrLNx/dST2y2aw/fDYOdpDQ
nkIsqNBE1eJhMwQFFWZjOZggp30Nt5a2P013X+hZh8MsgrCavxMRsEXSvf5MMSJg+ie4LQN2c2Ct
VsPExMSCEQGw1WDmmEi3mUfQ/JmMhZDNZvHYY4/FupYEzDKMkFrY3R+0bscRgjq8uNePagEwPR7N
ICv3VWjuK9HcbtNu3toh7P7s5/Gd73yno2tDxwTMdc39ucJuApjNZhPj4+MLbnZlCsEM2bp1K/bu
3YuxsbFpTYrGRTCv/IqDW2jizP4DxyIIE4ygMRCtJhcNSi+o1g+7jzDizl8Y9d1eZuoeKKV84bbf
vGTcA1jC+olPfGJGac1FKARd4Oqrr/bFoNFoAI4YpNPp2FaBS1Rhs48JWm+1zzb3w7rIthKOMCHp
VhA6KP9Bgme7Kp2mYywBIwRGDGA9o1KpNKN05ipsNegixWIRb3/727F06dJpEeZqtYparYZqtYo9
e/ZM62jiji0wv4vbOuCOXjSFQAI6CIV1O3aDX+65rWp/iWg1cC0TONOqRwmTe+9uy4ERKluwarWa
37FqYmKirUFIxWLRb3YtFAoYHBzE4OAg8vk88vm8P4Gq+f0OHTo050cRusRtNaBF0EWKxSJeeeUV
v7ORCWzZlkEul8MxxxyDhx56KPAaYcLcKj4Q5UdHHRt0XFw69flnSlicIK4LtmXLFl94RTfL2h2G
TAzE9Meo1+sYGxubdyLQDhSCLrN9+3YcPHgQo6Oj8DzPHyRjB9yy2SwKhQIeeeSRaeeH+cJB26Ii
8e55cV2LuUrY/QTFSKKwA4PGynI7DZnAp7HmyuXygn91O5sPu4ypae69916/66/9KnKD+ePedddd
GBkZmbLPbe5DhEVg73fPcfcF7Z8NEWh3ToMoxGkOjSMAdu3vjrMw/RCMCNjWgOk9OjEx0ZW8z2UY
I+ghd955J9asWeMPojE94uzefaVSCc8++yzgTAEGJz5gxwjcxZ0w1awHDYwJG2gUdFxULCCoc1CU
pdLKhbEJihEg5I3N5jmal63s3r3bn+zUnbgFIbGXwcFBFAoFPzZgRpR6noexsbGejSadDRgjmANs
2LABO3fuxKFDh/zOPXbbtDFLg3oAhtXsUbVgq9o+TiGMikN0m5lUQmEitGbNGgwODvqjBs1iBg/Z
nYXS6bT/lmfXGhAR1Gq1eS0C7UDXoMeY7sX33nsvhoeH/RYFe2BQGHEKfpx4gfs96lpReekGQT0W
3e9BabvWUlDeRY/1GBwc9Lt4u29oNt/tN0cbK8A0F5rrfOhDH+rKPc8HaBHMEpdeeimee+45HDhw
wJ/gVNps/47rE8834nRsMoTFTcxiz/toL/Z200fAWAf28GLRw7o9z+vxXc8tKASzyHXXXYfnnnsO
e/fu9VsVEs50YmG0Y673wrSP02nI9enDju1FXMrco90l2l3sZkK7hcB8GoujXq+jUql0PY9zGboG
s8zWrVsB/Zak17/+9f5MuGFuQpyWgrDv/aabrQU2US6CMe1N2u6ITDs/ZiSmPRGKCTyOj493Pd9z
GQpBn7j22msBAI8++uiUP7Y7ui4OvRaAoALdq0Ieln4r3NYMkz97FiE3v8ZtMNuNS7DQOw8FQdeg
z3zkIx+JfWwn8YHZLqxRhbab7kHYfZlmVnc0pDtvovmesGZINvMMdGuSk/kELYI5QlithQABiGoB
iLpOFGG1fqfWgBvl7yQ/cTHPp9Fo+FOXmQ5B7nXct0hDTxNvxhIstOHFcaEQzDE6Nbl7ERCMe812
8mwfG3ZeHBGIE7xMWK9Ms10H9/harbYg5xhoBwrBHKPbcYFu+/Kt+gG0s63d/LUSiDiTusCydIxL
UC6XF/2blSkEc4DZDLz1kjgiEXZc1DXdz7Bmy0Kh4G8LS9ftptxoNHDeeee1eacLDwrBHGC+iEDc
gh7n/F5YKu64gqD9tgCY8QmEQjBnaRVhn0lB6qQAwxGsMFEI+rTPjZt20P0HWQK2hTAxMeHP0Gwv
5hh7gph9+/bhqquuiv0MFjoUgjlAu0Ezt2YNuoZbkDrtBxDn3HZaEYLuL2y7e3+tPpV+RX1QPwxj
ARw6dAgbNmxoed+LDQrBHKCXwbxWx0alP5MCLiHvZwg6p90+BWEiUKvV/Ou68z/U63VUq1WKQAjs
UDQHcOcrNNhmb5B5HKcTj3tsVDru0uo6YUG7OHloJ89RTYW2318qlaYt5XIZ5XIZIyMjWL9+fcs0
Fyu0COYBcWvMVib7TAN0UcG+TmIEnbhEQeJoZmCenJyE6HkExsfHQ98qTabDGYrmEEGWgf3CEPvd
h2LNNuTOUCQRMxHZ/e/tpdPZiu2ejEHbgj7d9SjsQh803brneX70/8Mf/vCMf4OFBmcomocECUGY
2R5WO4a5EEHf4y5B+Qlbb5XHoPVW9xz2vgW7CZAiMDMoBHOMOAUvqpDHvVYn+Qrz8duNUbQSJXd7
0HH2K+Gr1WpH90R+C4VgjrF169bQghK2Lcw6cNejtoURZhVErYcF+eKIR5iVE3Sv9ohBMjMoBHMY
OxgWxxqIEoMw6yBqeyuLIo4ItDqnHRfCfaGraSlYzIOFugWFYA5iZjGye8UF+cmGKIshjhsRVvCj
zouq3VuJUZAAxHUFXLdgIb6QtB9QCOY4rcSglcuAFpZDK1q5Fq0sklZuTNC1W4mBEYHFNq9gL2Hz
4RzGbUWwZ9Wxmw7dF59ENR+6LzsNOgYBU3+5+9xmRThNiJhBs2GQACjnZSYTExO0BmLA5sMFQNAb
kt3Xl4e5DK3McndfuzGDKH8+rskflEZQHMAs9XodtVoN5XKZItBlKARzHFsM7Bd2BPnMccQhbqGN
IxhR4hL2aR8ble8wEajVam29+pzEg0IwDygWi37haTQaaDQakYUnSBza8dPdY+JYF63SCDP3w6wA
Zc0b4HkearUaqtXqgn8rcb9gjGAeYVsHZrbeZDLpdz12uxqbrsRuHMDdHtXFOKxLcdBLUIPWDVFj
CoKExp08pF6vL8rZhWcKYwQLEFsIjLlcr9dbugutPtvx6+PW8GH5iar9bTfAWAFmOXLkSN+e+2KA
FsE8xRYFYxnYc/e3GowUtL2TQUdwWgfiWANBYmILgud58DwPo6Oj2Lhx4yw8zYVLXIuAQjDPMYIQ
9OKOsGbFdlyDOM2HUZ/uOhzzP8h6GB8fx6WXXjpLT3BhQyFYRGzZssUvnFFCYBazPaxvQVAsII5F
AMcqcPdFNRPa1sDFF188q89vIUMhWISYiTgymUwsIXCXmboG7rohzBUwzaEm1uF5Hq644opZelqL
AwrBIsZYCNlstitCECUQLkYIgv5XbkCxUqn4E4ts2rSp589lMUIhIIAlCrBeG57NZgO7KrcjBHG7
CkMLgGkK9DwPmzdv7vl9k1ehEJBAisWiLwhuS0NQwY8rBFFNkI1Gg4W/T1AISCS2pWBeIR5U+KPc
hjDf31gAZrnuuuv6fLeLFwoBaYug+RJFxBeIIEEwwb5Go4HBwUF4nodrrrmmL/knwVAISNex3Yrr
r7++39khMaAQEEI41oAQEh8KASGEQkAIoRAQQigEhBBQCAghoBAQQkAhIISAQkAIAYWAEAIKASEE
FAJCCCgEhBBQCAghoBAQQkAhIISAQkAIAYWAEAIKASEEFAJCCCgEhBBQCAghoBAQQkAhIISAQkAI
AYWAEAIKASEEFAJCCCgEhBBQCAghoBAQQkAhIISAQkAIAYWAEAIKASEEFAJCCCgEhBBQCAghoBAQ
QkAhIISAQkAIAYWAEAIKASEEFAJCCCgEhBBQCAghoBAQQkAhIISAQkAIAYWAEAIKASEEFAJCCCgE
hBBQCAghoBAQQkAhIISAQkAIAYWAEAIKASEEFAJCCCgEhBBQCAghoBAQQkAhIISAQkAIAYWAEAIK
ASEEFAJCCCgEhBBQCAghoBAQQkAhIISAQkAIAYWAEAIKASEEFAJCCCgEhBBQCAghoBAQQkAhIISA
QkAIAYWAEAIKASEEFAJCCCgEhBBQCAghoBAQQkAhIISAQkAIAQBRSvU7D4SQPkOLgBBCISCEUAgI
IRQCQggoBIQQUAgIIaAQEEJAISCEgEJACAGFgBACCgEhBBQCQggoBIQQUAgIIaAQEEJAISCEgEJA
CAGFgBACCgEhBBQCQggoBIQQUAgIIQDw/2XCUt31AloWAAAAAElFTkSuQmCC
"/>
</div>
</div>
<div class="output_area">
<div class="prompt"></div>
<div class="output_png output_subarea">
<img src="
AAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo
dHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAH4VJREFUeJztnXuQHMV9x7+9772XTneHHiCEME9j
HAgGQ8ChwAlJxTGYh8wrYMlVCEFKLh52JUWVqm7lIMfGMcYB4kSgFBCgILZBQTguXPgVU6EqDrZc
CrLAAWQdJyEQOt1r73Zndzp/0D3pbc3Mzu7t3u7dfT9VU7c7MzvTMzf97d/v17/uEVJKEEIWNrFW
F4AQ0nooBIQQCgEhhEJACKEQEEJAISCEgEIQjhBiWghxRavLMVsIIaQQYnWry0FmHwpBCFLKjJTy
WXxQSVYJIa5v9jmFECuEED9SlXLA2pYUQnxLCLFHCDEihHhRCPFhY3uPEOIxIcSwEOKgEGKbEGJ5
s8vcLIQQcSHEK0KIPdb6y4UQvxRCjAshdgkhbrK23yyEeFVt/5UQ4rIq51kshHhK3fOzrW2dQohv
qHueF0L8XAjx0QZfasuhEETnKgBNFQIhxIUA/gvAcMAuXwbwRwAuAXAsgF8D+L4QIq22/xOAFQDO
AXASgGkA321mmZvMHQBOMFcIIT4C4GkAXwUwAGADgG8JIS5R2/8UwL1q/YDa7ztCiNP8TqDW/wrA
ZEAZvgHgz9XSD2A7gB8IITqaccEtQ0rJJWABIAGsBrARQFkt0wCOASAA/DWA1wDk1d8bjd8+AuBx
AM8BGFPrNgJ4JeR8qwGcCeAide4BY1sMwCEA1xvrMuoBvlw99CUA5xvbj1XHObOW61WfUwC+BuBN
AFNKdC4z9j0HwEsARgGMAPg+gGPVtqMAfAfAQQATAH4B4GLjt9MArqhSllUA3gOQA7DHWH8fgB9a
+24FsE193gZgi7X9RwDuCzjPxQA+qc4nAZxtbX8XwC3Wul0Arm7189nIhRZBBKSUdwP4FwA/UO7C
MIC/VK3OagDdqvV62DIt/wzAUwB69XGklB8LOc93pZQ7AjafAGAxgF8a+08DeFVVyt8HELe2D6nK
dE4dl/03SmA+BWARgIcAfFcIcaLa/gSAn6hW8jglUn+ntm0G0APgQ+raHwXwuBAiAcvlCuEfAXwd
wB5r/TnmNSpeMa6x2vYKpJQ/kVL+OKQcwsdyHgFwVpXyzykoBPWzHsD9UsqdUsqylPLfATwPYK2x
zyEp5ZNSSrcB5ztK/R2x1h9S1sBRAKaVOPhtr5V1AL4updwtpSxKKR8A8DaAK9X2XgCTUsqSlHIM
wBop5TXGtiKAvNr+AIAVUspSlBMLIf4CwDJl4tscFXIPomyvlX8DcJsQ4sNCiJQQYg2AjyoBnDdQ
COrnZAB3q56FaSHENIBLAaw09nlrFsohlElb7/YjfyDEYmV97LI2/a9q5QHgrwBsFELsFkLcD+AP
jf2+qlycYSHE40KI65S1EuXcfcqyWBdVOKxr9LvWmu+BwZ0A/gPAj5UQnqHEwanzeG0JhaB+pgCs
V2auXlJSSjNCXWzg+Q6ov3bLNqC2HQCQEUJ0BmyvhUzAeqE/SCkfUYHJu1Ur/IIQ4qtq2y+VYKwF
cBjA3wP4qRAiihjcC+ApKeUvArYfCLkHUD592PaakFKOSSnXSSmXSymXSCnvVNf9dj3Ha1coBPXz
W9XqeQghVkZ82OvhLRV882IQqtJ/BMB/qsh3ydp+IoA+AC/XeK4DAMaVCayPFQNwqrpuCCEGpJSH
pZSPSymvVTGTW9U2HRP5gZRyA4BzAVwA4PcinHsNgLWq+/MggPsBHKu+X6B6Vc62fnOuugeIsL0m
hBCfEEJ8wvjeC+A8ZSXMH1odrWznxYqif1tFzntVRH2NqiyXAEgA+AMVmLtc/n+vwfN1nveIXgO1
/ssAdquuwW5VSV4FEFfbHwPwcwBHKx/2GQAvGL//WwDfjni99wN4HcCJANKqh2RStYYrlLVzlTL5
s6rV/2/1292qx6FTNTbXqZ6C/gjXvsJa7gAwpD6nAZwCoKC6ctMA/kT12lygfv9J9f2P1fYb1PcP
qe1X+PXchPQabFQBy1UAulTw9+etfjYb/qy3ugDtvFgV4xPK7BwH8DFlJt8FYK9yE14zu5n8hCBC
9+EPVYUpqnNPq2Wj2p5Q/vN76uF+QT/gansXgH9W5vgYgH81K58q03MRrzcL4B/U9R1WLeDZxr6r
AexU4vC+6j48RW37qOpRGFPLLwB8yvht1e5DY9+1ZvehWvcpAP+jBOG3Zpeq8Zs31PZfA7jE2jZh
fH9Ilaegrr+gvj8k/78bdYsKOI6pbtElrX42G70IyRmKFgxCiJUAviylXBthd7KAYIxgYXElgJ+2
uhCk/aBFQAihRUAIoRAQQlQUuiUIIeiTENJkpJQiwm60CAghFAJCCIWAEAIKASEEFAJCCCgEhBBQ
CAghoBAQQkAhIISAQkAIAYWAEAIKASEEFAJCCCgEhBBQCAghoBAQQkAhIISAQkAIAYWAEAIKASEE
FAJCCCgEhBBQCAghoBAQQkAhIISAQkAIAYWAEAIKASEEFAJCCCgEhBBQCAghoBAQQkAhIISAQkAI
AYWAEAIKASEEFAJCCCgEhBBQCAghoBAQQkAhIISAQkAIAYWAEAIKASEEFAJCCCgEhBAASLS6AKS9
2bx5M2KxGIQQ3l8hBL70pS+1umikgQgpZWtOLERrTkwi8ZWvfAWxWAyJRAKxWOwIMTBF4ZZbbml1
cUkAUkoRZT8KAQEA5HI5AEB3dzdisRji8bivEGgRML8LIZBIJDA+Po6bbrqp1ZdCDKIKAV0D4pFI
JJBMJr2KHo/HPUEIswiEEMhkMshms62+BFInDBYucDZt2oTnnnsOUkrEYjFIKT1BMP/aSzKZRDKZ
RDqdRnd3Nzo6OpDNZvHwww+3+pJIHdAiWGDcc889uPDCC5FIJCClRLlchuM4XsuOD9w2zyVIJBIV
LoH+m8lkkEqlPKEQQqBcLmPJkiXYvn27dywA2LlzJ+66664WXjWpBmME85xcLofzzz8ffX19kFLC
dV0UCgWvQkspUSwWUSgUsGPHDnR2diKbzSKZTHqVXbsH2lWIx+PIZDLeZwBwXRdvvvkmzOdJfzaP
4TgOrr766pbdj4UGg4ULlO3bt2Pp0qUAgEKhgN7eXixfvhyO46BUKmHr1q1Ip9NeKw5lAejPY2Nj
6OzsRHd3N7q6utDT0+O5AYlEwqv8QghPVMbGxvD222/7lsd1XTiOg46ODtjPmhaaUqmEtWvXNv3e
LEQoBAuMJ598EieccAJKpRIcx0EqlcIxxxwDIQS2bt2KeDzuVeZY7IPQkCkEJqOjo0gmk+ju7sbi
xYuRTqc9MdDuQblcRiqVwtTUFIaGhgKPpddpN8R1XUBZC/rZS6fTSKVSyGQyuOGGG5p+rxYSFIIF
xMsvv+y1zslkEqlUCp2dnfje977nVWCz1ddCEMbo6CgSiQR6e3uRSqU8a0AHC88880y8+uqr2L9/
P+AjKrYg6O9aAFzXxeTkZIWVkEgkkE6nsWHDhgbenYUNhWABcM899+Dcc8+F4ziQUiIejyObzeKF
F14AAHR2dlZt/TW6gppLPp/HokWLPFcimUwiHo+js7MTXV1deP311yu6EKOeS+O6LlzXxcjIiGcp
AMDy5cshpcS6desadKcWLhSCec6WLVtw2mmnYWpqCo7jIJlM4rXXXsPBgwcrfHqEVEz9v9cttOu6
nghMT08DAAYGBpBKpbxFdxkKIfDWW29V9CqYi0mYIOjzCSGwb98+r0zd3d3o7+9n7GCGUAjmMVu3
bsVJJ52EyclJlMtl7N27FwcOHKjo+7crpWmam9giUCgUUC6Xvcq5bNkyrychnU578YJYLIb33nsP
+XwexWLRiwOEVfqogjA0NOTlMwwMDODWW29t2L1baFAI5iGPPfYYjjnmGOTzeZTLZQwNDWF8fLwi
CaiWWIBpEZjBOyGEZ1X09/cjm816XYraAtCWSLFYRKlUQrFYRLlc9kTEPHZUtJiUSiUIIbB3715v
26pVq2gd1AFTjOchy5cvx8TEBMrlMoaHhzE+Po5SqYRsNuv108PoDqzmo5utuN5Xdw3qvn8AKJfL
nqVgdh1CiY3OMdD49QwggiiY4xgcx8HKlSuxd+9eSCmxZ8+euu8bqQ5TjOcIuVwOExMTcBwHw8PD
GBsbQ6lUChwdGLTofc0KbKYN68h9PB5HKpXyko5c10WpVPK6J0ulUkXrbx7bHJ9QbbCSvR+UGOk4
xKpVqwAlIk8//XSL/wvzFwrBHCGZTMJxHOzfvx+jo6NwHOeIAUFRBMCufGa2oJksZGYMapNfi4AW
Ar2YEf+gc/t99yu3ncYMAMcffzygLJOnnnqqRf+B+Q1dgwZz9913H9Hq2r66aSJ/8YtfrHrMwcFB
LFu2DAcOHMDhw4c9E90cHegXHPTrLfDr7zfFAUZsQScBAYDjOBWttm3y2y5GFIKSj8z7lU6n4TgO
jj/+eC+JiTQeBgsbQC6XQ0dHh2di2y0wauy/11F8HcmfnJzEGWecgTfffBOjo6OAqiBaCIJ6CYKE
wN7Hbp3Nz9pCsK/FPKZf0NEOFvr1VgQJgRlvgBKhcrmMYrGIvr4+FAoFXHvttTX/nxYiDBbOAl/7
2te8LjVzYI5p3mrChCDorw6SCSEwOjqKYrHo9RAEzRMQJgR+AmB/t9fp8riuW1XUzPL75RKYYhBk
Pfi5OvF4HI7j4I033sDAwADnPWgCtAjqZPPmzeju7vYSbcKCdn6YJrZfC+q6Ll5//XVv/xUrVmD/
/v1egFCP/jNnEWqGENg9EXb5oxD0jPmJhWmFQAmDlBKO42BychIDAwMAgImJCVxzzTWRy7BQoUXQ
RHK5HDKZjDd6TrsEUA+unymt8atAfl1sduVxHAeJRMLz2YMqb9S/QaJgl1Gb8HZrXi15yCRof/u7
bUmZ99B1XXR3dyMej0NKyVhBg2GvQY0MDg4CykfXGXYw+s51lF0n25hRdh19174/DJ9Yd+PpRJ5k
Mllx3nK5fITY+BFFHPxEBAFWhB/1JgsFlU/49CTY3Yp6HIX+nkwm8cQTT0Q+PwmHFkGNCCG8wTyp
VMqLrBcKBZRKJUxPT/sGALVo2JN8mEE/88HfsWNHxXknJiY860OohB7ThPZr0YMEIWxds+6Z32dY
wmCLgQ4a6gCqOYdCLBY7Qixnk1wuh97eXpx22mno6uqCEKIiu1IvU1NTKBaLKBaLbZ0ZSSGog0Qi
gVQqVZFkMzU1hf7+fqxfv35Gx77vvvu8lt/EcRwMDAx4Kb26V8EWgygxglrWVSMs+u/32f7uF1Ox
u13L5TJeeeUVXHjhhRXdlK1yD775zW8im81iYGAA6XQasVgMrutWxFNM0c9kMnBdF88++6yXj9Fu
vR4UgjpIJBLo6upCd3e3VxmTySQKhcKMj3377bcDxvTiMPrzDx8+jEWLFqFQKHg9CHZLaRLVIrDX
2/v77RtlXdg+ZlDQtgjM69m1axdOPPFEXHTRRRWxCm2RzRaDg4NIJBLo6OjA4sWLkclkIKXEwYMH
vXLv3r0bZ599NmAEgScmJnDgwAGvC1SoGZ/bDQpBHeiHVJv1p59+Onbt2tXU85kuSDqdRkdHB8bG
xgD10IVlFyKkglar8EEtez1i4Nfy25/NeRCHhoZwyimneOnGMLoxm+3OaLQgJ5NJZLNZdHR0eG6e
mZYdj8fx8Y9//Ijr6unpwcqVKz137p133sHll1/e9HLXCrsP6+DBBx/E0qVLsXTpUs9X1YHBiy++
eMbHN60BEx2gNIOK+XzemzDEL7cfVXoNgr77/a22Lmh7tcpvuwNCCAwPD2Pp0qXeeAcYE5mYPvjI
yAiuu+66Gd3vIAYHBz0XRE/Xrmd/0vffjvmYZdXC/f777+Nzn/tcU8pYDXYfNpHR0VH09fUB6oEv
l8vew7Bt27amKb5+uMyKm81mUSqVKgKTUVyCWlv3Wva3W+ygMQV2D4H+fOjQIRx99NFeSwsrUclc
mhkwFMaLW3RXsTlBix3LsEWqUCjgiiuuaFr5GgmFoA6KxSLy+bznn+ukF90L0CxMETCXdDrtjeH3
q/BB3xFQqYPW+1kR9n5+4x6C3BYzESoWi+HFF1/EWWedhf7+ft8xGsIaNt1MIRgcHPTmYchkMt7M
TNoqM1OvzaCmnpthdHQUa9asaUrZmgFdgzrJ5XI477zz0N3d7eX66ym+pqenkc/n67IMgtwCqOG5
pgugE5l05Np8KHUqclDcoJrFoIlqXZiV3l7vl3EZi8Xw0ksv4fTTT0dPT09FZqaJaenoYc+mi1Ao
FDA9PY2rrrqq5ntd7X+wbNkyzyUwYwHaGtBl0Xkjl156acPK0CiiugZMKKqTXC6HfD6PQqHgJRPp
YFc6nUYmk8Ejjzwyo3PYIm232maFMAcqQYkGjFGDtSxm5bXHUJhCZAuT7S/b8xzov/v27cPIyAgu
uOAC9PX1VcyS7Ge12NffTPdAi4A5hbud6CVU4E+3/vv27WtLEagFugYzYHR01PMZzcogpUQ6ncaS
JUtqOp6fNWB2l/m16rpVMiuJbkFNV8UUDZ0AgyoWQdC6sPL4rd+7dy+6urrQ0dGBTCaDFStWePfK
r+L7CWDYeIVYLIbHH398xu9E0PdfqAChKQSmSGoRGB8fnzdvbaIQzIDh4WHv4TaHH5ti8Pzzz+PT
n/50Xcf384nDxABWhTV/GzPeY6jNbHPp6+sLFAI/YQgTgqGhIa8SZTIZHHfccb6JQ0Etf9A9CLsn
M43NmCKsRcAeTKbLrjMG54sIgEIwMzZu3IgHH3zQCybpEYG6NU4mk5BSYvv27U01Hc0KZc5pYPck
mPvbk50GvYXIHBdhrjdNf3OBGilpCoPZ8sPHuqjnem0xaFRykXY1tBjYLpHrul4wcD5BIZgh7777
bsWQYD0wxhaDe++9F3feeWfgcfRgJptq1oBdwU3MKcRgzWpsH8PPTA/7blsB8JlLIOgY9WK7CH5l
qAfz3uv4jj3xixZ4KSXGxsbw+c9/vu7ztSPsNWgQg4ODOPXUU7Fq1aqKgUHa9Nbz/x86dMg3uSSs
t8DsJfAL7vlNUmK2xH6JO8KK4NtCEObzm+sRIBDwcTFgCUGQKARN0mJaOfqzObKzUCjgyiuvrOn/
lsvlvMzMbDaLrq4uL56hXwArjGnWx8bGGtpD0WzYazDLbNq0Cbt378bk5KSX4GNWslQqhXQ6jf7+
fjzzzDM1HTuKVRDU4gZVPGEF58IWm6BtzWxUgqwfc709xVkYuVyuwhLQrp1OHDLf4QBlXeXz+Tkl
ArVA16CBbNq0CU8//XTFJBraZNUPqX5wt23bht/97ne47bbbQq2BWkzpMPM7TBCCzuG3rZYJSZqB
7R7Ax/0Iw7zX+lg6F0O/ldlMH4ZKFJqensZnPvOZJlxRe0AhaDC/+c1vcPLJJ8N1XS9RRvhMyCmM
OfurUU+cIIpfXosAVPvNbOIXLKwmBH5ia7pctgiY7p12CeYzjBE0iUcffRRHHXUUFi1ahEQiUZGF
plNRS6USJicnsXPnTiCgtTVjAdViBHYMICxGYPv+Qd17Qd191dajgTECGJOTmG6J3/0sFArYs2cP
HMfxtttl0X/1fdCDivQ7HvV7HuPxuJcv0I4jBqPAQUctZs2aNdiyZQuklOjp6al4a5BGWGPTRcjc
flHiAlFdgpm29tX2a5T74OcGhO2rxa+zs9ObLcjOr9BiYgqdrvh2ApHuKpyrIlALFIImcvPNNwPG
uISuri7vIYvH496oRRM/szeMIDGwhSLsOFH960ZgikStgmEHOM3KrLMrY7EYent7vZmctEVg9zZA
xW20NaBnhjaTw8bGxupOBptrsNdgFsjlcti9ezcOHjzozWkoVFLPz372syP2j2oRBP0uzPyu9n22
aZRrat4Tc4yD31gBnTCk8wV0jMAcVei6LsbHxxtStrkAhWCWuP3227Fjxw6888473huNNWF59NVa
cszApG+2CPhN0z6T/UyChFC7B3bFN7Mf7XkFzEChMFKwmzXhSTtC12AW0ZHrBx54ACtWrEBPTw/Q
gGy7Wta3A34uwUwsA9sN0lmAer1fzoO2yLQ1YM6NoIcVLyQoBC1gw4YNAICHHnoosp/cCLfAb/9G
0Yr8ArOi270cthD43R9zTgdzlqFSqYSJiYlZvZZWQ9eghaxbty5SMLBab0A70aruaI39inftCpgD
iUx3wZwYVacR5/N5rF69uqXXMdvQImgjpPF6MbM/vlaaLRx26x9k6pvdf3bLHMWCqFVUhJG4pd0D
e+AVrBwIvb+eZOS9995r2USjrYRCMIewrYNW9AC0OsU4CFtodM6GnYvg93Yo/cr1sbGxBSkCoGvQ
euzU17AehHak1lY76v719CQEjUHQeRv26+Q1juNgampqQb9dmULQRjTSFWgG1UYb+qUGB+0btG4m
ZQvKovSb2FUnFrmuW9fw5fkGXYM2IOghDqIRFX82TPygc1SLFczEAgj7bsYMzLEK7777bsQrmr9Q
CNoAv5z6RkffwwJ6UX4Lq2IFBQyrBQ79BCBKslG1uRF0+YrFomcFwLi3eh+dduw4DsbHx+fUuwea
CYVgjmD7zI1qzasdK2p0P0rlr6dsfuuCJkXR3X/CmkEJhgUwPT2NUqm0oOMBflAI2oRWBgPD/Pd6
TPugc9TThRhUPnObaTU4juObfKWHKu/fvx9f+MIXqp5zoUEhaCP8zO2wfWptdcP2q+ZvRz2GWZ5G
xwjC3CezxffLwNRTkFME/OHEJG1C2Aw6ustLD4qxJyANmpjEbwIS4TNjsYgwSakZhbd9cHN7zOcN
zEHR/CjYMQJ7KZVKXtBPt/h2mYQQWLt27Yz+P3MVTkwyh7ETYcy/UczqZvQIVMsmDLIGglyMRmQW
mvdFTyKyf/9+lMvl0HkgyZHQImgj9MNrVhLzBRu2RaBba/MtS+Zfs+W3pysLWhdlgc+UZH6tMCyL
wM8yqEaQRaDzAPQEJKVSCZdddlkD/xvzA05nPgcJ6qaDURH89o8i5mGR9rAlqIx+5w36TZTfhu0f
VC5pvBm5UChUPR4JhkLQRmzatKniu59rELWS+n0PWhcF+5zVzhUkYPbnarkBfvubVoHrunAcB5/9
7Gfrui7yARSCNkO/eQfKMjAz4Uz8Wkdzm72f/duoVPt9VEsliiVhX0/YYr7deaHNHdAMKARtiJ0N
Z7+cNKwiBrkL1YSklm3Vjhn0m6iuQTVLSIuA67qYnJzEjTfeGHgsEg0KQRtiRrzNB99cF9R6oooY
VKv4QRW0VhM/qCy1tPp++5si4Lourr322kj3lITD7sM2xY6q6xd5SGPSkrAKpKf3dl33iCnT7Uob
lsRkuinmNrtrsNbYgwxJNjI/m1aAfk/BQnn70GxCi6BNMWMFUBXbfhuwOUd/kNuAgNY8qML5ESVO
EPVv0Hn9rAC79TdFIJ/P4/rrr6/jzhI/KARtjNmLoFtdP0EIq9RBn+19q5noYfsjpNLX4xJIa74A
MzBYLBZRKBRw9dVXN/XeLzQoBG2OtgxsEfBrKaP444hgAWjCBMHeJ2j/sO9BAmBfk/5cLBZRLBbn
7avJWwmFYA6gLQO/SuLXeoa5ArVYBUH7BB0zqmvg9z3IDdCxEcdxUCgUFtzswrMFU4znEIODg4Ax
H785GMnvzcj2YKRGDjoKSisOSzH2w8/SMMVMpw87jkNLoA6iphhTCOYYg4ODFYN69Nz85qScpigE
jUHwe1V61LEGjRpXEGQ56MqvBeDQoUO49dZbm3xn5ycUgnmOtg6EEEilUt4be6pZBKZABA1ACrMU
9Dn9hhvDxwKwP/tZALaL4zgOSqUSpqenccMNN8zK/ZyvUAgWADrxyJyu2xSDaqMSq81bMBOLACFW
gSkAfsFPx3EwMjKC9evXz9q9nK9QCBYQuVzOcxO0IGghsOMGYZZCLTGCMIsAVVwDbQGYCULmwvkE
GweHIS8gdBejNqn1X9PPdhzHq3hBLXG1pVqEv1rkX88ipMtTLBYrPufzeYyOjrb6di5IaBHMU3K5
nGch2IFEbSn4BRZr6U2Iiu0K6OzAyclJ3HLLLU28C4SuAakIKJpug9ndWK8Q+LkAqDIvgU4KchyH
/v8sQSEgFZiikE6nj7AWGmERBCUhabegWCxiw4YNs3rdCx0KAQkll8tV9DRod8Gu7NWEIChF2PzO
KcRbB4WA1MTmzZt9rYAgMdCvHbdzAO64445WXwoxoBCQhqJzFuLxOFzX9VwN0t5QCAghzCMghESH
QkAIoRAQQigEhBAKASEEFAJCCCgEhBBQCAghoBAQQkAhIISAQkAIAYWAEAIKASEEFAJCCCgEhBBQ
CAghoBAQQkAhIISAQkAIAYWAEAIKASEEFAJCCCgEhBBQCAghoBAQQkAhIISAQkAIAYWAEAIKASEE
FAJCCCgEhBBQCAghoBAQQkAhIISAQkAIAYWAEAIKASEEFAJCCCgEhBBQCAghoBAQQkAhIISAQkAI
AYWAEAIKASEEFAJCCCgEhBBQCAghoBAQQkAhIISAQkAIAYWAEAIKASEEFAJCCCgEhBBQCAghoBAQ
QkAhIISAQkAIAYWAEAIKASEEFAJCCCgEhBBQCAghoBAQQkAhIISAQkAIAYWAEAIKASEEFAJCCCgE
hBBQCAghoBAQQkAhIISAQkAIAYWAEAIKASEEFAJCCCgEhBBQCAghoBAQQkAhIISAQkAIAYWAEAIK
ASEEFAJCCCgEhBBQCAghACCklK0uAyGkxdAiIIRQCAghFAJCCIWAEAIKASEEFAJCCCgEhBBQCAgh
oBAQQkAhIISAQkAIAYWAEAIKASEEFAJCCCgEhBBQCAghoBAQQkAhIISAQkAIAYWAEAIKASEEFAJC
CAD8H+kNZdOpqJ32AAAAAElFTkSuQmCC
"/>
</div>
</div>
<div class="output_area">
<div class="prompt"></div>
<div class="output_png output_subarea">
<img src="
AAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo
dHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAH0NJREFUeJztnXuQJEd957+/7p5+zGNnhmV3tas9
s6tgJWMZY2Sbs60zNsacTw64kIWkA0lwiwJJxisJTogwljDTe3EYmyBM2MKckYGQCLEWoFgH8hqf
HcZgX8gieB4nY4VZsKV9sDuz0s6jd6Zf1ZX+g8wiOzerurqnZ7pn5vuJqOjuquqqrOrOb/4emVmi
lAIhZGuTGXQBCCGDh0JACKEQEEIoBIQQCgEhBBQCQggoBMmISE1Efn3Q5VgvRORLIvLhQZeDrD8U
ggSUUkWl1J/jB5Vkn4jctNbnFJG9IvIFEVEi8kLP9mkReVRv/2lnm4jI74jIcRFZEpF/FJGfX+sy
9xsR+c8i8mURqYjIWRH5MxHZgx/+DkpE6lqozXLEOcbVIvKvIvJPKc73iyLyf0VkUUTOiMhhERFr
+6iI/G8ROa/L9BcisnuNLn8gUAjS83oAayoEIvJKAF8BcDpm+48B+CaA5ZhD3A7gNwHcCGAXgMcA
/KWI7FjLcvcTEbkcwF8A+BMA0wBeDuBSAB93dr1CC7VZbrKO8Q4ARwA8neJ8lwH4vF4uAfAqff/u
snZ7EMCLAVwJYD+AeWf7xkcpxSVmAaAAXA/gPQBaeqnpP6YA+C0A/wJgRb++yfruQwAeAfA4gCW9
7j0Avp5wvusB/CSAX9LnfqGz/VUAfhnAPr39p53t/w/Afc667wJ4R8rr/RKAD1uf/zuAp/T1PQvg
twGI3rYDwGcBPAfgAoCvAniV3pYB8PsATunvfhfAIeu4fwPgQzFleDGAm5x1dwM4o9+ba9+XcB3v
APBCAGUA/9Thmn/THNta998A/LN+/yMAQgAvHvT/cU3/64MuwDAvRgjUDyv2MWvbIQAnAbwUQBbA
rwGom8qp939eWxGZLs/rFQJr+0VCAKCoheq/OPt+BsCnUp43EgIA12jR+1UAOQC/CGAJwJv19gcB
/DWAbXr7ndqSyelrPqPLKQCuBrAI4KVd3gcBYKygDzrX/qgWp0UtuNs9308jBIcAzDrrXqMr/yiA
mwHMAbgDwDP6/UMAJgf9/+znQtegd+4A8IBS6imlVEsp9XkAxwActPY5r5Q6opQK16E8L9At8byz
/rxuHbvldgCPKaX+WikVKKX+Xrsab9DbpwA0AKzo7R8GsFcpFehtLQAX1A94AsC0UuqptCfXblJD
WyRf1tYXtNh+WVsVlwP4GQA/CuDPerhGAPg/ACZF5D4RKYnIPgD3aBGaBrAXwASAn9XW2i/ocz7Q
4/mGEgpB71wO4H/ZASsAr9OmpOHfBlg+g+gWtFsuA/DPzrrv6vUA8Hu6YpwWkUdE5I3aMoKulP8G
4ISIHBORu7U4pEYp9Q8A8gB+XPvmj+n1Z5RSP6eU+oRSqq6U+g6AewG8RkQu7fYilVLfA3Cddsvm
tAX1sN7c1PevCOAepdSCUupfAPwugBtFJNvh8BsGCkHvVAHc4QSs8kqp/2rt01jH8jyvW2G39X8h
gNkejlf0rIsi6Uqpb2hROAhgAcAfAfiSiGSVUvNKqV/Q7sTXAbwNwNMi8qJuCqCtiacBvB3Atbq1
9vE9/dpTJF8p9Xml1FVKqQml1Cu0W1PT9/Ssvq+L1leeAVAAsL2X8w0jFILeOa5bxAgR+ZFBtRJK
qTqAbwGIUoo6BfYzAP6xh0N+V8c/bK7U1w0RmdLn/Sul1J0A/qOOBfyEiBREZEIp9VWl1AyAn9AB
xes6nVRE/oeI/K2zuqBfmyLyKyLyP53tP6atnu+hS0RkSkRuFZERa/U1AJ5QSrUAfFtbOva92K8b
gnPdnm9YoRCkpwrgP+g/Th7AHwO4VUReIyI5Efk53fq9boBl/GMAh0Tkp0SkpP3qgg6sQUR+XUS+
nvJYnwBwna54ORH5FV2RP6G3f1m7RmMiktFCUAdwQlsHR61c+49qf/t4ivP+HYBXisidWlAuAXAY
wFeVUqd1luLdInKHiORF5IDOUBxRSrnxES8i8kkReY/+2ATwB/qYWRH5JR1A/H38QOi+CuBJAH8o
IjtFZL/OnnxCqU00mcego5XDvDhZg/+kfcgKgJ/SZvJv6z9+VacPf8P6bluWQaVLH/6NNkkb+tw1
vbxHb/9T/bmut9f15z+1jvFbOm1X05bAVda2gyaVGXN+N314l44TXNBBOzs9+lIAX9SZhCWdPvw1
vW1KR/Kf0+nD4wDuda7Tmz5UP4zaf11fw1ktZHut7a/T2y/oVvkPAYxZ2819C3T033x+Zcx1vgrA
/9e/43EAtzjluQTAn+vffkEHCkuD/n/2czE5YbJFEJG/U0r98qDLQYYLugZbCBH5SZ17J6QNWgSE
EFoEhBAKASFE9wsfCCJCn4SQNUYpJSl2o0VACKEQEEIoBIQQUAgIIaAQEEJAISCEgEJACAGFgBAC
CgEhBBQCQggoBIQQUAgIIaAQEEJAISCEgEJACAGFgBACCgEhBBQCQggoBIQQUAgIIaAQEEJAISCE
gEJACAGFgBACCgEhBBQCQggoBIQQUAgIIaAQEEJAISCEgEJACAGFgBACCgEhBBQCQggoBIQQUAgI
IaAQEEJAISCEgEJACAGFgBACCgEhBBQCQggoBIQQUAgIIaAQEEJAISCEAEBu0AUgw8n73vc+ZDIZ
5HI5ZDIZZDIZiAhEJPoMAIcOHRp0UUkfEKXUYE4sMpgTk0Te//73I5vNRpV9ZGTkIiEwYmDeA8Ct
t9466KITD0opSbMfhYAAAMrlMrLZLCYnJ9uEIMkisD/n83kopXDttdcO+lKIRVohoGtAIkQESilk
s9lIAHK5XJsFYF6z2SxEBPl8Hvl8HrlcDq1Wa9CXQHqEQkAiMpkMwjBEJpNBNptFNpvFyMhIVOmN
JZDNZlEsFpHL5ZDL5ZDNZgEAzWZz0JdAeoSuwRbk0Ucfxe7duzE6OgoACMMQQRDgi1/8IrZt24Zi
sYhisYhCoRBVeGMdGIEoFAqRdaCUQhAEWFhYiGIGSimEYYhqtYobbrhhwFe8daFrQCIefPBBvOQl
L0GpVAIANBoNBEGAarUK6ErbbDYRBAEuXLiAXC4H00AYN8Fu/c0CLSKNRgPPPfcc6vV6dDzzmslk
cPToUWQyGbRaLbz+9a8f0F0gSdAi2GR88pOfxBVXXAERQbVaRT6fx65duzA5OYl6vY6PfvSjUStv
Wm87GwAAi4uLyGQyGB0dxfT0NPL5PEZGRiIhEBFs374dpVIJ3/nOd3D+/PnY8oRhiEKh0CYO5nV0
dBTFYhGVSgW33XbbutyfrQazBluMhx9+GFdccQXCMES9Xkc2m8XevXuRz+fxsY99LIrsGwGwRcCH
EQMjBLZFkM/n8bKXvQxf+cpXsLi4eNGxfMc0rkKr1YKIIAzDaFuhUMDIyAiKxSJuueWWNbpDWxMK
wRbiySefRBiGqNVqUYBvdHQUjz/+eNSaw9Py+7Bb7Eqlgm3btkUV1VgFExMTAICTJ09GQUT7+Ia4
8xhRWF5ebjtfLpdDoVDAnXfe2ce7s7WhEGwBHnjgAbz85S9HtVqFUgoigmKxiC984QuRae+2/nbl
tH/7MAyjCqqUglIKtVoNO3bsQKFQQKFQiEQln88jDEOcOHGiTVziLI04QQjDEGEY4vz5820Wws6d
OzEyMsJOSn2AQrDJ+fjHP47LL78cKysraLVayGazePLJJyMXYGRkxFs53d/bVPpWqxUFDe004J49
ezA6OorR0dFIEIyFcfLkSdTr9bZK7Kv0SRYILEE4e/YswjCEiGB0dBQ7d+7EwYMHV32vtjIUgk3M
kSNHsGfPHlSrVQRBgFOnTmF2djYy3U1FtU12H0YEjCUQBEFUKTOZDIrFInbv3o3x8XEUi0Xk83kU
CgVks1nU63UsLi5GZWg0GpE1YY5tpxINncoCLTCGqakpTE5O4i1veUvf7t9WgkKwCfnsZz+Lbdu2
oVarIQxDnDp1CpVKpS3Hb1sARgiSML+/+Y7pXpzP55HNZjE2NhZZGCZtaIJ9YRhGaccgCNBqtRAE
QVultt93wpTBHOPZZ5+N1r/oRS+iGPQA+xFsQiYnJ7G8vIwwDHH69GksLS0BQFRJ3aBdGjPddhvs
noP2gCNT6U2lNi6GcScM5ru2leG6I0miYMqSz+dRr9exb98+PPPMM22iQNYGzkewQZiZmcGFCxcQ
BAFOnjyJ+fn5aFyAqbi+wJ1voJB5b1d8u7OQXaGNCJhWv9lsotFoRJ2SjDth8I1QdAco+crllq1U
KkFEsH//fkALyKc//ekB/gKbGwrBBmFsbAzNZhMnT57EwsJCrAj4BME3ctBu+e2xBfZcA9BmeqvV
ioKIjUYjcgdarVZbXCBJiDoJhG+fUqmETCYTiYGIUAzWCLoGfaRcLmNsbOyiFtf11X2mspu6u+ee
e6J9ZmZmsGvXLjz//POo1WqANp/jrAHEuAe+NGKSaJh9TPDQuAW+LIT7ihTZgjjXxZQBAIrFIur1
Oi677LKorwHpPwwWrhIzjt9E1e1hu7YIdKoUboDNFoW5uTns3r0b9XodCwsLCMMQxWKxzZc3ff/j
hMD36sYHOrXa7vc6XYO93t0v7hhiDXE2GJcEACYmJrCysoI3vvGNifeT/AAGC9eBD3zgA1FHG5NW
c/3dpIpj8EXZzefjx48DAGq1WlvO3jXvO1kESdYAnFSj3dKbgJ+7PzqIW6dtvu1xLoMpm4lljI2N
Jd5P0j20CHqkXC5j+/bt0cQcduTebVUNSZXDbUGVUnjqqaei70xNTaHZbGJ5eTnK8ZuovitA6EEI
0r73vfaC+103hmELgFIKjUYjsoLCMMTS0hLe8IY39Hz+rQItgjVkZmYGorvz+vL3bvrM/KltH9tt
iV3sNJ3okYSFQiEaIpxkaXRyC3zvu6ncbtnS4Kv4vvLGCYEZQ2E+5/P5VOcl6aAQ9MjY2FjkDoju
YFOv11Gr1drMe7O4UXnTkidZEnZFC4IAO3fujNJ2Jq3nG03YTXzAJu1+Np38fd97e12cK2AWI6jH
jx/HVVddFX0epBCUy2WMj49j165dOHDgQNvvb1KtJqNSrVbRaDRw0003Day8aaAQ9IA9OYf54ZvN
JqrVKt7+9rf3dMwPfvCDURfhXC6HM2fOtFkYZtKQ7du3Y25uri2g6FZ8m06uATpYAd20+r5jJYmB
b3Zk0cFCs97ERA4cOBB1bjJi8ZnPfAY33nhj6rL1g5mZmWhQ1J49e7y/g5nRyZS9UCjgc5/7XCQO
QRAMnVtDIeiBbDaLiYkJiEjbEN/x8fGej3nvvfe2fS6Xy4BTERuNRjRu30TRO7XIaYTAXe/u79s3
bl3a93FBVbGyBiKCJ554Aq94xSswOTnZZjGEYRjd+/WiXC5jdHQUpVIJuVwOZ8+eRavVwv79+y/q
fWkHfFutFlZWVi4a0DVMUAh6oNFoQCmFqampyDK48sor8e1vf7vv57IrT7PZxMrKSjRuP5/PY2Vl
BWEYtk0walcYpDD510IE3ErvtvpucNPtd3H27Fns2LEDr371q9tcBFj9GtbDPSiXy9GQbjOj0tjY
WNv8DLVaLRrv4YqbKffzzz+PEydO4K677lrzMvcChaAHzA9tKmMmk8H8/DxyuRwee+wxXH/99Wty
XtO/31SmZrOJUqnUNtDH1+kHHksgbeXuVgx88Ym4HoS+7sUigvn5eVxyySVt06m5x04Tv1gtpo+I
PQzbZIjs2Z0NZtCV3S379OnTuP3229e0nP2AXYx7oFwuRxN1mj/k4uIicrkcisXiqo8/MzPjXd9q
tS5agiBAoVBoK4tbKX1djH3vffvHLb5xC3bsxJ701F1vT5Vux0VOnDgRxUF8QVSDXYYjR46s+n7H
YfosmMCwSRWbXp1ujMN0xW40GqhUKjhz5syGEAHQIuidpaWlqBIaE9xYCUePHsV11123Jue1BwLZ
o/vy+by3VY4TByRYC4Y4qyDpGGkWWzhEBKdOncL09DT27dvXNkOyfc12mexlrdwD0128VCpFHcZs
C9DtOWqGZNdqNSwsLGy42ZUoBD1Sq9XQbDYvitqbYN5qkJgcvf3ZngjUPGHIbqHiBgLBM2FJkhB0
EoM04hMXvzh79iymp6exd+/ettbfxu2z4Lvf/cYEak1MwAiB6cBlYgGwhLnVamF2dnbDzpnAnoWr
4MiRI3jBC16AiYmJaGowMzKvWq1ieXm5a8vA/Al92A8ktRe3h6F5tYNXphKZ6cjGx8cTKzV6bPl9
bsXi4iJGR0ejcrpuCRwBiutybeY/MNZQq9VCvV5HtVrtW1zGdBabmJjAjh07otiA7aqYsgRBgHPn
zg31dGrsWbgOzM7ORi2G7fsqpVAoFNrG6feCbRUkVT5YLROsSmUHD2FF721z2q5Q09PTia28fWy3
wn//+99HLpeLUmv2Mj09fVFvQfuYaYmzdPrlHhgRMBXfDCJzYxWmz8j8/PyGcwHiYLBwFSwsLGBp
aQnVajVqrUTnwU2K79ixY6mPl2QN+NwEX6WF08XZzWm73zUBzqmpqWi7b7Sg3QqbyLh97D179mDX
rl2Ynp7Gtm3bMDY2Fo2H8FWm1eBzXx5++OFVHdOIAPQQbyMEbm9QY1FduHBh04gAKASr4/Dhwzh9
+jSWl5ejeQTtQJgRg8cffzzV8eLctDgrwN7ue29X4E7C4Eb/3eswEf58Ph9ZQWadvfi6UsfFH5JI
E6uw3ZF+xGWgewGaa7RdLfsRb8vLy3jTm960qvMNGxSCVXL//ffj3LlzqFQq0aQh5s9pngpknjnY
CbdFd7cluQZxJr3BN/7BJwpJ54vrEuyr1J0q+mpiU77rNCnUXjDpWvNwVyMG9lgQWMI6bN2D+wGF
oA8cOnQIc3NzqFQqbSMOTWuaz+c7WgWuW+BrBeNIammTttlC4Osem0Y04oSkX0HoTtdmxyxWew43
TWjcGrF6CBqx32wwa9BHZmZmcPXVV2NiYiKaUsuY5rVaDY1GA/V6Hc888wzuvvvutu/GxQfslthk
AdzOLO6sSLZF4kbyXZO9U2uf1CsQCZYKrApmV9I07oE7y5FPrMx7ezr1er3e1dOWzT0X/UCV8fFx
jI+Po1QqoVQqYWxsDGKNLJyfn99wMyOlzRrQIugjhw8fxvz8fDTbsNKPBTeV2Pie+/fvxyOPPNLV
sTvFB+IqmO99L6b8oOlk6RhBTEO5XG7rvWlbAiYOYtLBJlVYqVQ2nAh0A4Wgzzz99NN47rnnsLS0
1JZJMGJgOhxNTU3h6NGjQIpsQZqMAbp0C9aTtXAT7HVJsQqXcrl80W9ihMB9/Du0RVetVnHDDTf0
5RqGFfYj6DPlchnlchkHDhxAGIaYnJxs+2PZrZaI4CMf+Qjm5uY6Hjftn73bCH3aCpR0rvXEDqim
CVrCcQF8YyTs6ebsaefsVOFmhzGCNeShhx7Crl27IjEweXh7wFC1WsU3vvEN7/fdP6yJEbiLnaO3
fX3fxKbdDDRKGnzkpgWTYgRxgc9uYgSwnthsxwjMbEDmfj777LPR4B/bIjOLO/mr6HkkzDwDpVIp
mnkqCAJUKhVce+21fftPrDeMEQwBBw8exKlTp6LHfpvKaY/OKxQKqU3nTq1fWmuh075xFbff9DOF
aLj00kujim0vpu+D2//BVH7bGjAC0Wg0NrQIdANdgzXmtttuAwB86lOfisYl+MYCwHkgqQk0dqr4
aVphpBCB1QhMN7iDqXyffedXnqcr29dqWvggCDA+Po5CodDWAxJWPwClH5RixKBYLEYxApOBCYIA
11xzTd+ue9ihRbBO3HzzzVEgsV6vt3VHhuPzoofKOgjiWvRu+xUkdWzqhHs/7DEOdstvr3MtA7sD
kXEfgiDouiwbGQrBOnLPPffgm9/8JmZnZ1GpVBAEQeLYe5ukjMBq9u0nvs5GafbrliSRdCdFcYXB
ThMagbAtAZMuNBPPbBXoGqwzhw8fBgB86EMfwr59+/Ctb33rolGGNkkWwHpVeN/cCL51g8SUxbTq
pnzuiEzXerC7EEMHJE2QcCvBrMGAOXbsGL72ta9dVLHcjEFc1kCcnoX2q69noTizBPuyCe56eOIR
cZmCbiY96YT93/R1dTZZGHuOQNu0d4dhu+e03QdYswwtLS2t2byT6w2zBhuE1772tUCHAUeGQcQH
0jYUbqqv07G6aYA67esKke0O2K6Cbz5FM7TYpCJXVlY2jQh0A12DISLO3O4mA+DLHvRyfjcyn1TO
JNch6TidytIt9hOQMs4U6Ab38XTQT5EyYwluueWWrs+7GaAQDBGrae3jvtutL99rxe3m+LbY9Ds1
aeNzbewBUGb/RqOB5eXlLSsCoGswfHTTuWgQpMkMdJM+7HXftN9zYy1mP9OfoNVqoVarrfuj04YN
WgRDxjBF4juRpnNQWtci6RxpyoEUwUhbAGBlCM6dO9fxHJsdCgFJzWpN+dW4Be7cBL7tGeshqb7t
brbBjEm44447er6mzQKFYMhwg2yd9lvNObrZH04rGxdYtMvvCxamPXfaDIMtDEop1Ov1i9KatgDU
63U0m03Mzc0N7XMIBwGFYAPg88vdSphkbq+mQ1C/OhPFHQcxU6jFHSPus6nopi+BmxkwFsD58+ej
8R/kh1AIhoy0vnMcaf1yJFTEpG1JcQCfNdCvGIHrGvg+NxqN6LHj7hyGQRCg2WxSBGJg1mAISJqh
yFcR4rb1iq/XXtrvdXuebr7b6frs9cYaWFlZaVuq1Sqq1SpmZ2fx5je/uavybiVoEQwx3Vb0NFH8
1ZYlztePswaSvpdkMcSVwbeYLsbNZhPLy8toNpuoVCp473vf2/P1bjUoBENIXAwgbdR9NdH5Tsfr
ZXtSmdIERX372SlAs9x8880pr4i40DUYEsykmrCi72mfNYAULoTvc9rF9z33uGnL6Hvv0qnlt5/c
ZHz/lZWVPv8iWwsKwRBhhijD6hIbV9ls0vjQ6FD5OpF0zm78fd/7JNFI2mZEodFobPmegauFQjBk
uIHDTi1zXGtr7+vSjRh0Eh7f+07mfKcy+I5juwJuXIDWwOphjGAD4FZ8N0jn8799lS4ucJgUUPRt
SwoC+l59+/nO5V4zOoiAeebAZnsg6SCgRTCEuFZBUqwAHXLrSbECd30nnz2OuJY/7tyd4gm+8vtE
oNVqbeqnD60nFIINQicxQExQMG59WvcgybVIOm4nkUpzTjsW4IrAZn4g6SDgVGVDjGsZmDn33Qeb
uFOYSYcHmfgebOKbOr3TelhBTft90uQoabs1u4s9UCgIAiwvL9MaSAGnKtsE+FwEN33msxSQwix3
t3WyMtJYG2lM/E7ncFt9e2k2m2g0GqjVahSBPkMhGHJsMfA98st9n9Z16MY/d7/fydz3uQfu92EJ
W9x12CIQBAEajQZThWsEhWADYMRA6Qk2fRaB23q6FapTq+ySptInHTNJBHxCFncdZs4AYw1QBNYG
xgg2ELZ14JuN18QM4h6CmjTNedIDT5MWxMQJEBMjsElyNZT1gFPTe5Ai0D1pYwTsR7CBUFYO3jzp
F1oUlDNjry+4F4ZhNLsvtGluz+Pno1PO3zeJiorpSxB3Te6rsQSCIIhEYCs8mnyQ0CLYoNjWgT2H
v51BcB+Xbl7tKb3jsgbudiQ85ASe1r9TpsAWI9dFMJW/Uqlw/oBVktYioBBsYGZmZqJK5j7EI5PJ
tKUbe3UNfOsR80QjOJYIOrgFxqpx4wMrKyucO6BPUAi2EDMzM4AjBq4Q+PofpLEI0sYIfK/uezdg
aAuBHRzkcOL+QSHYYhgxEJFIAGxRiHuGoq+TUZxFAI97gBRBQYObMTDPLTSZgSAI8Na3vnXN79VW
gkKwhZmZmUEmk0E+n/daBD6Xwfdg1DSuAVIKADxCUKvVonjA2972tjW+K1sTCgEBnDiCqfCFQsFr
KaQVAnEeHebD/l+5WYALFy7gXe9615pfO6EQkBhmZmYueiqwee+r/EmxAxtfFsCOBVSrVbzzne8c
0FVvXSgEJBGTfjRWQi6XixWCODFAQo9B2wp497vfPeCr3bpQCEhXuAOcTOU3gUWfEJjW3ixjY2NY
WVnB/fffP7DrIO1QCEhfKZfLUR+ETCaD++67b9BFIimgEBBCUgsBRx8SQigEhBAKASGEQkAIAYWA
EAIKASEEFAJCCCgEhBBQCAghoBAQQkAhIISAQkAIAYWAEAIKASEEFAJCCCgEhBBQCAghoBAQQkAh
IISAQkAIAYWAEAIKASEEFAJCCCgEhBBQCAghoBAQQkAhIISAQkAIAYWAEAIKASEEFAJCCCgEhBBQ
CAghoBAQQkAhIISAQkAIAYWAEAIKASEEFAJCCCgEhBBQCAghoBAQQkAhIISAQkAIAYWAEAIKASEE
FAJCCCgEhBBQCAghoBAQQkAhIISAQkAIAYWAEAIKASEEFAJCCCgEhBBQCAghoBAQQkAhIISAQkAI
AYWAEAIKASEEFAJCCCgEhBBQCAghoBAQQkAhIISAQkAIAYWAEAIKASEEFAJCCCgEhBBQCAghoBAQ
QkAhIISAQkAIAYWAEAIKASEEFAJCCCgEhBBQCAghoBAQQkAhIISAQkAIAYWAEAIKASEEFAJCCCgE
hBBQCAghACBKqUGXgRAyYGgREEIoBIQQCgEhhEJACAGFgBACCgEhBBQCQggoBIQQUAgIIaAQEEJA
ISCEgEJACAGFgBACCgEhBBQCQggoBIQQUAgIIaAQEEJAISCEgEJACAGFgBACCgEhBAD+HZZAIBWa
f/2yAAAAAElFTkSuQmCC
"/>
</div>
</div>
<div class="output_area">
<div class="prompt"></div>
<div class="output_png output_subarea">
<img src="
AAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo
dHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAHtpJREFUeJztnXuUXdV93z977nNeSAMIW+Il0YVN
yaLFrm3c5SxWkqbxqlNjVGNDoDIYx4QASepCwcQmM66wYTWlrC6v2i3GK6HYiVZcwMZuSqjrlvzh
Am26sBxaTKGSkIQkBJJGujN37nP3D84+3rN1zrmPufPQzPez1llz79nnntec/d2/32//9j7GWosQ
Ym0ztNwnIIRYfiQEQggJgRBCQiCEkBAIIZAQCCGQEGRjjJkzxmxd7vNYKowxu40xdyz3eYilR0KQ
gbW2bK19grcryWZjzLWLfUxjzDnGmP9ijLHGmDODspIx5l9EFfaEMeZ5Y8yHvfKCMeZfR+VHjTE/
NMb8zcU+50FjjLnWGLPTGDNjjNlrjPm3xpjTBlUeHOuG6F7PBcvN3ja/Z4x5OdrfLmPM/caYwhLc
iqXDWquliwW4HfjBIh/jcuB14N8DFjgzKH8QeBG4ECgBnwdmgE1R+X3AX0flY8ADwP8DSl0efzdw
xzLf518BZoF/AOSAvwG8BHx9EOUJx7sB2J1xPp8GDgOXRQ3n3wbeAO5a7mdyoPd9uU9gJS9RZbwK
+CLQipY54GzAAHcBP4sevJ8B27zf/jHwLeBJ4Hi07ovAX2Uc7yrgUuCXUoRgO/Bh73seaAJXRg/p
EeBar7wcCcWVXV5vLATR/v5ZdF1V4GXgM962FwJPAUeB48B/A/5WVDYMPAwcjI7/18AnvN/+DPgn
KedwKXBFsO5fAf99EOUJx+skBL8I/HKw7nHgT5f7+Rzos77cJ7CSFycE9ucV+wde2a3AXuCSqOX5
CFAD3udt/xZwLTDU43EThSBhu83Rdu+LKqYFLgq2eR74cpfH9YXgt6OW7wOR4PyjSHQuj8qfBv4o
EpsycD/wXFT2+8BOYEMkKFcCFeCMHu/DUNQS7wZ+Z9Dl9udC8BbwRNTyHwAmgXzCtnngw8Cb3Yrr
qbIoRtA/vwV81Vr7U2tty1r758APogfLccRa+yfW2vagD26MKQGPAP/JWvs/o0pH1EL7HAHOTNhF
J24CHrLWPm+tbVprHwf+ErgmKl8fWUc1a+0ccLe19jKvrAHMWmvb1trvAqdZa9/q4fq2AXXgGeCP
rLVfHWS5x+FItB4ENkXC/bvAncH+vhgJ/Z8Bvx9d06pBQtA/7wLu9QNMwEeB87xtdi3GgY0x64G/
iOIEv9Fp88hS6JULgP8drHslWg/wB8Angd3GmG8Av26MMVHZv4mshP3GmP9gjPnN6HvXWGsfja7v
Q8DVxpgHB1nubfcfrbW/bK39S2ttw1r7X4GvRrEBf7t7o2u4EpgyxvxeL9ez0pEQ9E8V+K2oZ8Et
RWvtFd429UEf1BhzDvDjyJz9FWvtdFR0KPobtv5nemW9UEo6vPtgrX0KOBf4p5Fr9CfAn0ZleyKX
6WNRsPIPgBeMMeO9nEBkaf0V8AXgtjBSv9DyDF4FNiacjxOKPwQ+18u1rHQkBP3zf6PAVIwx5jxj
TG6xDmiMmQD+M/CjKHYx6xXvinzX93nbjwK/EAlHr7waVWafX4iuG2PMmdbaWWvtY9baG6OW8mpj
zOnRcUvW2mestXdGv9sE/GoX1/iAMeaPg9WlKFDbXmh5wvF+2xjzj4PVF0fWD8aYPzPGbE/YX6PT
tZxSLHeQYiUvQbDw68BPIv+3CFwPnAD+fhRE+ruRv3mlTQgu9njctF6Dr0dxCJPyu38edZVdCIxH
Ju6LQC4qvw14MuO4frDw9uh63gsUIt+5FQnNcBSL+J2oUhQin/qNqHH5C+BRYCKyIi6PKs4lXVz7
r0fbXhXt9wLgfwHfGUR5tM1LwK959+Ro1DuQB/4ecAz4zaj8FmA6+p/kou7DPcAfLvfzOdBnfblP
YCUvgRD8YvSgnwD+TvSA3w28FrkJPwNu9n57khB00X34dBSAq0fHnouWL0blzeghnwsWV54H/mVU
gWejCnmBt/8pYGfG8cPuw+1Ry3gc+B9B1+UvAc9FvQHHoqDcZVHZucD3o/WVqPvwU95vU7sPo/Lf
AP5PdG37gH8HTAyw3P+/um7gV6L/4+6ox8R45b8bWVxzUfn9QHm5n89BLu5ixRrAGJMH/txa+2vL
fS5iZaEYwdriH/YZLxCrHFkEQghZBEIICYEQIooyLwvGGPkkQiwy1lrTxWayCIQQEgIhhIRACIGE
QAiBhEAIgYRACIGEQAiBhEAIgYRACIGEQAiBhEAIgYRACIGEQAiBhEAIgYRACIGEQAiBhEAIgYRA
CIGEQAiBhEAIgYRACIGEQAiBhEAIgYRACIGEQAiBhEAIgYRACIGEQAiBhEAIgYRACIGEQAiBhEAI
gYRACIGEQAiBhEAIgYRACIGEQAiBhEAIgYRACIGEQAiBhEAIgYRACIGEQAiBhEAIgYRACIGEQAgB
kF/uExArl+3bt5PP5xkaGsIYM+/v5z73ueU+PTFAjLV2eQ5szPIcWHTkK1/5CkNDQwwNDcVC4BZj
zDxRMMZw0003LfcpixSstaab7SQEAoCpqSlyuRxjY2Nxpc/lcokWgTGGXC4XfzbGUCgUqNfrXHvt
tct9KcKjWyGQayDg7QcmruyFQuEkiyB0DXxRyOfzlMtlRkZGlvsyRJ9ICAQPPfQQ+/fvj8XAVe5O
QpDP5ykWi5RKJYaGhlgu61IsHLkGa5Af/vCHnHbaaRhjsNbSbDZ5+umnKZVKlMtlRkdHKRQKcUX3
YwTOZSiXy/E2Q0Nvdz41Gg2OHz+OMW9bo9Za2u02V1xxxTJf8dpFMQIR853vfIfNmzfHFb9arc4r
b7Va1Ot1nn32WdavX0+5XJ635PP5OF6Qy+XI5XKxFeD2WavVeO211yASAIe1lnK5HMcVpqenuf76
65f8HqxVJARrlB07drB582aGhoaYm5tjdHSUs88+G4Bms8nDDz9MqVQin8/HLbdzBwCmp6cZGhpi
fHyc8fFxJiYmKBaLceufy+ViN6DZbFKtVpmenmZ6ejrxfNrtNvV6ndHR0ZMEYmRkhHK5zOzsLJ/5
zGeW5P6sNSQEa4xHHnmEiy66KG7d8/k85557LrlcjocffhhjDMVicZ4p7wuAz7FjxzDGMDw8zPr1
62PhcEFEYwznnHMOhUKBnTt3Mjs7G+/Px/9uraXVatFut+Pv7tkrlUoUCgXK5TLbtm1b1Pu01pAQ
rCF+/OMfAzA3N0ehUKBYLDI6Ospjjz1GoVCgUCjMq/ROCLJwYjAxMRELgbMIisUiF198MTt37uTY
sWPgVXr/OEkiQ2QltNttZmZm5lkJrvfh1ltvHcBdEUgI1gZf/vKX+dCHPkSz2cRaSy6XY3h4mKee
egpjDKOjo4mtv/PrfVwL3W6348/VapV169bNcw2KxSITExM0Gg327t07L5fAWQuOToLQarWw1vLW
W2/FloIxhk2bNtFqtZSoNAAkBKuchx56iIsvvphqtUqz2SSfz/Pyyy9z+PDh2ArI59/uHU5zAdz/
3pntTghqtVpctmHDhjhoWCqVYlEYGhpi165dtNvteQLgC09I2jm4bst9+/bFn8fGxtiwYYMCiwtE
QrCK+eY3v8mFF17IzMwMrVaLvXv3cvDgwXkC4LfUYQX0/+fOAnDmer1ep9VqQWSqb9q0KQ7quaVQ
KGCt5fDhw7EQNZvNeftOswKyaLfbGGPYu3dvvI8zzzxTrsICkBCsQr71rW+xceNGZmdnYwE4ceIE
RJW2kwAk4VsFDhdQLBaLrFu3bp4A5HI5iHIGnAA48Wg0GrFlQVSxw+Ok4Z9ro9HAGDOvO3LLli3c
cMMNPd4xoRTjVcg73vEOKpUKrVaL/fv3c+LECVqtFuVyOe7W6zZo57fcvlnv+vtdpXddhY1Gg3a7
HY8x8GMJQ0NDcRleIlEul5tn+neDMYZSqUStVuP8889nz549AOzatWtAd1EkofkIThGmpqaoVCo0
Gg3279/P9PQ0zWYzrqx+7n+SVRCuc4lB7veuR8DPFnQWhnMbnAXgWwOuzE9PdvtPGrXYzTI0NMTw
8DDGGDZv3hzfgx07dizjf2B1IyE4Rcjn8zQaDV5//XWOHTtGo9FIrWzh57Tv/ghDf6ShnzHYarVo
tVrzRMAtvhj4VkXYU5F0HmkC4G/rMhK3bNkSbyMxWBzkGiwC995770n5+X7+veOOO+7oan9TU1Oc
ddZZHDp0iOnpaVqt1rx03yyXIKs7z//rDyv29+eSgFxlz+qB8Lsl3edeXAKHn+dQLpep1Wps2bKF
VqtFqVTqan+iNxQsHABTU1Pk83mGh4djc9oXgSycDx0uvsldqVS45JJLeO211+IEnlKpFAuB684j
QwhCQQi3SZpzIBSITkIQXk9SWRLh/twxHc7yaLVarFu3jtnZWc170CUKFi4B9913X9y/7gQgFIIk
/Ic8rCRhhdq9e3fcVVev1+PEoTA2EPbfJ8UIstb755p2fmnCklTBk8QizToIrYE0MZqbmyOfzzM2
Npa4H9E/EoI+2b59OyMjIxSLxTjJJsvEDvFdhTQR8M1s55f7FdGvMKS09GlCkLXON+mTMhB7NfvT
rj38nhVLyOfzrF+/PhbAHTt2cM011/R1fHEyEoI+mJycZHh4mHK5HA/k8S0BXwhIMMuTCE1pay0/
/elP43WtVotCoUCj0Zi3r04mP0FFS9s2/JtVyXsVg7SKH35Pc0+IchKcC9RutxUrGDASgj4w0Rx9
/mg8Vyn8nHmXoZfkY4cPP0EFCVviWq0WuwTdnF+3Fb1TJR0EndyENAH18xJcLMT9rlgsDvw8e+Vr
X/sa73znO5mYmGBoaCiOY/i9LLOzszQajRWfDKVgYY84a+C0005j3bp1ELXW7p8/NzeXGPwL/Xr3
2Q/6+WbxT37yk3nHzefznHPOORw4cCBuHf0RgWFrSpduQNa6tLKszz5Z26S5OCYh0Nput3n22We5
/PLL4/vdbDapVCp88pOf7Pl/uFAefPBBxsfHOeuss+L5Glyehd/L0m6340Qst951wV533XVLcq4K
Fi4SzhrI5/Px5ByNRoNqtcr69ev57Gc/u6D9P/DAA3Euv195ms0mx48fJ5/PU6vVTkrkIaHidar0
Sb8J1/mkuQLh+m4FIwx2hkLgtm+1Wlx66aVxlqPbbqmtgqmpqXiIdy6X48iRI5xxxhlxENelVyc1
rr4I+O7dSkFC0AfFYjGewceNvnMJPwvl9ttvh+ihCytYtVqlVCqxbt26eMBR1iCfblwEMsQhyxLo
RUzC47glqWvS3UuAZ555hg984AOMjIwwPj4+b5i0Gwux2ExOTsaiMzIywvDwMGNjY7FreOzYsTgR
y7fM3LX47kylUmH37t3ceOONi37evSIh6BMT5cTncjne+9738sILLwzcvw7351wQJwjFYpFKpTIv
5z8tFtFrfKBfMcgSgCQXIBQGZw0899xzfPCDH2RkZCSOFYRJTYsRz/BxIlAqlWIR8HuJnFsWXo+z
DprNJjMzMxw4cIBbbrllUc91oSjFuEempqbmpcCWSiVeffXVeCqvQRL2JIT5/rVajeHh4cTuxl78
/rTvaWXdbOfHQvwYiP/dLe7eue+HDh3iPe95D6Ojo/OmUydBVL797W8P9J77GGPiWZ1DEfAHZblz
cdPEzc3NMTs7y9GjR9m6deuKFwEkBP1RqVTm9Q7U63VM1Nf9+OOPL3j/k5OTiZl5LugULi4n3yfJ
5A7/pnXX9SscWRXdD2q6xQmAH/g8dOgQGzduPEkE0s5rsboRJycnGRkZYXR0NO4mdtO9+y+A8UXK
DcmuVCrs27ePq6++elHObTGQa9AH1WqVarVKu90+qcVa7P5tFyRstVpx5XD96klDfrtp2ZP+dlqX
lcnYzRKOkzhw4AATExNs3Lhx3gzLJHSl+vtZjDiBcwlGRkbiyu+sgTAegGetzczM8MYbb3DzzTcP
/JwWG3Uf9sn27du57LLLGBsbmzdcd25ujmq1yiuvvMJtt93W836npqYgZaafsEV1raqLVYRl7gEt
lUontdzhvtOSn3q1EPz9uEoeBtF27drF2NgYZ5xxRuLAKUfW+AtnDdVqNebm5vj4xz/e871OYnJy
EoCRkRE2bNgQxwZ818WPA9TrdT760Y8O5NiLgboPF5l77rmH7373u7GZ6PvApVKJCy64YMHH6GTu
uwfSnwnIbRcm4bh+bDfOP81CCL9nCUHSkpYTcODAAUZHRxkZGYmHFfszKvn79xun8B4k3YtBWQVO
hF20308a8xcXo5menl41g58UI1gAlUqFarUad+O51s+10t///vd72p97EAkqRVIQMEkMwsXfl3tv
AN5LR6rVKpVKZV5gzx/eHM5V4Pv7Wcu+ffs4ePAgb775JtPT07TbbTZu3Bi/IyGsYKEQZZEmRo88
8khP9zrr3ruAoHMFfJEn6r2ZmZlZNSKALIKF8frrr8fz+TmT0U3P5Sre9773PT72sY/1tf9uk4Xw
rADfQvADmv5fV6F9sfHN7qTBT+G6NFEoFAqcf/75J8UDklKpu6384TX6f90yPDzc1z12WO9t0C4w
6IuVn+48Nze3LBmNi4mEYAHceeedfOMb34jfD+jeB+jEoFgsYq3tWww6VX4yzHi8fneX9OT+Ju0z
LTU5bZ6DtJyFtPX9Vv5O98ctztrpB98aKJVK8eKLnR9zSXu926mMhGCB7Nu3j+Hh4bjV81/46YtB
P7jfZVWuNIuBBCvBiYGrsKEw4FUut77TscPzSBKOQZJlFSyUQqEQi0CYL0D0/2g2myt+AFE/qNdg
QGzfvp13v/vdnHfeefMy4VwS0MzMDLVaLdUycCnFDt9s9ycYDQNXYWqr73cnDUYyKXMmpOUUdNPy
kyAgaZZKkmCFpE3WErovblCPy+Kr1+ts3bq16/+Zn8ZdKpUYHR1lbGwsTiAaGxuLr6fZbHLixIme
9r8SUK/BEnPPPfdw//33s2HDhnkWApFP7rrwnnzySQ4dOpQ4OCmsGEmDfNLiA+Hvu6l8Sfte6Zjg
dW2hOHWD30Vrot4LFxdIsgRcWvepJgK9oF6DAfL5z3+eI0eOxAOC8EbYuZeHlstlNm7cyGOPPRb/
zvdRfdLM77CcFDEIv59qItDpmrLiI2mEPTOuizV0CVww1Vq74nMFBoEsggHz0ksv8a53vYt2u834
+PhJUWe8h/aJJ55g69atJ00N1s0DnSYMpFTqxRSBLBO/Gyun32NmzaPo41f+0IUKewl8a8AlDbnX
vq9mFCNYBKamprjooos4/fTTGR8fJ5fLnTROwCWlzMzM8OKLL6buK8wiTIsRhPGBcL1vVWTFCMLF
35aMkYSuLCv12NEpTpA2A7IfH3DfwxmB9uzZM+/1a/6IRX+f/v1y2YPur+sFstEboT/ykY8s6HlY
TrqNEcg1WASmpqZ46aWXePPNNzl+/DjNZvOkATnOL11It5dPN0G4XrcbpLswiAYnKzbilrPPPjvO
YPQXN1LUtfjOBfDHEoSjCt0sSGsBuQaLhG+O3nfffbz//e+Px9Y7UUjqvvNJaqGTYgZZwcJe/Om0
WIRf3oleTf9+XIXQjQpN/fHx8fjFrC5WE1oSJkpNdolfLj5QLBbjrtXDhw+vquzBLGQRLAF33303
+/fv5+jRo/EsRr6FsBAG5e8vZbAwaYr0QeIPb3aBP/9z2EPgfzbegKK1IgJICJaO66+/nhdeeIE3
3ngjHsJsjOFHP/pR1/vo1IOwXAyiIoepzL2QFNcI057d56RuQvfZxT1cfsJaQq7BEvKFL3wBgEcf
fZTTTz993ht7skbcLdRf7/TbpRKRQfUYONx98V0Ef5hwUrmP/wboIW/G5LUUG3DIIlgGtm3bxvPP
P8/BgwcT/ftwtGEavXQfZrGQFj3tt+EgpUEeMwu/J8VVcuf7h4sbH+LHHJrNJtVqlauuumpRzm+l
ou7DZSZMJvJFIGkSknCdCd63aIIJQTp1H2atC3+LJ05Jg5SygphpAc1OpI2EdIv/HgE3a1O4Pu34
/vBqogzCWq12SncXhqj78BTBF4I0E5aM+ECvZn+/pnlSgC8t6JfVuPTS8KRtm3Z/8Cq3a/WT4gHh
3INuZqkjR46sKhHoBcUIVhBZAtDrPtJ+048F2K9v3yljctAxg/Da3NBhR2jJuLJGo8Hc3Byf+MQn
BnYupxqyCFYAWd1pS+W6dfL1+/19p237OW4vxzJelqVzf/Asmna7Ta1W48orr+x6n6sRWQQrgKQE
mW5/s5j002IP4jf95BmE+0g6h7QYw5EjR3o639WIhGCVMAhhCCtclnsRVtwssz+cSCRtHwvF5QAk
ialvAfjjFFbrRCO9IiFYAfRiCYS/GdR2/RzX7+HI2sYkzCrUy/EIWnO/LFxfr9cheN28v22tVqPR
aHD06FFuuummBdyJ1YWEYIWQVqkYUGs5CDpV4m4shV73l7Y+qYfCWkuj0UjsxnTjDiqVCtu2betw
pWsPCcEKoZcK5ONXiF5+Mwg/Pul7N/vu1JtAQgXvtD+irMBarZaYN+CGJksEkpEQrACSgoVZefdZ
lc2vkFnb9+Ja0EcMopcYQbc9BFlBRJc8NDs7mygEMzMzp+SryJYKZRauEMJXnRGky7q375iUCUjC
dUnZglkTlCZNTELKLMbhelISnpIyC8P1WWTFA/yAn/+W6D179mCM4ejRo/HYjrWMJi89RUmKpPfS
l9+PT55mfaRt20uPQa/r/LLwc9o6Zw00Gg1uvfXWxP2JbJRQtEIIpzN3JLWESRU3rZIkbderFZgV
sU/bJulck84r69rSrAB/yjI35VuvU5mL+UgIVhBf+tKXYIGVOq317FcQ0sSpm3Po57zC9Vni4b/n
ca1nBi4UCcEKI8n0zmp5Sal4aftOWtet1RHuo5MAZIlUlv+ftX2SS7AWZhlebCQEKwxnFfhkmead
Kks3rXU3dBKfpGN387tOx+pkCdRqNa6++uq+rkn8HAnBKUA4jXeaeZ0kBuHncLtOdBKTXtyTpPJu
4gMEFoC/rLWZhBYLCcEKJOnNR04M6GANkFER0wRhEK5BN7/JcgfSxCDc1heBVqvFpz71qa7uqchG
3YenCO7Bx3vjMN4bf/yK4r/1OJwy3a33ycrsS7McwvVpSUy2x7Tj8Nj+dbmcgVarRb1eV4BwgMgi
WKEkWQVhi2gT3v4Tbk+KxdCpdQ73k+Xr92qRdGOJJLkBLnGoXq8zMzPT550VSUgIVjAutyCsHGnf
s3zt8DNdVsgs87+TT5/1mzSxSbvGdrtNvV6nXq9Tq9W47rrrFvnury0kBCsc14vgzPyFCkKnGIBP
J0FI+9zNORBYOKF1k2YJqJdgcdBYg1MI5y64abfcGAE3CWfWy1Gz/iaNP/DX0+H1a2E5CeMJuh1u
HAqIGz7caDSYnZ1dU28fGgQaa7BKcZXDWhtX9Ha7DUHg0AUFXeDQ/2tTRiimHa/TKMFwX71cS/g5
FAGXQtxoNCQCi4gsglOQMJBYKpXi+fmdpeBGHyZZAUkjFbMsgqSWP+n15/Qw0jAtluBPIdZoNKhU
Ktx4442LeDdXN91aBBKCUxRfDPxXrbu/Wa5B0otPkl5wQsow5EEMNw7jBH5cwInANddcs8h3cfUj
IVgjOEFwFd+97DN8M1IoBGF8oJNFQBAHyLIICCp/mhA4FycpW/DTn/70Ety91Y+EYA3hxMB4bwL2
LYOkV6eFFb0b18Cv5KFAOEKrICwPXYBwVuFGo6FswQEiIViDTE5OQvSWX98y6PQOxTTXoJuFHmcc
ShICFwys1+uaTmzASAgEU1NTcSX3A4nOYgiFIMkq6OQakNDih/jxANfqNxoNTSe+BEgIBARBRVfh
S6XSPCHwA4udXIMki8AnKWMwDALecsstS3LtQkIgUvCTkvwuR5eU1K1L4FsEjrQsx1arpbkElwkJ
geiKycnJ+DXiSZW9U8ZhVibgXXfdtdyXt+aREIiemZycPKkHICspyUZvFmo0Gtxzzz3Leu4iGQmB
EKJrIdDoQyGEhEAIISEQQkgIhBBICIQQSAiEEEgIhBBICIQQSAiEEEgIhBBICIQQSAiEEEgIhBBI
CIQQSAiEEEgIhBBICIQQSAiEEEgIhBBICIQQSAiEEEgIhBBICIQQSAiEEEgIhBBICIQQSAiEEEgI
hBBICIQQSAiEEEgIhBBICIQQSAiEEEgIhBBICIQQSAiEEEgIhBBICIQQSAiEEEgIhBBICIQQSAiE
EEgIhBBICIQQSAiEEEgIhBBICIQQSAiEEEgIhBBICIQQSAiEEEgIhBBICIQQSAiEEEgIhBBICIQQ
SAiEEEgIhBBICIQQSAiEEEgIhBBICIQQSAiEEEgIhBBICIQQSAiEEEgIhBBICIQQSAiEEEgIhBBI
CIQQSAiEEEgIhBBICIQQSAiEEEgIhBBICIQQSAiEEEgIhBBICIQQSAiEEEgIhBBICIQQSAiEEEgI
hBBICIQQSAiEEEgIhBBICIQQAMZau9znIIRYZmQRCCEkBEIICYEQQkIghEBCIIRAQiCEQEIghEBC
IIRAQiCEQEIghEBCIIRAQiCEQEIghEBCIIRAQiCEQEIghEBCIIRAQiCEQEIghEBCIIRAQiCEQEIg
hAD4/8ra93eprvotAAAAAElFTkSuQmCC
"/>
</div>
</div>
<div class="output_area">
<div class="prompt"></div>
<div class="output_png output_subarea">
<img src="
AAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo
dHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAHqpJREFUeJztnXuMXNV9x7+/ee/ssn5R2zj4icKj
UStKI5KoKI1okygQgnm7JjxMgYAJiJQ0FIrYcYEIpKZJFUHbgIpRAwQVDMQkCiElDZWoQhW5pITy
9js2xq/17MzO+/QP7rk9c3zunTuzszuzu9+PdDUz99z37vme3/n9fudcUUqBEDK7ifX6AgghvYdC
QAihEBBCKASEEAoBIQQUAkIIKAThiEhJRM7r9XVMFSKyTUS+3uvrIFMPhSAEpVRGKfU0PqwkK0Rk
7WSfU0SOF5F/ExElIsdaZQtF5Psisk9EjojIKyJyllGeFJG/9yr0IRH5mYicMtnX3G1EZK2I/FpE
CiKyU0T+UUSGo5Z723zJe07PtXnuZ0UkMLmmVfl0hUIQnQsATKoQiMinAbwCYHfAJv8KYBDA7wI4
1vu9SUSWeeV/A+BPAHwWwFIArwL4kYikJ/O6u4mInAngIQC3AhgG8BlvuS9KubfNtwDcC+DNNs99
IYA/7rR8WqOU4hKwAFAALgRwB4C6t5QAfASAeP+MbwIoep+XGftuBPB9AD8EcMRbdweAX4Wc70IA
p3r/2ArAsUZZDMA6AB8x1g17233eKz8IYK1RngFQALA64v1uA/B143x/6d3XOIC3APy5se1HAfwE
wCEARwD8O4Df98oGvMq61zv/awAuMvZ9E8DNAddwKoAvWev+DsB/Rin3ft8GIOv9DZ6LeO9zAOwC
8FcfVov2yqf70vML6OdFC4H6/4r9nFF2A4CdAH4PQBzAWQDKAD5ubH/AsyJibZ73KCFwbDPPawW3
AjjGq5gKwMnWdq8AuCfieU0huB7APgCnA0gAOB9ADcCnvfKfAnjYE5uM1wL/0iu7HcCvAfyOJyir
AYwBWNDmc4gB+IR3XTd2UN6OEPwTgAf0s2+3fLov7Bp0zlcAfFcp9T9KqbpS6scAngNwpbHNQaXU
Y0qpRjdPLCJveq3/5wCcpZTKe5UOXgttctDrRrTLtQC+p5R6RSlVU0ptAvASgDVe+VzPOiorpUoA
blNKfcIoqwIoKqUaSqlnAAwrpQ60cY+XAagA+AWAh5VS322nvB1E5AwAZ3utfdvlMwEKQeecCOBu
L7JQEpESgHMALDO22ToZJ1ZKnQRgPoCnAPyHiKwM2Vw8S6FdVgF43Vr3jrceAO4EcDGAbSLyIICz
RUS8svs9K2G3iDwpIld7vyOjlPoXAGkAfwTgEhH5djvlURGRFIDvAbhJKXWk3fKZAoWgc8YBfMWL
LOglpZT6krFNZbJOrpQ6pJS623MsXgHgfa/Ibv2PNcraweVg1BUdSqmfeA7Jv/C6Ro8BeNwr2+51
mc4F8J4nGv8tIse0eY91pdSvAPw1gK+KSLKd8ojcDuBNz+LppHxGQCHonLc9x5WPiCwTkfhknExE
lovIDhH5mFWU9szwrQD2A/i4sc8ggI8BeLmDU77rVWaTj3n3DRE5VilVVEo9pZS6yvMDXCIi873z
ppVSv1BKfcPbbwmAP41wn98SkY2Oe6wDaLQq7+A+rwBwpojsF5H9AJ71rmO/iKyJUD4joBBEZxzA
UhGZ65mL9wO4SkQ+KyIJEfkUgF953YPJYAeAPQC+LSJLRCQlIjcAOAHAjzw/xD8AuE1EPuq1vvd6
Ffpn+PCf96si8sOI5/tnAFeLyGlefsJazzH3iIgMAHhbRG4UkbTXEn8cwAcADgPYBOB7IjLP6y78
gVdZ34lw3hcBXCoiF3rnXQXgGwA2K6XqEcpb4uVprPN+fsoTqlO95Wpv/alexKdV+cyg197Kfl6s
qMEZnhc9D+APPTP5Nq+CjnshseuMfY/yWEcIH/7Uc8BVvHOXvOUOr3yxF5I87F3HfwH4orF/AsDf
ehWyCOB5AKuM8hyAX4ec3w4f3uVV3iPeuT5vbPsZAL/0ogGHPafdJ7yypQA2e+vHvPDh5ca+geFD
r/zPAPyvd++7PI/9vCjlAJYbz80M+ZYALLfv03Hu0KjATI0aiOIMRbMGEUkA+LFS6nO9vhbSX7Br
MLv4Yof+AjLDoUVACKFFQAihEBBCPC9zT5iJQzkJ6TeUUhJhM1oEhBAKASGEQkAIAYWAEAIKASEE
FAJCCCgEhBBQCAghoBAQQkAhIISAQkAIAYWAEAIKASEEFAJCCCgEhBBQCAghoBAQQkAhIISAQkAI
AYWAEAIKASEEFAJCCCgEhBBQCAghoBAQQkAhIISAQkAIAYWAEAIKASEEFAJCCCgEhBBQCAghoBAQ
QkAhIISAQkAIAYWAEAIKASEEFAJCCCgEhBBQCAghoBAQQkAhIISAQkAIAYWAEAIKASEEFAJCCAAk
en0BpH+55557kEgkEIvFEIvFICJNnzfeeGOvL5F0CVFK9ebEIr05MWnJvffei1gshng8HioEIgIA
uPrqq3t9ySQApZRE2Y5CQAAAIyMjSCQSGB4e9iu+KQRm5RcRxONx/7uIIJVKodFo4IILLuj1rRCD
qELArgEBPhRmxGIxKKWQTCZ9MXAJgWkhxONxpNNpXwjI9IRCQHy0daiU8gUgSAgymQySySSSySQS
iQREBPV6vde3QDqEXYNZyKZNm7Bo0SKkUikAQL1eR61Ww0svvYRsNovBwUEkEglkMhmkUilfDOLx
uL9kMhn/OwA0Gg1s27YNw8PDgCEqpVKJ3YUewq4B8dm4cSNOOukkJJNJKKVQqVRQq9X8FrzRaKBS
qaBSqSCZTKLRaCAejyMWiyGVSiGZTCIej/tdhkQigWQy6TsLa7UaDh8+DKUURkdHmyyLWCyGp556
yvcl7NmzB+vXr+/p8yBHQ4tghvHYY49h5cqVSCQSGB8fRzqdxpIlS5BOp1GtVvHggw8inU775jw8
/4BeAGB0dBTJZBJDQ0OYP3++Lwam76BeryORSKBarWL79u2B19NoNJBKpZrEQX9ms1kMDAwgn8/j
mmuumZLnM9tg1GCWsXHjRpxyyimo1+uoVCqIx+NYtmwZEokEHnzwQd+zr818GALgYnR0FIlEAnPn
zkUqlfIjCPrz1FNPxTvvvINt27YdJSgulFJoNBq+FaKU8kUhnU4jmUwik8ngsssum6QnNDuhEMwi
Xn75ZcDrjycSCaTTaWSzWWzatMlvzeFo+YPQlTSfz2POnDm+BaG7CNlsFvPnz8dvfvObpnwC+9it
RGFsbAzm/188HsfAwABuuOGGrjwXQiGYFXznO9/Baaedhkql4vfHs9ksnn/+eYgIBgcHA81/++/e
aDR8AdDfS6WS3zXQIcJkMol0Oo1YLIZt27Y15RaYx48iCI1GA41GAwcOHGgKPR533HEQESYqdQEK
wQznoYcewsknn4xisYharYZkMom33noL+/fv9/vzOukHLVpnpRTq9bovAuPj4xARKKWwaNEiDA4O
YmBgwI8iaF/B9u3bUalU/GMFWRutLJBGowERwa5du/x12WwWixYtwhVXXDGBp0QoBDOYRx55BCtW
rECxWES9XsfOnTvx/vvv++a7dgSGdQVMp50WAu1f0GQyGSxZssR36qXTab8/X61WcfDgQZRKJZTL
ZV9IzL6/i1aCBAA7d+701x977LHIZrO46qqrJvTMZisUghnIk08+iblz52J8fNwXgHw+DxFBIpEI
jQS4cP3tzYzCVCqFwcFBpFIp39GorQzt+KvVaqhWq6jVan5I0qzUrYTBRF9rpVKBiGDHjh1QSkFE
sHz5cqxbt67DJzd7YR7BDGTOnDkYGxtDo9HArl27kM/noZRqCgealV9HB4Iwy/V+Zjah7gLAM99r
tZpfMU1fgt5fb2uW6W0RIDwm+rozmQzK5TKWL1+O7du3QykVGqIkE4fzEUwTcrkcxsbGUKvVsGvX
LoyOjqLRaPgtuMtp51rM7e3BRbrF12IAr/LqboNu/c2lVqs1VXr7PPa6sGsyvw8MDEBEsGLFCv8Z
PPHEEz38C8xsKATThFQqhWq1it27d+PQoUOo1+tNKb92RXNVQruyaRGw04f14CN46ceNRsOv9NVq
1c9CDBKBVkIUJhZm2cDAAGKxGFauXAl4FgPFYHJg16DL3H333c5W1+yrmyayUgq33HJL6DFHRkaw
aNEi7Nu3D/l8Ho1GwzfbdcW1Q3dBMX1XiC+ocsKwCEwT3z52kOnfKloQFGEwz6+7CStXrvTvm3Qf
Ogu7QC6X8z3quq9uioCmlcfcXHSMXSmFQ4cOYeXKlRgdHfVz+jOZjC8EWhSChCDsM8xsd7XYaCEE
LlEI+h4kBGbYE95Yhmq1CqUUhoeHUSgUsHbt2jb/SrMTOgungHvvvbcppGa30LYlYGK2uK48fP39
vffeg4ggn8+jXC77Zrh5LrsVt52FQQIASwzsazWFKUhMgmh1365tXBaJvk9tkSQSCRxzzDGh5ybt
QyHokFwuh4GBAT+0lkqlmlqzICFwVZAgITBbT90ft48VZP67tmklBK5jmp5/s3sQdC8uoogCjNCl
yzqJx+P+mAcRwQ9+8AOsWbMm0vlJaygEHZDL5ZDJZDAwMOAn8JgTeLgWRGhNbRP61Vdf9X83Go2m
ECECKm1Q7n+rbkPQ9mGYlkIUwkTR5eg0w5E6r0Hvk06nI593KvjmN7/pJ2PlcrleX07bUAg6ROfe
639aM6ausQfUuATCrgAIqISlUgmDg4NIJpNHzQQUVqlbWQP2unZpJQatugKwRMAlBI1GA1u2bMEZ
Z5zhn1NPqtILNmzYgHnz5mHp0qVYunQpADQlVb3wwgu+j0evq1QqKJfLuPzyy3t23WHQWdgmuVwO
qVQKw8PDmDdvXlOGXa1Ww9jYGIrFIu68886j9r3vvvuOCt1pB6M5zDcej+P1118HrIq2cOFCjI2N
oVwu++MJ9JiCIJMaEXwE9rpW24Z9b/Xb/u6aGNV8RjpqcfjwYSxevLjpeY+NjeHiiy9u+284EUZG
RrB48WIkEgmceOKJ/mQvSik/4Uo3Cjrsqq+5Xq+jWq0ikUjgwgsvnJLrpbNwktCZfHqyTt13L5VK
GBoawnXXXRe476233hr5PKZ5qcVgfHwcc+bMweHDh/0Wx+wyuIha6Vv5GhCxK9BKNMzfrvwH8dKl
9fd6vY6xsTEsXLjQ31YPUppKq2BkZMQf3ZnNZpFIJLBnzx6/gi9btqxpBKe5jI+Po1Ao+M7egYGB
KbvuqFAIOmRwcBBz5871++WpVKppwM5EcTnlyuUyAPgDgAqFQpNTMajbgQCroJPPdtbZ6+0Kb3eX
bEtgbGwMw8PDOO644/xnUq/XfWtqKoQgl8v5czBks1nfN6THXmgrTs/YZHdp4vG4P9T6+uuvn/Tr
7RQKQZuY/9jpdBrxeByrVq3Cb3/720k7l67o2gLR6/VMwrqlcWX42deMECsBLSp3u2Lg8oME+QLM
7z//+c9x+umnY86cOU05BTqxyb6/ySKXyyGRSPjDsM05Gcxp2zRm10DnPpx77rmTeo3dginGbZLL
5ZqsgFQqhT179vie7W4wMjLiXG9O96V9EnougqCsPlflc/XLbXFw7e86nr3O9H+0Wsxh03rZsWMH
zjzzTAwPDx81p4Lr/I8++mhXnrmLVCqFoaEhZLNZP1dE/81dz1H7AMrlMg4dOjRtRAC0CDojn8/7
swKJEVuPx+N49tlnJ/wPIAHxei0CuhLo37oS1Wq1pu1bVVr7+O20/EFWRVjLb3cTzJDr9u3bsWDB
AqxYsaJpXkXXczGPPVlhxFwuh8HBQd8KCEocMx2a1WoV+Xx+WuY3UAg6YMOGDbj//vtRr9ebhupi
kuLb5j8/jCm+tCjoRCPbaRhFCMK6C0Hrw6yHmDUxqi0EZisaj8exY8cOLFiwAMuXL3emZbuiWpMt
BNoiM/0BOrpjChgMca7X6zj77LO7fi1TBYWgQz744AOsWLGiKXwn3jyBL7zwAgqFAlavXt32cUdG
Ro7yzuvvdkUxWyJzFKErN0H/s+p5DKMIQSfdBVelj8fj2LlzJwYHB30zW1/rqlWrjsqfCBvEZItO
zHtvQjdeoqIjNSKCoaEhDAwMNHULzJGZ1WoVxWIR559//oTP2w/QR9AhuVwOhUIBpVLJb5HFSIXN
ZDJ44IEHJuXcdkuvWyXz00xH1v6MbDYLeE6tcrmM8fFx5PP5SH151zpXH18vu3fvxt69e/0h08cf
fzwWLFjgz3hkC6gpfEH3GrS+29EDfX3mrEymT6BWq6FQKMwYEQAtgolx8OBBv+9oj+1Pp9NNk2pE
YWRkpOkf3h7sE1Rh9Hpz5KIWCJe/Qb+lyGyBtcXgGu/gmnos5s1gZAuArpTLli1rsgjsbgOsLkhU
XH6CTo5jY1oD5vgRWwSU96aofD4/4XP2ExSCCbB3714MDw/7YTzTY64TjzZv3oxzzjkn0vGCRAAO
K8BVCezKrUUBxkhEWxT04prvENYIRtssd11L1PEWnSDW4Cfz2E888QQuueSSjo5rJm9pAdChYTMC
op9nPp/HlVde2fF99CPsGkyAXC6H999/3+8i6GQXc56ATCaDzZs3t33sKKayq+LC6mubgmDPc+Aa
5WinQNuhQDOJxl6C5i+YLEzhmUi2nhn10Raetga01QMjfHvppZd27R76BQrBBPna176Gffv24ciR
I37mn1mRtL+gU+yWz6aVQy/suLYgwNElCGKyK3mr80bpMkUhl8v5+5phQu0nsEWgWCx27V76CQ46
6hK5XA4nnHACTjjhBL8PboaWisUiyuUytm7diptuuumo/cP8A1pYdNjKXszUVrGSelyefFdCUZTR
kWHrERA+dH3XBFVe1/wMMMKmppVTrVb9BKtKpYLzzjsv8t9LH1u/am1oaMiPFgwMDPgRlnq9jnK5
jC984QuRjt1PRB10RIugS+RyObz77rsoFAr+iDMx4uX6VWGrVq3C448/ftT+Lq+4/TtK3zusZYxS
CfudsOfiSkKyyeVyTT4B8ZynZsKQ+TYn7UgdHR2dlPvpFygEXSSXy2H//v3I5/N+3rnZamvTc3h4
GE8//XTTvlFi560Ia3XDRKBfRSFI3DrpCsFyCmorSFd8uztgOgeLxeK0zBZsB0YNuswbb7yBE088
EY1Gw8+X1/90Gv1P+8wzz2D16tV+JluUST5aeeLbqRj2vq3O1y6u+2l3VqOwa7MzLs3j3nPPPX44
1HUfZtfKHkykcxxmaqjQBX0Ek8TDDz+MhQsXYu7cub7DSfsLzJeFFAoFvPbaa4HHsX0BLh+Ba8LU
dn0EUb7bvoBWPgJYYqJp1UWxp2yDFQ41v5vPU7/8Rb/DUfsUzPObeRB6GRoa8tOJ9SjDeDyOWq2G
0dHRaZ04RB9Bj1m3bh127tyJQ4cO+fMUmBVXdxUmElGwadUNiOIjmKxuQrcanCC/iF4WL16MwcFB
P53ZfIGr3err8K7OAzF9AyKCcrk8rUWgHdg1mET0bEW5XA6f/OQnMTQ01BSD13kHCDCZwxyE7XYN
WolAN7oSQfcRto05qUo72F0Ds4XXaczmm5hghUy1f0CLgRYKHYGp1Wo466yz2rqm6Qwtgikgl8vh
jTfewP79+/2xCeJl85m+g05azSjRgulAlNyFqMcxx0HoxVynK722AMwEIvHCvnpI92yBQjBF3Hzz
zdiyZQv27t2LsbExfybiF198EYjQIgdZA1Fote1ERaRXfiaN+UzsDEhzscOEWiBMS0CHC8fHx3t6
T1MNuwZTyIYNGwAADzzwAJYsWYLh4WG/LMikDqv0YWG1ySKq1982/01Tvp3jhKGfjZ0iDWNiVHNk
KKxno7sHplWmh3XP9LwBG1oEPWD9+vXYsmUL3nvvvdDtolaUbloH7dLKGpgqa8G0CMzp4c0ugstZ
qMO78DIXtQj06/sHJguGD3vMo48+irfffttZ5koldoUFXSnGulLYYT7XwCCJmGIMo8Lp9Qjptrgc
l1EiFxo7jOhazPkXtPNVrzeHZNvnNLsR5mQjY2NjMypSwPDhNOHSSy9t2WqG+QamqntgX6PLsRc0
RqDVum6guwhmSrdpBWjLwBxYpAVU53Ps3r17RolAO9BH0Af0s8e/0/Bet847kX3MazYtIXv7SqWC
I0eOYN26dRO65ukMhaBPaLfCtbIMWp2n27gcgq22tb+HbR/l/CZB3RNXpuL4+DjWrl3b8hwzGQpB
H2Cby72wEIIqW7sRAte6VlGDbomT7uu7rtnlX9D5AlP1HsJ+hkLQB7jM1X6mHbHqprAF+SQ0YszT
GCQGpmNRT+JKKAR9g5kua1celzh0Es/vxjXCmgrN/i2OeQVdZVGuLWzwkeu3Hi3ocq5qASiVShgf
H8dll13WlWcyU6AQ9Alm/7WTijvZrbRLnDoVmChiEDW6YItCtVp1hiu1BbB7927cfPPNHV33TIZC
0AfY1oC5Pmx71zat+uth61pdX5RtwradqI8grGugzf5SqQQYGYbwxEC/i4Ai4IZ5BH2ATj124Yq/
B23Tat1UbmOb7p3iyk1wdQ206V8sFlEsFlEoFPzv+XweW7duxTXXXNPxdcx0aBH0GS7fQFBUoRut
eisRCdon7BrC1kW9/qiWEQxroFqt4sCBAyiVSrjzzjud+xA3FII+x275WjnXgpx1aMOqiHIO+3uU
30HHiIIr/GdHATp51yT5EHYN+gRzYk2ToArgMpmDPl19604roLnedbwwU95l0rc6r+tlLOaip3yb
bcOGuw2FoI8IEwP7t6vyhREmCK5KHVRRwypzkBgElbvO146oaGugWq3ioosuavkMSDAUgj4nyEmG
FpUSAQIR1t+O0kIHHacdiyTsOlz3hRARqNfrKBQKgcci0aAQ9Bm5XO6oSmLPuxfFTG9XIIKI0o1o
R4Bc19aq6xAkAjpK8OUvfzny/RA3FII+RIcTo1gDUSt8lG5BO2Wuc7YShCBrptXxXQKgl07fgEya
YdSgjzE97uYc/cryurt+a/R3O1nJxN4nLMwYlhDkiljYx3UdJ+hcaCEGepp4MnE4Q1EfYzsP9RRc
9stN9MxFYs1AZM865NrGLrOXVjMRucrgGP6rCRo+HWax6K6R+TKTUqlEB2EEOEPRDED7C0xT2WwR
zd9h/W5NmNltb9POMez9YFTsoC5M2DFs818ZQ4ar1SoqlQpFoMtQCPocM/3Y9VpwlyBErYwmUfwF
ri5H0PmCPl2iEnQfphjo15iVy2VccMEFXXq6REMhmAaYzkO7pVQBSTf2Ok2YVRDFEnCVtzpm0DZB
92FbBKYlUCwWp/DJzx7oI5hGmD4D01+g39fnejmq7RsI8h0E+QKivOw0ip8gjCDLQYuAXmgJtE9U
HwGjBtOUWq0G5b3DT7+gQ3vllTGNdywWQ6PRcH5qzNbaNVjIxDyHHQVwdTfChiYHdSFMS0AvTCGe
XGgRTEPsaIJ+W4/5glWx3mtgtuz2+w6C3nXQbtQAEaIEJqYA2E5BHRngTEITI6pFQCGYxri6CmaX
QYcV7UpvdxmihA/tim8LRNin/d1u+W0h0G8buvbaa6fkOc5kKASzCC0I5gtAzfwCO3+gHYug1YI2
X8VuOhH1W4psB+GaNWum+AnOXJhHMIvQ+QY62aZarR616LJareYn5gR56V2RCVfEwvVph/zMJCC9
2NdWqVRQKpVQKBRw5MiRXj/OWQktghnGyMgI4PkNTIvA9Q5FV4ShVdcAjqhBFFz+AFsQ1q9fP2nP
ZbbCrgHByMiI77XX3YZ4PI5UKtWWEMDhKDSjDmGYAmBaBNdff/2k3jv5EAoBaUJbCgCQSqWahMGM
NERxFtoWgiYo6Uh3E4rFIm655ZYe3P3shUJAAtGWghivBtdJSUFC4BqkhIDRgfYnpxDvHRQC0hZ3
3XWXs8UPsxRsAajVaojH46hUKrj99tt7fUuEQkAmgg5Hat+C7UuIxWJ+X/+OO+7o9eWSECgEhBDm
ERBCokMhIIRQCAghFAJCCIWAEAIKASEEFAJCCCgEhBBQCAghoBAQQkAhIISAQkAIAYWAEAIKASEE
FAJCCCgEhBBQCAghoBAQQkAhIISAQkAIAYWAEAIKASEEFAJCCCgEhBBQCAghoBAQQkAhIISAQkAI
AYWAEAIKASEEFAJCCCgEhBBQCAghoBAQQkAhIISAQkAIAYWAEAIKASEEFAJCCCgEhBBQCAghoBAQ
QkAhIISAQkAIAYWAEAIKASEEFAJCCCgEhBBQCAghoBAQQkAhIISAQkAIAYWAEAIKASEEFAJCCCgE
hBBQCAghoBAQQkAhIISAQkAIAYWAEAIKASEEFAJCCCgEhBBQCAghoBAQQkAhIISAQkAIAYWAEAIK
ASEEFAJCCCgEhBBQCAghoBAQQkAhIISAQkAIAYWAEAIKASEEFAJCCCgEhBBQCAghoBAQQkAhIISA
QkAIAYWAEAIKASEEFAJCCCgEhBBQCAghACBKqV5fAyGkx9AiIIRQCAghFAJCCIWAEAIKASEEFAJC
CCgEhBBQCAghoBAQQkAhIISAQkAIAYWAEAIKASEEFAJCCCgEhBBQCAghoBAQQkAhIISAQkAIAYWA
EAIKASEEFAJCCAD8H19TE6W0UXZdAAAAAElFTkSuQmCC
"/>
</div>
</div>
<div class="output_area">
<div class="prompt"></div>
<div class="output_png output_subarea">
<img src="
AAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo
dHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAH8NJREFUeJztnXuQZFV9x7+/nn7OYx8w7IOFsGLW
1dpKogkEk1ApzbNKCYqIwCqysOEpkAQ3pMQtpzUb0TxIJSmjspGQChg0YY1ArGAlMaFKUhGk4hpN
Fom77vvBjjs70z3dfbv75A/OuTl95tzbt3t6pufx/VTd6u777tt9vud3fr/fOUeUUiCELG9S/b4B
Qkj/oRAQQigEhBAKASGEQkAIAYWAEAIKQTwiUhGRq/p9H/OFiBwQkR39vg8y/1AIYlBK5ZVSX8Kr
hWSjiGyd62uKyAUi8s8iokRkNGa/S0SkLiJFa11GRP5EF+gfisg/icgb5vqee42IbBWRvSJSEpFD
IvIZEVlhbf9ZEXlWRCZE5IiIfFpEhq3tbxeR50XkrN7+FyKyOuJau7Xg20tNRPZb+/yGiLyk72e/
iHxCRDLz8CjmDQpBcq4GMKdCICI/D+AbAI602S8NYDeAKWfTxwD8IoBfBnAhgG8B+AcRyc3lffcS
EfkFAH8B4HcArADwFr18Um+/AMA/AngSwHl62y8A2KW3/yiAPQA+BeAcAJcC+HEAf+q7nlLqFi34
4QLgKQCf1+e7CcBOADcAGAHwTgA3A7h3nh/N3KKU4hKxAFAA3q3/CA29VABsACD6z7oPQFm/3mAd
+wiAR/Uf9qxetxPAN2Ou924Ab9R/bgVgNGK/+wB8BcC/AijqdSkA4wC2WvvlAZQAvDPh9z0AYId1
vt/W32sawEsAtlv7btIF8ocAzup7+XG9raAL83F9/f8CcI117D4AvxlxD28EcKWz7kEA/67fXwrg
z53tRQD/qd9fA6AOQKztOwF8O+EzuEI/h0H9+XIAb3X22QPgb/r9/+zpf73fN7CQFyME6v8L9tPW
tg8AOATgxwAMAHgbgCqAS6z9T2srItXhdSOFAMDFAE4BeI0jBJv0Ma939v8GgN9LeF1bCO4AcBLA
TwNIA3iXLmA/r7d/FcBfarHJA/gEgP/Q2+4HsFfX2Cldi04BOLfD55ACcJm+r7tj9gt/GwDrtCDe
oe/rfAAvANiV4HppAN8DcF3M9l8F8EpScV0sC5sG3XMbgD9TSn1bKdVQSn0FwNMAtln7jCulPq+U
avbwup8B8Eml1H5n/Xn69YfO+nEAkb6GGG4F8JBS6htKqbpSag+AZwFcp7ev0tZRVSlVAfAhpdRl
1rYAQFkp1VRK/T2AFUqp00kvLiI3AKgB+DcAf6mU+rOI/d4G4HoAH8erFu5x3Yz7uLbUjgA4CuCj
CS57g77vL3qus1ML/RcB3K+/05KBQtA9rwOwy3YyAfg1AD9i7eMW1lmhC8cogD/u5DBtKXTKxQC+
66x7Wa8HgI8AeA+AAyKyG8DbRUT0tk/p2viIiPydiPy6/pwYpdRfA8gB+DkA14rIjO8sItfqgrld
KfUcWn0EvwVgGMCPAlgJ4OEEl70PwIM+4VZK7dLf4Z0AiiLyG518n4UOhaB7pgHc5jiaskqpK619
ar26mI4g/D6AW5RSDc8uJ/SrW/uPWts6wedgNAUdSql/1A7Je3XT6PMA/kZv+4FuMr0DwPe1aPyn
iIx0cgPa0vomgA8DuMv21Osw52cAXK2UetQ6bDuA/1ZKPaKUKiul/lc7Ud8rIkNR1xKRn9Di/mTM
/QRKqa8B+AMtNEsGCkH3fE87tkJE5EdEZGCOrvd2XaifEZFXROQVXVveJyIvauvjFQCXWPczBGAL
gOe6uN7/6sJss0V/b4jIqC5oTyilbtY15bUico6+bk4p9W9Kqfv0cecD+KV2FxWRPxKRR5zVOe2o
bep9bgewQ/srnnH2zWhhco+HLWQe3gngeaXUSed+vigiv+s5X9DuuywmKATJmQZwoYisEpGsNn9v
FpFfFpG0iPwMgG/q5sFc8LfaQfhGa3lB14pv0+bspwF8SEQ26dr3E7pA/xNe/VPfJSKRNZ7DwwB+
XUR+UucnbNWOu78SkQKA74nI3SKS0zX1JdqJeUab5g+JyGrdXHiTLjwvJ7juv+ja+936uhdrk/0p
pVRDRC4C8IfaWfdtz/FfBnCJzkXIisj5+vivKqWm9HP4HxH5Fee4S7WD0+VfAdwjIm8RkQFtOdwB
YEn5CPrurVzIixM1uFx70ScB/JSuXT4E4KAWiX0AbreObYkyqGThw69qB1xNX7uil50R+4dRA/X/
Xu0/1AWyDOAZABdb24sA9sZc3w0f/q4uvGcBPA/gV6193wLgP3Q04Ix26l2mt12oY/Fn9Pb/AvB+
69jI8KHefj2A/9bf/TCAzwJYbT1D+9mEi3X8uwG8qH+rw/q3OM/3u1rrvgng4557EQD3aIurop/R
JwDk+/3/7OUiiiMULRt0ItJXlFJubUiWOWwaLC+u6NJfQJY4tAgIIbQICCEUAkKI9jL3BRFhm4SQ
OUYpFZc7EUKLgBBCISCEUAgIIRQCQggoBIQQUAgIIaAQEEJAISCEgEJACAGFgBACCgEhBBQCQggo
BIQQUAgIIaAQEEJAISCEgEJACAGFgBACCgEhBBQCQggoBIQQUAgIIaAQEEJAISCEgEJACAGFgBAC
CgEhBBQCQggoBIQQUAgIIaAQEEJAISCEgEJACAGFgBACCgEhBBQCQggoBIQQUAgIIaAQEEJAISCE
gEJACAGFgBACCgEhBBQCQggoBIQQUAgIIQCQ7vcNkIXLrl27kE6nkUqlICLhq4hgYGAA99xzT79v
kfQIUUr158Ii/bkwacsDDzyAVCqFVCoVCoFZjBDY72+55ZZ+3zKJQCklSfajEBAAQLFYRDqdxvDw
cEvBz2QyYcF3LQLzHgCy2SwajQbe85739PurEIukQsCmAQkxBTuTycywCGwrwBWFbDaLXC6HflUq
ZPZQCAjwas3RUpCNAEQJwcDAALLZLDKZDLLZLFKpFJrNZl+/A+keNg2WIU899RTOO+88DAwMQCmF
RqOBZ555BrlcDoVCAYODg2EBz2QySKfTYXPALPl8Hul0OmwiKKUwOTmJIAharlWr1XDVVVf17bsu
d+gjICGPPvooNm3aFBb8arWKRqMRtu8bjQaCIMBzzz2HlStXYmhoCLlcDvl8HoVCIWwqZDKZUAiy
2WzYNGg2myiXyzh27FhoVZhXEUEulwv3HR8fx/bt2/v6PJYTFIJlyqOPPorXvva1SKfTmJ6eRj6f
x/nnn49MJoN6vY6HHnoIuVwudALC8g2Y9xMTExgcHMTIyAhWr14d7m8sANMMMLX/97///cj7aTQa
Lf4D+3VwcBCFQgGTk5OMPMwRFIJlxsMPP4wtW7ag0WigVqthYGAAF110EQYGBrB79+7QqWfa/HAE
wGViYgK5XA4rVqxoaSIY/8DrXvc6TE9P48UXX2wREYN7XtMEMX4E2yeRz+eRyWSQy+Vwww03zNkz
Wo5QCJYRX//61yEiqFQqSKfTyOfzGBwcxBNPPIFMJhPW/qZwGiGIY2JiAgCwatUq5HI5pNPpsGmQ
y+Wwbt067N27d4YIuNaFj2aziWaziVKpNMNBmc/n8YEPfKAHT4WAQrA82LVrFy6//HLU63UopZBK
pTA4OIhvfetbOH78OIaGhry1v3Hu2Zgautlshu+np6exatUqZLPZ0CrIZDJYuXIlms0mDhw44E0w
QhvrwGAE4fTp0y0Rhw0bNqBer+O2226bk+e2nKAQLHE++9nPYsuWLZienka9Xkc6ncZLL72EU6dO
hR7/gYEBoE0TwBT6RqMRCkGlUgm3r1mzBoVCAfl8HrlcLhQFEcH+/ftbnIK+V0O764sIDh8+HL4f
GhrCmjVrcOONN/boiS1PKARLmM997nPYtGkTSqUSGo0GDh8+jGPHjoU1tgn32YuN/Zubwm+WWq2G
RqMB6GzBDRs2oFAotIhBJpNBs9nEqVOnUK1WwyiEe+5OMccePHgwvOc1a9bgzjvv7Pqcyx0KwRLk
sccew7p161Aul9FoNHDo0CFMTk4Cun2dyWQAywKIq5VdMbDfmxo/l8thZGQEuVwuFABjZTQaDdTr
ddTr9VA8giBoEQQ3Scn9r/nuTymFIAggIjh48GC4bePGjdi2bdssn+DygynGS5A1a9ZgamoKjUYD
R44cweTkJBqNBvL5/Izc/ygxMPgKoWnrmzChiRIopUI/hJ1AZBYTTjQiYW+zxSDqXmxSqRRyuRxq
tRouuugi/OAHPwAAHDhwYNbPj0TD8QgWCWNjYyiVSgiCAEeOHMHExATq9XoY17eFoN1idyoyx6bT
6XAx60zBNs0GYwEEQYAgCFCv18Ntpm3v9kfw9VxMcn/5fB4igo0bN4bP4Atf+EIff4GlDYVgkZDJ
ZFCr1XD06FGcOXOmRQTcQhZV6Ox97cLuLibSYMf+7WaAEQJbDNzrwLFKfJ2VooTJLIVCIRQDIzSP
P/54n3+JpQmbBj3mYx/7WGRtaDCm8o4dOxKds1gsYs2aNTh58iTOnj0bRgnswuuL47v5AlGxflc8
zD1DWwPG/I/LEXD9Aab54NsvLrToCkk+n0etVsPFF1+MZrMZ+kFIb6GzsAeYvvyFQmFGbz27MPra
yL72tB3OU0phYmICb3jDG3DixAmcOXMGSinkcrlQBExfAEQUcsSIAKzC57MsfDW477vYqcNRTkLf
fy1KCOzrmOZIs9nEypUrUSqVsHXr1i5+qeUHnYXzwAMPPNDiURcRb7fddvjy8M37/fv3AwDGx8dR
rVbDGtVtFnQqBO56X7ahfR92TZ7kO/n2abcuqmlj7s00h4aHh9ten3QGhaBLisUiCoVCmGRjhMCY
6a4pbYirSd1XO9nGtMdtfOZ6uwKfRCh89+eu8323KMTKZIx7HnFWSDqdDq2gVCqFxx9/HNddd12i
65P2UAi6oFgshj3nTEcek8TjtrURUcjM+7h4vp3Lb9rHtVrNW5Ddz0mFIOo1qSXTiRi4z8B3TdfK
MSLSbDZDITDvSe+gEHSJsQLsP6vovvkuPtM9iVjYVCqVcDCQqAJo19Ttavt2YpCUJGLQzgqI8kvY
4UsT4jTHZLPZju6zl5iKYO3atdi8eTNSqVTY69N0zzZh1UqlgiAIUK1W8f73v79v99wOOgs7pFgs
ht1zV61aBThZdpVKZUbnHeN1NyE7+72xKOzQXSqVwt69e8NrmkSe9evXY3x8HEEQtKQTm+N87Wsk
KPTt9o0TEvd9ku32Z99929EW83yff/55XH755aEjtV6vY3JyEtdee22Xv2R3jI2NYe3atchkMnjN
a16DoaGh8Dc2oVQ7bbter4ch2EajEb6fr/ums3AOMdaA+fGDIEClUsGKFStw6623zvr8Dz74YMtn
EUGj0UCpVMLo6ChOnDjR0j/A7lvg0m3TwEc7S8Q9tp0YRImXLWxKKbz00ku49NJLwyxHk7cw382D
YrGIfD4fWmYnTpxAvV4PQ5uu+NsRoFKphFqthnq93rHVNR9QCLognU5jZGQEIyMjYSHIZDIzxuvr
lnvvvRdjY2OA42ibnp5Gs9nEqlWrkMlkwlCijWtqd+sn6HRb1Dr7c5LwpJ3RePToUaxduxZvetOb
wjTmZrMZHjcfzYNisQgAGBwcDP1Cg4ODLYO1TE9Pt6Rku80+I9YHDhzAXXfdNef33A0Ugi4whc84
r7Zs2YJ9+/bNidIboTE1YaPRQLVaRbPZxIoVK1Aul1uiCzazcRb6zhG3T9z2qIlRopoDIoITJ05g
/fr13iHVzP5zPWpysViEiIQikM/nW8ZmcC0X0xQwVoDpE7IYhmFjinGHFIvF8A9rcggOHjwYJvb0
EvOntx2R5g9mmiSFQmGGKeqzBHxOuXbWg+8zYkTFLdR2H4aodGbTa9Ler1wuY926deGYCm6Ckb08
9thjPX3mNgMDAxgaGsLQ0FAoAmasB9c3Y5pv9Xod1WoVpVIJx48fXxQiAFoE3TE5OYnR0VHAynwz
Zu2ePXvwrne9a1bnLxaLMwq1bRG4hTSfz6NSqXhTjX2F1pft2EkNHycKcaLj7mfPoiS62/E555yD
FStWeJOxbFE0y1z5CcbGxjA0NBSGiO1BWWynrt0vw0QHzpw5s+i6TFMIuiAIApTL5dBpZZxYZrz/
XhFVEFxBMF2RfdmBiCik7vmTNBns976wZ9LFFCDj5Dx06BDOOeccXHjhhS19J6JSk+daCIwQ+0Zm
cqM7ttP25MmTi3ZEJYYPu6RYLOLNb34zRkZGwpqt2WyiWq1ienoaExMTXc0DaP6EBrsQujWR+Wxn
3LnbTWTD9OSLEoNO10V99vkA7C7Shw8fxvDwMAYHB5HL5WbUrDZuk8f2zJsmUrVaRaVSwdVXX93x
s/YxNjYGsYZKM2Jgj+Js+wNOnz69oEdeZvhwjikWi9izZ8+MWsKM8tvLfHhfopAtEK7TzK5N7UQc
U5CCIMDIyIi3ueAW/Lj1PlHwhQTHx8fDgn/BBRd4e2Xa3ydKCBHRPOhV9MBECOxZnlynoGkKVioV
jI+P46abburJtfsNhWAWnD17NjQb3Vo4n8/j6aefxhVXXJH4fOaPaP787ug+UYvZ1wiCe7xdQ5sh
w812u2Y999xzY4XAV+DtbUePHg2nS7MHOhkdHZ0hDq6YdUqvzmMwz17podrS6bTXH2AsrKmpqSUj
AmDUYHYcPXoUpVIJlUqlpd++qYVzuRyefPLJxOeLawv71vlMdFgC4Etwsc+T0tOYFQoFrF69OjIZ
xo5SBEGAWq2GarWKIAha9t2wYQPOPfdcrFy5EsPDwy19MdxatRvimimzGb3IiACsZDF7bkc7t0Ep
hampKbz3ve/t+noLEQrBLLj//vtx+vRplMvlMLZv17zZbBb5fB5f/vKXE53PLsi+bVEFyOfMg2Ul
2G1r8+qe1/Ut2GMdGK+5PR+iiasb89kNAbqjHfmaALPFFoJCodD1eczzMP4WEyo0v6NxaprnN99p
zfMBmwaz5Pjx4xgcHGyZJdiOImSzWW/B9mEnBdnHxMX82zn27HObrDz7vXn1EXfNOJ9FLwu7757s
JKteNTOgfQNG8EyUwBYBpSeQXYowatAjisUiXv/612Pjxo2hl9we769cLqNSqeAd73hH5PFR2OE2
NzLgdmRyvfU+553txXe3+9KAfYXeNfPt9fAIk0+cogpv1BgNbj6/cXyapksnU7C7z7tQKGB4eDiM
aJjPoqNBQRBgfHx80Y2BkDRqwKZBjygWi3j55ZfDOQfcHoemmfDUU09h9+7dkedx2/IuUdaAvR0J
Cp+vFp3LmrxX+O7ZFaF2uCJgWwLuJDHQvR8nJycXnQh0AoWgh+zcuRPj4+Ph3AOwanMjBrlcDuvX
r8cTTzzhPUfcH91XUNu1vaNEoN11e0HU6EZJibrfKLFr9x2KxWKLCNi+HLs5YAuBGVOgV3kKCxX6
CHrMd7/7XWzevBnNZhMjIyMz5h2A9af90pe+hKuuugpjY2MzwoTtiPMJdFrQZysC/bAkXB9B1H3Y
IVnbarCbVj4RMCMh1et1lEqlef528w99BHNAsVjE5s2bw7x586dy5wgIggClUgnf+c53wmPdXoT2
HzbORyBOt153vV0QfNl/Pl+AL+knyndgtselHhva+Ql8w7f5QqJuJ6x6vY5Dhw61jBZkz7lgn8f+
3qZPgfENmGngG40GpqamcOWVV/bw3zG/0EfQR4rFIvbt24eTJ09iYmICQRC0OPVMnoHxG7g9B7uh
k4LWzbbZ1vq9qnCiLCGzrF+/HkNDQy1jB9iDzNoZg+b5m3wHO5NQ9ICxZ8+e7cl9L3RoEcwDu3bt
wmWXXYahoaGW8J3xRj/77LORyUTtLALRI/y6tXvKmQYtKmoQZSkkqfl966PWIabp4n6Oswjcvgf2
MGDGyqpWq+HErO6krMaiMDkSJnnICIV5xo1GA29961t7/l+Yb2gRLCB27tyJgwcPhuMNQpv8dsaa
W3CSCnSvau7Z1PidVibu/nakZLYVkxno1LT17UQn2xKwrQNXBEwa8XKCQjBPbN++HS+++CJOnDjR
0oX5a1/7GhCTTGSTJHqwmOlWBOzn4mZF2iJg0r7dMKGdOAQdLlyqiUNRMGowj3zkIx8BADzyyCMY
HR3F8PBwS7TAxm3nz6bm74dIuMImEXMhzgbbenKbPVERBfv6tljYIhAEASYnJ3t2n4sBWgR9YNu2
bXjhhRdw7Ngx73Zf+zpuv6Tr54J2tXjU9rnyTdlDoPmaBG7fCHtMRLtn4fXXXz8n97dQobOwz5iB
MHy4jsEoZ2FcirHPsedzFvrWucciJpU4ylGICIeh+z6KOGehsqZtt0dtgq7ZfeFD+9r2yMPQcyuW
y+VFHS50obNwkfDRj34USFhDRvkIug0R2sRd35f2HJc12Om2Tu8pykdiogF2r0k7Scj4CEyUwFgD
jUYD5XIZx48fX1Ii0An0ESwQ2hXmfjUDZtOub3dsr30GvhCsa7nY/RHM/rVaDaVSCe973/t6di+L
DVoES5R2EQgfSWr9dscmOcaXJ9DJPp1aCu64iHY+QaPRQKVSwTXXXNP2vpcytAgWEL2uIbu9B0Mn
zYqk7X3ffm7kpBu/lXvuqOvYA7MYv8LJkyc7vt5Sg0KwgIgqTFEjFsUxl07gJAXfDhkiInswLqOw
G0T3FowSATu70PT5CIIAt91226yuuxSgECwQOrUG+mE9RNXcSfIFus0l8EUN7G3uUqvVvE5VIwBm
rMWlONzYbKAQLBDcP+1cFvJuzu8e04lVELU+7hxJoxjufkEQeMOVpt/BK6+8QgvAA4VggRGVauy+
76Q9HVdDd3pP7fZpV7ijmgOuyPj28Z0PljCYQUR8FgGbAfFQCBYYbmHqtqAn2Seq/d6rc3fiI0ha
2KNEwkQAyuWy1yI4deoUduzYEfs9ljPMLFwg2FOdufnwpqeiPWmoOwCJ2wXZly0YNwiJvS+cuLsv
azBqwJJ2mYXu+jja+QN8A5McOHAA09PTuO+++3r22yxmOOXZIiQutKacgUuSmOBJa113W1ILIcpv
4Lu+732ctRD3DFwfgYkC1Go13H333ZH3TqJhQtECwZ381OCrCX2+g7hXX8FKagm2u657vrjrRzn5
4q4Rt9jDvi2HAUbnEgrBAsLtdxDlGffViu1oJzJJ1vvOlUSU4vZrJ1RR1oBZTLOAIjA7KAQLGNt8
jqsx7c++16j9fdvaNR+iLI04UWonDL7rt7OC7KncyuVy5D2TZFAIFhjFYnFGm9me9rydIES1r9ut
iyOJQESta2clxDV9fKLgzuNYqVSW3dgBcwGFYBGgPJOXRtWg9nZ3X/ec3VgInVgFUaLUreXhikCz
2cTU1FTkeUhyKAQLEN88iFFmMhLUsu62dufu1DeANhZAO4GKsgZ8loC9BEGAbdu2xTxJkhSGDxcJ
JmbuK6zuDMduYXRnPO6kudBpMyIK5UmSapderJwJTer1evgcGCXoLbQIFig+q8A3G7D92eCrjdu1
x33EWRbuPu7+cZ+jzh/nC7CtgFqtRhHoMRSCBYwrBlEC4BOEpP4DtDHRfduTnD+uWdKu8EcttVoN
tVoNlUqlp8+ZMMV40WBEwZ7FyLzPZDKxcyK6qcJRMx35UoWTDl4KJ9UYnlTidhmLiBAJkzhULpcR
BAG2bt06p896KcHBS5cYRgjsab5c0znKtG5nskfRzkKIep90aWcBGAGo1WqoVquYmpqiCMwRdBYu
QozjzJ7MwxQsg+tAtF/tGtp1LNpE9YB0+wnY292+Bu59+76L+94ImEkfNl2Ib7rppi6fGGkHmwaL
kLGxMcAqdLlcLhyj324yuPMaxM134DYXzPmT9j6Ep5lgSBIdUFaEwBaA06dP484775zT57mUSdo0
oBAsUkwnJVP4zLj99tx/dvdkVwjc9e18BOhgMhMkFAKfw9P2B9x4443z8CSXNhSCZYLxHYg1c489
7Zc7K1KUEzGJszCJRYAORCAqRDg+Po7bb799zp/dcoBCsIwwYqCUarEMfFOkmanTXBGIEoJ2CxIM
QIKIqIDt9DQ5AkEQ4Oabb57nJ7h0oRAsQ8w8iiISTvMVJQRxVsJsmgY+7P+YbQGYLsRGAG699dZ5
eErLCwoBaRGGuCZDEiGIE4Eo3IiEUios9EEQ0Ak4D1AISIgdZRCRMMpgOxQ7tQjsvgs+3CaAEYE7
7rhjXr4zeRUKAYlkbGwsLPxmyWazkULgWgWwnIW+JCH3c7VaxQc/+MF+f+1lCYWAJKZYLM4QgiTR
BHhyAGq1GoIgAAB8+MMf7vM3IxQC0hVun4Z6vR5uc52L9XodqVQK999/fx/vmMRBISCEsNMRISQ5
FAJCCIWAEEIhIIRQCAghoBAQQkAhIISAQkAIAYWAEAIKASEEFAJCCCgEhBBQCAghoBAQQkAhIISA
QkAIAYWAEAIKASEEFAJCCCgEhBBQCAghoBAQQkAhIISAQkAIAYWAEAIKASEEFAJCCCgEhBBQCAgh
oBAQQkAhIISAQkAIAYWAEAIKASEEFAJCCCgEhBBQCAghoBAQQkAhIISAQkAIAYWAEAIKASEEFAJC
CCgEhBBQCAghoBAQQkAhIISAQkAIAYWAEAIKASEEFAJCCCgEhBBQCAghoBAQQkAhIISAQkAIAYWA
EAIKASEEFAJCCCgEhBBQCAghoBAQQkAhIISAQkAIAYWAEAIKASEEFAJCCCgEhBBQCAghoBAQQkAh
IISAQkAIAYWAEAIKASEEFAJCCCgEhBBQCAghoBAQQkAhIISAQkAIAYWAEAIKASEEFAJCCCgEhBBQ
CAghoBAQQkAhIISAQkAIAYWAEAIAopTq9z0QQvoMLQJCCIWAEEIhIIRQCAghoBAQQkAhIISAQkAI
AYWAEAIKASEEFAJCCCgEhBBQCAghoBAQQkAhIISAQkAIAYWAEAIKASEEFAJCCCgEhBBQCAghoBAQ
QkAhIIQAwP8BFvVSR4ODOyEAAAAASUVORK5CYII=
"/>
</div>
</div>
<div class="output_area">
<div class="prompt"></div>
<div class="output_png output_subarea">
<img src="
AAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo
dHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAH5dJREFUeJztnXmQXMV9x7899+ylcyUkLsklNiTG
lCsQILHL8RE7LttcQVxyCAQEFocwFRwcEsI+sEkpqQTish1IRMqmsMGQGFPCdgGVOLarQspOGRtD
jAEDEtKCtNJKWu015+v8Qfdzb2+/Y0azO7O730/Vq519V/d7M/3t3+/Xl5BSghCyuEm1OwOEkPZD
ISCEUAgIIRQCQgiFgBACCgEhBBSCaIQQJSHE+e3Ox1whhNgphPhMu/NB5h4KQQRSyoKU8lt4u5Cs
E0Jsmu00hRDHCSH+UwghhRArrWPfF0LUlECZW7c6nhVCfEEV6ENCiP8QQvzmbOe51QghNgkhfi6E
mBBC7BZC3CeE6DOO/54Q4odCiFEhxJAQ4l4hRI86dpvj/ZSFEM4OM0KIK9S7tq/ZYpxznhDiWSHE
mBDiF0KIzXP0KuYMCkFyLgAwq0IghHgfgB8DGIo47fNKoMxtQh27E8CHAHwYwPEAngPwHSFEfjbz
3UqEEB8EcD+AzwLoA/B+tf2tOn4cgCcB7ADQr459EMDn8bZ4z3g/AL4E4KGIZHc53ul9Kr13AngE
wDYAKwHcAOALQogPz9U7mROklNxCNgASwEYAtwGoq60E4FgAQv1YXwIwqf5eZlz7VQBfUz/YI2rf
bQB+EpHeRgDvVj9uCWCldfz7ALyQa1MADgLYZOwrAJgAcF7C590J4DPG/f5cPdcUgJcBXGWce5Iq
kIcAHFF5O1UdK6rCvFel/wKAC41rXwJwU0ge3g3gHGvf3QD+R33+HQD/ZB33APws4n4jAI4JOX4F
gJ0R7+QfATxt7ftXAI+3+/fZ0t96uzPQyZsWAvnrgv1t49j1AHYDeBeANICPASgDON04f0RZEakG
040Sgh8AeBbAGICfAfh9+euCKQGcbF3zYwB3JUzXFIJrAQwDOANABsAfAagBeJ86/jSAryixKaga
80fq2F8C+LmqsVMAzgMwDmBFg+8hBeBMla+tEedN+24c7+wvIq69Qn1P3wKwH8BbAAYBZNTx/waw
zbrmOgBD7f59tnKja9A8nwLwRSnl81LKupTyuwC+rX5YmoNSyoeklH6L0vyFqpk/DmCtSu9JIcR6
VeigamiTg8qkbZRrAPyLlPLHUsqalPIxAD8EcIk6vlRZR2UpZQnArVLKM41jVQCTUkpfSvk4gD4p
5UjSxIUQlwGoKOH7ipTyiyHnfQzApQD+xnHsAwBOUa5BGPuVaN2j3ukmADcCuEUd72/hO+1YKATN
MwDg82aACcDZAE4wznm9lQlKKa+TUl4tpXxLSjkG4K9VDRYVuxDKUmiUdyjhMfmV2g8AtwO4CMBO
IcR2AB8XQgh17MvKShgSQvy7Cq4VGklcSvkggDyA9wC4WAhxz4wHE+JiAI8ql+UZx20+C+A+KeV4
RDrfkVJ+QEr5QyllVUr5XwC+COBPI7LX7DvtWCgEzTMF4FNWgCknpTzHOKcymxmQb9uprwNYA2Cf
2m3XVCuNY43gCjDqgg4p5ZMqIPlnyjV6CMDD6tgu5TKdC+A1JRo/E0L0Nvh8dSnlTwD8FYAbhBDZ
ICNvN3PeB+ACKeXXZmRUiBUqcPqtxh8dr6p3CvXuWvVOOxYKQfO8ogJRAUKIE4QQ6dlITAixRAjx
ZSHEOmNfWlkmv1KCcADA6cbxbgDvBOCqLeN4VRVmk3eq54YQYqWUclJK+U0p5ZUqDnCxEGK5Sjcv
pfyBlPIWdd1aAH+Q4Dn/QQjxVWt3XgVqfXXOFgCfUfGKp0Ju9QkAB5SQRKV3rRDij63dv6XeKVSM
5XTr+JlNvtPOpd1Bik7erGDhvao5bimAHIDLVcDuwyqY9rvK3zxPxgSwEqQbFiz8XwDfBbAKQA+A
vwNwWJ+nmg9/qQKHvcrE/T8AaXX8BgA7ItI1g4U3q+f5bQBZ5X7UVaEoKr95qyqkWeVTD6vK5SkA
DwJYpqyI96mYwbsSPPvH1bkb1X3foYKj/6aOn6gCj2fF3OdLdrTfOPZLAB8x3skhAO9V3+OH1Dvd
rI7/hgoCb1LP+hHVSvSedv8+W/pbb3cGOnmzhOC96oc+BuA09QO/FcAbyk14CcAW49oZQpCg+fBp
FYCrqLRLartNHT9O+cTD6sf4A91kp45nAPy9KsCTqkC+wzjuAfh5RPp28+HnVM14RInQHxrnvh/A
j1ShPKzycqY6djyAJ9T+cdV8+CfGtaHNh+r4pQBeVM++B8A/A1hmvEPz3QSbdY9vAngowfeqm4F/
pb7HnarFRBjnf0w9Q1lZRJvC8j5fNyE5Q9GiQQiRAfBdKeVH2p0X0lkwRrC4+MSC821JS6BFQAih
RUAIoRAQQlSUuS2EDQslhLQOKaVIcBotAkIIhYAQQiEghIBCQAgBhYAQAgoBIQQUAkIIKASEEFAI
CCGgEBBCQCEghIBCQAgBhYAQAgoBIQQUAkIIKASEEFAICCGgEBBCQCEghIBCQAgBhYAQAgoBIQQU
AkIIKASEEFAICCGgEBBCQCEghIBCQAgBhYAQAgoBIQQUAkIIKASEEFAICCGgEBBCQCEghIBCQAgB
hYAQAgoBIQQUAkIIKASEEFAICCGgEBBCQCEghIBCQAgBhYAQAgoBIQQAMu3OAOlc7rrrLmQyGaRS
KQghgr9CCKTTaWzdurXdWSQtQkgp25OwEO1JmMSybds2pFIppFKpQAj0poXA/Lx58+Z2Z5mEIKUU
Sc6jEBAAgOd5SKfT6O3tRTqddgqBKQCmEAghkMvl4Ps+Nm7c2O5HIQZJhYCuAQlIp9MAgGw2O00I
XAKQTqcDEcjn88jn8/B9v92PQJqEQkACfN+HEAJSysASCBOCXC6HXC6HbDaLbDYLIQTq9Xq7H4E0
CV2DRciOHTvQ39+PTCYDKSV838eTTz6JXC6Hrq4udHd3I5PJIJ/PI5fLBaKQTqeDLZ/PI5PJBFaE
7/vYt29fIAr6d1WpVHD++ee3+YkXL4wRkIAHH3wQAwMDSKfTkFKiXC6jXq9DiLd/I77vo1Kp4Jln
nkFvby96e3tRKBSQz+fR1dWFTCYTbFoItPsAAPV6HWNjY9i/fz/M35OUMnAdtBtx8OBBXHXVVW17
F4sNCsEi5eGHH8b69euRSqVQKpVQKBSwdu1aZLNZ1Go1bN++PajNtRCYQT8AGB0dRT6fR29vL5Yt
W4Z8Po9sNhsIgXYD6vU60uk0XnvttdD8aJHp7u4GlDjov11dXSgUCpiYmGDLwyxBIVhkPPDAAzj5
5JNRr9dRqVSQTqdxwgknIJPJYPv27YFfr818GALg4vDhw8jn8+jr6wuu00KQyWRwyimn4M0338RL
L700TVDMvybaBdFxBCllIApaaAqFAi677LJZe0eLEQrBIuKZZ54BAJRKpcC37+rqwmOPPRYE9OCo
+cPQv4nR0VEsXbo0sCCy2SzS6TSKxSJWrlyJF154YZqowBKXsHS0KIyPj09zJTKZDAqFAq6//vqW
vBdCIVgU3H333Tj99NNRqVQgpUQqlUJXVxeeeuopCCHQ3d0dWkDt710XTl1T+76PqakprFixAtls
Nqi1c7kcisUihBDYuXOns08BLBEIEwTf9+H7PkZGRqY1Pa5Zs4YdlVoEhWCBc//99+Pkk0/G5OQk
arUastksXn75ZRw4cCBo0tP+PGJqZykl6vV6IAClUikI9K1atSrw5XUAUbcM7Nq1C7Vabdr9wiyO
uPSFENizZ0+wv6urC6tXr8bll19+lG9qcUMhWMA88MADWLduHSYnJ1Gv17F7927s3bs3EAAdCAxz
BezIvhYCHV/Q+4rFItauXesUglqthgMHDqBSqaBUKgW1e9Lfk5knM4AIALt37w7Eob+/H8ViEVde
eWWL3t7igkKwAHn00UexfPlyTE1NBQIwNjYGqN6AUS0BNrYYaMz+ArlcDj09PcjlctP6DZitBrVa
DdVqFbVaLdhgBQPD0rLzpv+vVCoQQuCNN94Irlm/fj2uuOKKFrzFxQW7GC9Ali1bhvHxcfi+jz17
9mBsbAy+76NQKEyzApBACFyRfr3pPgJ2XwFYtbe2AMyBSGYnJdPs19fFBSp1v4NyuYwTTzwRu3bt
ghACr7/+esveI5kJ5yOYJ3ieh/HxcdRqNezZswejo6PwfX/aACF7ZKAdxDOPm5tuEtR/za7FUEE9
s/Y3LQBtGZiCYKcRlRf7fD2OoaurC0IIrFu3LngHjzzySBu/gYUNhWCekM1mUa1WMTQ0hMOHD6Ne
rweFOElhswu/ea05wEib/roGt10AvVUqFVSrVacIJCnsYfvMZ9GtE+vWrQuOUwxmB7oGLeZzn/vc
jAKmf9yuJjsAuPnmmyPv6XkeVq9ejeHh4cAd0IVWF2hX011YE57LhTALoP4MZQ1oUz+VSgVdk6OC
fSZRrkBY64KZfrFYRLlcxvr16+H7ftAngrQWBgtbgOd5wVBcc7SeWdOZ2IXI5Xebf0dHR7FhwwaM
jIzg8OHDkFKiUCgEIqB9eVsAXJ197L/muXG1tes68zmghAMRAcKoYKHepwcy6ePaGvF9H0uWLMHE
xAQ2bdrU4Le0OGGwcA7Ytm1bIAC6bd0lBFGERdb1/7of/+HDh1EulwMz3GXaRwUAXfvtc1yF2wz4
2feIIi5I6TrH9d70/1Aik8lk0NvbG5k2aRwKQZN4nodisRiMy8/lckFtZpvbNlFmtfnXFAcdmLPv
4ypMYQUeIeIQVdubUX/bvYkTA/M8U0zCrjfdE/N/IUTgFuj3+41vfAOXXHJJovRJPBSCJtAiUCwW
g/Z7c5JP14YEg3Lsz88991zwvy4I5XI5tBaPKtRR1oB5vetzGK7CHUaci2S7IzBmTNITpeRyueBY
Pp9PlC5JBoWgSfSkHbrwu6bpMtvO7XiB/qxrONuftymVSoEFoiP1rvTiCrxLjFzHk5JEDOLcAfv9
2IKgA5WZTCZIM5fLNZTPVuJ5Hvr6+nDMMcfgpJNOghAiaE3RLSz1ej0Ygq1bWT75yU+2Lc9xMFjY
IJ7nIZfLoa+vD8uWLZvWxl6r1TAxMYFyuRx0udUCoUcB2r69DjCak36k02m88MIL09IVQmD16tUY
HR1FtVoNRgNqczmsCRGOwh9nKcSdG/U5yXH73mEiYHZm2r9/P4477rigO3StVsP4+Dguuuiipr7H
ZvE8D6tWrUImk8GGDRtQLBYDN65Wq03rau37/rS+Fr7vo1qtQggxZ/lmsHAW0daA/qL1QJ3e3l5s
2bKlJWl4ngdYPvrk5CSWL1+OkZGRaaME7V6FJnGCYJ/jOq5ptvYPE4KwDkdmnEVKiUOHDuGYY45B
KpUKnlmo+RXmksHBwcAlzGQy2Lt3L+r1OtatWzdjrIUZaK1Wq5iYmAjGZGjLppPovBx1OLow9PT0
YMmSJcHw32w2i0ql0tJ0YBWicrkMAOju7kahUMCRI0emXWPHDlwtCWhAHFzX2Z8b2WfnK8wS0FOq
HTx4ECtWrMDxxx8fiILuSJVKpeZECAYHB4Ph3XrwVVdXVzBZSzabRalUmjb1u/lMurIol8u4+uqr
Zz2/zUIhOAry+TzS6TQGBgawc+fOWUnDdN30j0oIgVKpFMwnqAOIdg8/TRILIO78Zo7pz64Cb++3
3YHR0VGsXLlyWldnszNTKpWa9enTPc9DKpVCd3c3isViYAmaAWLzWbXLYrqLu3fvxrXXXjur+WwF
7GLcIHfccQegItq62XD37t0Qqg9BK9BuAaxCascj7NF+NnbN79psqyEqvuA6zz7mGr9gb/Y55nyI
6XQa9Xody5cvn9FRypXHr3/96y155y4ymQx6enrQ1dUViIDe7IVfhBqRqQODY2NjGBoamhciAFoE
zXHkyBGsWrUKMNrIoX44jz/+OM4777yWpWXW8loIdG2oa8hCoQAhxLRJQsIKtauQI6Kmj3INXPdy
BStdzaopx5oJ+/fvx9KlS4MxBsLRb8G2emarGXFwcDBwwXSnMS0CdkcuKJGuVquYmprCyMgIrrnm
mlnJ12xBIWgCz/Nw7733ol6vBzWD/sEWCoWjvn9YUM5lImtB0LWrsIb8RlkF5n3jhCCpheBKM2xQ
USaTwdNPP43TTjsNS5YsQX9/f1DI7Pdhv4fZFALP84KJWbQQaJfAHKEJo49HvV7H0NBQR8cBomDz
YZN4noczzjgDvb29QX8CKSVKpRJKpRImJiaaWtjDdAs0+jsylyIzt3w+HzqaEEZsQQ/tdY1BiCvw
UfvjCr1uBRgaGkJ3dze6urqmTaQS1gPTjLzrAqcj87pJrlwuo1Qq4YILLmj4XbsYHByEUMHg/v7+
wC3Q+dXfs3YD9u3b19HrNCRtPmSMoEk8z5vWZwCqIOhVgIrFIu65556m7293OQ6zELRvqmsls7Bo
yyKTyQQi4Ps+yuUyJicn8fzzz88Ylpx0Mxc9Mf183bdB///WW28FzWbHHnssli9fHnSMMkdQuiwV
OITItb9VrQee5wX30xO12v009PuemprC8PBwR4tAI9A1OAoOHTo0rYehLiRSSuTzeQwMDDR0PztI
iBC/2GXawzBTdYG3ZwjSQqUHSJ166qmA4d/qiDeM2nj16tWhNT8AvPXWW9MEQbdk6IJz7LHHzmhW
g2WFNELY+zhazHdvruloW1m6X8DY2NiCmkeRQnAUvPnmm8HyYKbZrsWgUCjgiSeewNlnn93U/e1A
WZQvDksQtCjY+8Pup8UhrKDaLqTu9rt27dpp9wkLDNquRTMIa/CTmcajjz7adG89lwjoHp9m64Y0
1mNYaAux0DU4CjzPw/DwcNBrzOzsomveQqGAHTt2NHTfsGBfGGEF2Pat7XULzBGOdsG13QVzKjPT
FXCti+gaGj0bmHk+miCtfge6k5IOEJrPC+N9LsRRjxSCo+TTn/409u/fj7GxsaBnoVmI9IIgcQwO
Dgaf7Zo4yhpwWQSIML3tAJw93DmKpOb4bBd+++/Rugf6WlMEzI5D2gLRi74sRNhq0CI8z8PAwADW
r18f/Hh0AK9er2NychKlUgmvvfYabrrpphnXayFwmfG6ljU7sdi1tt1vP2VMYebqwRe1P87Ud+2H
FTsIs1LChMskbI4Gl1VjjvhrZAl23Tqgu4gXi0X09PSgp6cnGE/Q09MTfI+VSgUjIyPzbmYkthrM
MZ7n4eWXX8bExARqtdqMmYS0m7BhwwY89NBDsfcLq/HjLIOkNbV93mzW4q3ElW9TnJKgWwf0d6Rj
AuaybjpmopsKjxw5Mu9EoBEoBC3E8zyMjIxgbGwM1Wo1qG10ba4XClmyZAkee+yxyHs1GieAw2y2
P4ft61QRCBO3MEsj7jk8z5sWGNQCrb8X0x3Qk6Jod+DCCy9s+fN1Emw1aDEvvvgiBgYG4Ps++vr6
AjdB/7Bg/Gh1d2Tdk83G7mHYiBUQFT+wzwsjaUwgDFcPyUZmNYpCWC0HcDzLnXfeGTSnulwb7d7o
rsNmHwjd8qPnPVjoMEYwC3ieh/Xr16O/vx9LliyZ1vRkrxMwMTExbRISs6BIKaf5/3ExAmF14W00
RuCKAYS1/yeJESDEookTKNe0ba7WDvt96tF+eg1HHVMw86CvN9+fHl2ot0KhgHQ6HYjAueee2/Lf
yFzBiUnaiDY/t2/fDikl+vr6pnVDNrGbvZLU4mHEuQZJLYRmrIc4Wm0JIERs1qxZg0OHDiGbzQY9
LfU10lqmLaXmkdBzT5qzSAk1/dh8FoFGoBDMInoAiud5OOuss9Db2zttURL9OcyEDovYR7kGYT5z
krhBO2IFzQiEaTHZlk4qlUJPTw8qlUogBK7mUt1nIJPJzGgyFKob8Uc/+tFZeurOg8HCOcDzPLzy
yis4cOBAMMuQjhuYcxg046ZFxQlmg7h0kjyDfU4zfRrC0OtBmuMdTN9f1/xmTECLgNlnwBzSvRig
EMwRW7duxU9/+lPs3bsX4+PjwVDi733ve4mi/WHWQBLizj1aEWlXnEljvhPXgCizN6Q5t4ApBHZz
YalUauszzTV0DeYQHTu47777sGbNmsgVe8KmHTNxiYVrfytpxpS3xwe0Cv1u7M5XehwEIlwlGM2H
ZouO7qRkzwe50KFF0Aa2bNmCZ599Frt27Qo9p5Fav5XWQaOEWQN2r8Ck1zVLmEVgBgFdboFeoQqW
CHTyGgSzAZsP24zu6gpHbWs3E5qj4cwmPHuCD3NCEFezYJJ9rmZCOJoPEeG2uGrjRltF7OZDezPn
YNDuFtQsTub04i7ryZ5tSDfntnKquXbDLsbzBD0ZKmKi+WFuQivcg6MJ8LnOCesclTStRvKl0S6C
bo2xLQFtIeTzeRQKhWDouFBzPU5MTGDv3r0LSgQagTGCDsTuVNRumvXt466LOt7Mc9vXCMcgKHM8
gj6/UqksyDkGGoEWQQcRZsa6iLMMWp2npOc1al00Y40kOce0jEz3Sp9ruhOlUgkXX3xxbBoLGVoE
HcRsRNZt4oJ3tiXSyryEPVtY2o1ijz6007I7F2kh2LdvX1PpLSQoBB2A+cNvR+8+V14aMemjBheF
3S/smiR5C/tfGKtSu+5tC4AenzBfFiGZTSgEHUgSqyCp5dBqC8MVv7BbPeKEIayVxJWW/dkOUtqt
CHr5N7sfgW5hKJfLqFQquPTSS1v2ThYCFIIOIapZrdUBw1YE/45GrJLcJy6O4BIGs2uwLQTaAhge
HsZ1113XwFMvDigEHUCjkXNXrRwXgT8aq6ARd6GZfJj3jxK9KNdAm/y6a7AZL9BNhOVymSIQAoWg
A2hlM5rtm0edh4SDiJo5p1UxArs1QlqDk/Rf3QowOTkZpGfef3h4GLfcckvkcyxm2LOwQ9DjEOyC
Yw5X1h1g7MlFXJOXCmOpMbs3YJKehTCa3lwdmprtWYgYN8gkKhYgQyZ6efXVV1EqlXDrrbe28NuZ
v3BiknlKWLQ7CbZ5niS6H5ZGEvM+7P5xgcGogCMiXABbCGBYAr7v45xzzkn0nshM2KGoQ4iat9Cs
AcNM47jC47pfElyFz04vKj/2saT5ctX+rn3aElio6w3MFRSCDsIcd2CSpNCYx8LuEXffRo5FfY7L
V5zJHxUPsIVAi8HGjRudeSXJoBB0OGE1b9jxsGNh1yOkMIblJapGd6UZdizOIgmzLGwRMAOEpHko
BB2GOe++xhxOG1Vz2p8RUzCTEudKJCn8YWIQZxG4zjNFYGpqakEvPDJXUAjmAaaPbO9PIgBhlkRc
4Y67Ls4qCLNQGkk7SgR831/wC4/MFRSCDiTKKnAV0Lha1j5mElUj2yRxQ8Jqc1ceogq86xxbBKrV
asI3SuJg82GHIh1Nc/V63VlY9ZToeq4+uzCac/jBUYjD9kXtb8XzRPUydFkCetahWq2GUqnEAGEL
oUXQodxxxx0zalLXasDm/+a5aKD2dRFnWdjnJUkj6n+70LusgHq9jmq1ikqlQhFoMbQIOhjdnKhX
79Wr9uihtrCG3sLoxacLkqubr+t/WxCiOvjY93Tdz9WhyHW9Kw2XKOilyavVarA2BGkdtAjmAWb3
Y5dV4PKjo6wCTZyPHnV+2L3DYgRxfr8rBmBbAuVyGeVyedHNMDwXUAjmCVoMzP71rgIU5jY06hog
pldho+6HfU6YoNkiUKvVUKlUUC6XMTo6ShGYJegazEOktSSXHgCkCxIcAUTtVtgLsZpuhE3YKMYk
oxvD8h32v0so9AxCWgz0WpKk9XD04TxEr4Wgvzu9bp85T7+w1jVwLZceNSLRPu4alQhrZGHYX/sz
YloHzMLPzkJHR9LRhxSCeYx2F4SxWIcpBlELn9j7k6y83Mhw47ihxmEugZQS1WoVY2NjuOqqq+bo
TS5cKASLBLPzkUsI7NWSzK1RiwCO9QGatQaksUqRHRtY7FOLtxIKwSJDC4KeyMQUhLCl08xCrhcC
jXMNwiYm0diTkJjYboC9XFm1WkW1WsXmzZvn4I0tDigEi5TBwUHAiBvECYFtIUQJQJxrEIb5GzMt
AB0L0AKwZcuWWX47iw8KAZm2wKppKWSz2RkiYE9rFicI9mIiLuxWAXNKsWq1ihtuuGFWn59QCIiF
thSEEMjlcjPch0aEAI5VhUzCXAAW/rmHQkBC0dOimS0NemJUWwTiLAK7s5A9MMr3fdx4441tfuLF
C4WAJMbzvGn9DxpxDexCPzU1hWw2y6nDOwQKAWkKszlSCBFYDNo6GB8fD4Qgm82iUqng9ttvb2ue
STgUAkJIYiHgoCNCCIWAEEIhIIRQCAghoBAQQkAhIISAQkAIAYWAEAIKASEEFAJCCCgEhBBQCAgh
oBAQQkAhIISAQkAIAYWAEAIKASEEFAJCCCgEhBBQCAghoBAQQkAhIISAQkAIAYWAEAIKASEEFAJC
CCgEhBBQCAghoBAQQkAhIISAQkAIAYWAEAIKASEEFAJCCCgEhBBQCAghoBAQQkAhIISAQkAIAYWA
EAIKASEEFAJCCCgEhBBQCAghoBAQQkAhIISAQkAIAYWAEAIKASEEFAJCCCgEhBBQCAghoBAQQkAh
IISAQkAIAYWAEAIKASEEFAJCCCgEhBBQCAghoBAQQkAhIISAQkAIAYWAEAIKASEEFAJCCCgEhBBQ
CAghoBAQQkAhIISAQkAIAYWAEAIKASEEFAJCCCgEhBBQCAghoBAQQkAhIISAQkAIAYWAEAIKASEE
FAJCCCgEhBBQCAghoBAQQkAhIISAQkAIAYWAEAIKASEEAISUst15IIS0GVoEhBAKASGEQkAIoRAQ
QkAhIISAQkAIAYWAEAIKASEEFAJCCCgEhBBQCAghoBAQQkAhIISAQkAIAYWAEAIKASEEFAJCCCgE
hBBQCAghoBAQQkAhIISAQkAIAYD/B2EIkQdyVavyAAAAAElFTkSuQmCC
"/>
</div>
</div>
<div class="output_area">
<div class="prompt"></div>
<div class="output_png output_subarea">
<img src="
AAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo
dHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAHztJREFUeJztnXuQHMV9x7+/3b193K0OCYkTKDwk
QEAKkjKJHYJJXE6wTcVxzPthxcRgzBsZJ4AdJ5S1KkzwHyFx7CSACDEOxohUkCnjcmHKAdtVEJuU
sS0TAhEWEnr4JJ3QvfZu350/6B73tXpmZ/f2bu/x/VRN3e7M7PTM3PS3f79f/7pHlFIghCxuEt0+
AUJI96EQEEIoBIQQCgEhhEJACAGFgBACCkE0IlISkQu7fR6zhYjsEJHbu30eZPahEESglMoqpb6B
tyvJahFZN9NlisixIvKfIqJEZIVn+/tE5KciMikivxCRa61tPSLyD7pCHxKR74rIr8/0OXcaEVkn
IltFpCgiu0TkfhHpt7a/W0R+ICIjIrJHRO4TkbzedqcWcHspi0howoyIXCAiL4nImIi8IiKfsLY9
4zleVUSem4VbMXsopbjEWADcBuBbM1zGewDsBfBvABSAFc720wGMArgMQBbA+wC8CuB4vf0eAC8D
WAsgD+BeANsBZGKWvwPA7V2+z38IYALAHwFIAjhJX+N9evux+h7cDiCtr/U1AF+MOOa9AB4N2XY6
gLK+pxldfhHA+0P2TwB4EcC13X4mO3rfu30Cc3nRlfESAHcCqOulBODXAAiAz+iHcEL/vdL67cMA
vgbgmwBG9bo7Afw4orxLALwDwHtDhOAhAF8L+W0CwFsA1lnrsvqhviDm9QZCoI93h76uSQD/B+Aa
a9+1AJ4GcEhXzO8B+E29LQfgXwAM6vJfBnCp9dvXAHwq5BzeAeDDzrq/A/Bf+vO7APyzs70A4KcR
xzsI4OiQ7V8E8IznPj8Zsv96AD8EIN1+Pjv6rHf7BObyYoRA/apif8vadjOAXQB+Q7dcH9Qtyzut
/Q8CWAcg0WK5YUKwDcDdAL4NYATAVlNpdMVUAE5zfvMigLtjlmsLwY0A9gP4HQApABcBqAF4j97+
DICvaLHJAvgCgB/pbX+lz+0oLSgXABgHsLzF+5AAcJY+r/UR+z0cZq1pgfrLiN8+D+ALzrqbAOzx
7LtUC9/vdvvZ7PTCGEH7XA/gy0qpnyul6kqpbwP4FoCrrH3eUkp9XSnV6FCZxwL4uK50qwB8FcAT
InKqrnTQD6rNWwAOizXE4DoAm5RSLyqlakqpLQB+AOAKvX2pto7KSqkSgM8qpc6ytlUBTCilGkqp
JwH0K6UOxi1cRK4EUAHwfQBfUUp9OWS/DwL4CIC/8Wz7AwBnAPjHiKKOauGe/bkWux/GvY75AoWg
fU4B8Hk7iATgTwAcb+3zRofLFACPK6V+oJQqKqXu1a3lpU1+087IshMBvOKse12vB4DPab96h4g8
COCPRUT0tn/SVsIeEfkPHXzLtlK4UuoR7bOfA+ByEfn7wy5M5HIA/65dlhc8h/kMgPuVUuOtlO27
ZyKSBXArgL9t8VjzAgpB+0wCuF73LJglrZT6sLVPpcNlDurWymaHtg726e9uS7bC2tYKGc86U9Gh
lHoawHEA/kK7Rl8H8JjetlO7TOfrYOXnAPxURJa0cgLa0voxgL8GcIuI9AQn8nY35/0ALlZKfe2w
ExVZDuBcAN9oUsy+mPfsPC0O32vlGuYLFIL22aYDUQEicryIJGewzP8BcKazbjWAndr6GALwTut8
+nRU3NdaNuMXujLbnK6vGyKyQik1oZR6Qin1cR0HuFxEjtTlZpRS31dKfVr/bpXu5YhERO4VkYed
1RkdqG3ofW7QvQbvUUp9J+RQHwIwpIUkihfte6Y5y3PPLgDwHaVUrdk1zEcoBPGZBHCciCwVkbQ2
fz8uIu8XkZSInA3gx9o9mCm+DOBDInKZiGRF5FM6bvCojkPcB+CzIrJWt75f0BX6u3i7At0iIt+M
Wda/AviEiPyWzk9YpyvIV0UkB2CbiKwXkYxuqd8J4ACAYQBbAGwSkWXaXThTV+bXY5T7LIA/FZFL
dLknAvg0gKeUUnUROUGb5xcopX4ecZx3AfBuF5FXReQD+usmAO/WuQsZvf4iT1zhXToAujDpdrRy
Li9Or8Hv6Sj6GIDf1mbyZwG8qUXiNQA3WL89LJIdo/vwGR2Aq+iyS3q509rnal25y/rB/H1rW0pX
kgO6S/M7AE60thcAbI0o3+0+vEtX3lEA/w3gPGvf9wL4ke4NGNZBvbP0tuMAPKXXj+vuwz+zfhva
fai3fwTA/+pr3w3gAQDLrHto35tgcY7xBICvN/u/6u8f1OdY1hbPOs9vDgK4rtvP5EwtojhD0aJB
RFIAvq2U+kCM3ckigq7B4uJDbcYLyAKHFgEhhBYBIYRCQAjRUeauEDUslBDSGZRSEmM3WgSEEAoB
IYRCQAgBhYAQAgoBIQQUAkIIKASEEFAICCGgEBBCQCEghIBCQAgBhYAQAgoBIQQUAkIIKASEEFAI
CCGgEBBCQCEghIBCQAgBhYAQAgoBIQQUAkIIKASEEFAICCGgEBBCQCEghIBCQAgBhYAQAgoBIQQU
AkIIKASEEFAICCGgEBBCQCEghIBCQAgBhYAQAgoBIQQUAkIIKASEEFAICCGgEBBCQCEghIBCQAgB
hYAQAgoBIQQUAkIIAKS6fQJk7vL5z38eqVQKiUQCiUQCIjLl7yc/+clunyLpEKKU6k7BIt0pmDTl
nnvuCSp/T0/PFCEwIpBIvG1Migiuvfbabp8yCUEpJXH2oxAQAEChUEAqlUI+n0cikUAymUQikQgs
AtcasIVBRJBOp1Gv13HppZd2+1KIRVwhoGtAgLcfmKCVt62AOEKQyWSQyWTQaDS6fRmkTSgEBNAm
fqPRgMjbDUgqlUIymQwsA1cIenp6giWdTiORSKBer3f7Mkib0DVYhDz55JMYGBhAT08PAKBer+Pp
p59GOp1Gb28vent7gwqeTqeRSqUgIoEwJJNJZLPZQCyMiBw6dCgowzxX5XIZF110UdeudbHDGAEJ
ePjhh3HaaachlUpBKYVyuYx6vR60/o1GA5VKBS+88AL6+/uRz+eRzWaRyWTQ29sbVHj7r3EfzO/H
x8exb98+2M+TUipwHYwbMTg4iBtvvLFr92KxQSFYpDzyyCM4+eSTkUqlMDk5iUwmg1WrViGTyaBa
reLBBx9EOp1GT09PIASmkprPIyMjyOVyWLJkCZYtW4ZMJhNUftsCqNVqSCaTeP31173nopRCo9FA
JpMJBMJ+3np7e5HNZjE6OorrrrtuVu7PYoNCsMh46KGHcMYZZ6DRaKBcLiOZTOL4449HKpXCpk2b
kEgkAjPf7vozAuAyMjKCTCaD/v5+9PT0IJVKTbEITjvtNIyMjGDr1q1TRMTgHlcphXq9HgQUlVJT
LIaenh5kMhlceeWVM3iXFh8UgkXE888/DxFBqVQK/Pfe3l5s2bIl8PVhVU4jBFGMjIwAAJYuXRpY
BGbJZrNYunQpXnvttcNEwLUufDQaDTQaDRSLxSkWgjn2zTffPO17Qt6GQrAIuPvuu3HOOeegVqsF
3X+9vb342c9+hsHBQfT19XlbfxGB+383ZrxpqZVSmJiYwJFHHhkEDU0vwZIlS6CUwo4dO6YkGYWJ
QDNBOHjw4BQLYdWqVajVarj++utn8O4tDigEC5wHHngAp59+OiYnJ1Gr1ZBKpbBt2zbs378/qLTJ
ZBJo4gKYCliv1wMxKJVKQaUcGBhAb28vMpkMstlsIAoigjfeeCMw9X2WgU2z8kUEu3fvDtb39fVh
YGAAH/vYxzp0xxYnFIIFzEMPPYS1a9eiWCyiXq9j9+7dGBwcDAJ6prvPXmzcyL7tv5fL5cAyyGaz
WLVqFXp7e5HL5YKehJ6eHtTrdQwNDaFcLge9EOZY7WJ+u2vXrmDdwMAAbrrppraPudihECxAHnvs
MQwMDGBiYgL1eh27du3C2NgYoP1rkxcQJQIGVwxsTNdgJpNBPp8PMgdNsBDarK/VaqjVaqhUKqjX
68F3WAITVY7PalBKoVqtQkSwc+fOYP3q1atx1VVXTev+LUaYYrwAWbFiBcbGxtBoNLBnzx6MjY2h
Xq8jm80G3Xpu0C5MCHw+vPHzTYU3gqCUCuIQJvvQjikkEgk0Go1gjIItArYYhJ2LjRGgSqWC1atX
Y+fOnVBK4Y033ujQXSQ+OB/BPKFQKKBYLKJWq2HPnj0YGRkJ+vFNBfQF7nyLGStgL76kITvhyLYA
qtUqqtUqarUa6vV64Bb4xiPYS9Q52b81PR/GEjA8/vjjXfwPLGwoBPOEVCqFSqWCvXv3Ynh4OBAB
eyxAWMUKEwA7Zdhe7F4FU9FNxa9UKqhUKlOEwIiAXQ48LkqYIITNd5DL5SAiWLNmTbDv5s2bu/yf
WJjQNegwd911l7fC2di+8m233db0mIVCAQMDA9i/fz9GR0dRr9eniIDPLUBEF57PhfBVRGhrwJj3
9qAkXwDSvi4jJs3cAV+cwBaSbDaLSqWCNWvWoNFoBHEQ0lkYLOwAhUIB6XQ68NV9LZwPU1l8ix2F
HxkZwdq1azE0NITh4WEopZDJZAIxML68W0ntxKGwhB973zALwo03RPVENAsSxgkYujkJxh1RSqG/
vx/FYhHr1q1r+f+0GGGwcBa45557pnSpGf/WrUAGnyC4Ofhuhdq+fTtEBMPDw0HXnj1xiE9wwio9
PEFEN1Donpvdzx9mDfhoJUhpfzf3EI61Au2mmMlTSGehELRJoVBALpdDJpMJEniiAmMuZp3deroi
YO9n/HGbMLGJIwRxtptzEScT0RWGZoS5Ce531y2xr8+kH5t1mzdvxhVXXBGrfNIcCkEbFAqFIJ/f
HpATFRlHRGvoS/dVSmHr1q3BOuMfl8vl0Errq+RxhSDq/MKIEwNwjxcmBm6swv1sRjGaCVDM+AnS
GSgEbWLcAXtYbhhuAMz1w6PMblPZJicnkcvl0NPTMyVo59s3SgTsc7I/t2L2+8qMIo47IJ6ApZ28
ZOIhsHINukWhUEBvby9WrlyJU089Nfj/24lVjUYD9XodpVIJ1WoV5XJ5TqdLM1jYIiYw2N/fj2XL
lgWBPRPQmpycnJKya7rfjFnr9ibYGXv2Yob32pX76KOPxvDwMKrVamCJGDFyK1GUEDSzJML2bcV6
aFb5EWIFiNPNCR0beOWVV3DmmWdOud9jY2O4/PLLp/0/bQXTg5NOp7F69Wr09fUFFpwRANPDYnIv
7GfBrJstt4bBwhnExAXsij45OYl8Po8bbrihI2UUCoUp3xuNBiYmJrB8+XIcOHBgygNnjy1wiVOx
m/01TKf194lBWE+F3R2qlMLQ0BDOOOOMIIPRbJttq2DDhg3BmItUKoV9+/ahVqvhxBNPDCp+WA9Q
sVgMErFatbpmAwpBG4gI8vk8jjjiiKBy9PT0oFqtdqwMO1hoPptRgf39/Uin08GcAfZ5uZUKbYqB
u59vW6vrfK2+u952Afbv34+jjjoKq1evnuJ+mbTm2YgTGEE2cznmcjn09fUFQ7LNTFAmG9ONccCK
7+zYsWPOzrVAIWgDUzHT6TSSySROPvlk7Nq1CxMTEx0rw1QgO2pvzEpTKfL5PCqVirebr1ULIKpC
x63sYb8NC6La3YRuj8vBgwexcuXKwO3xxT9mumUtFAoQkUAEzDBsIwK2S2b/f4wVUK/XsWfPnnnx
AhimGLeIeThMwCqTyWDv3r0Q3cXVKeyKbf4aV8Tk/NdqNaTT6dDhv2EiEBVLaCVW4KuYdqUOS2G2
syJNnMO0rslkEuVyGStWrJgSjA0r89FHH+3YPXdJJpPI5/Po6+ubIgJmyjc3vdv8b8rlMorFIgYH
B+eFCIAWQXuMjo5iYGAAcEz3VCqFJ598EhdccMG0jm/HB1yLwF5MXoEZoGOGAMNTYdx1aLFV920L
a/3dssIsAteU/uUvf4lly5YFb1uycUXRLDMVJ9iwYQP6+vqQy+WQTqcD0TdWoBvQNMOny+UyhoeH
592QaQpBGxQKBdx3331BppsxXaErZaexH34jCGY6ctMSuSMGEVLxo1p2eCp9lAi0KwS2xSB6ivNl
y5bhmGOOmRIjsBOswq5rJuIEGzZsgIhMmYzFzMxkWzMmeGmW/fv3z+kuwigoBG0yODiIE0444bA3
AvX29uKZZ55BsVjEhRde2PJxXWvARpxUYntKcRNAc9OOTbeW/W6BqCCi+zeOS+Bb5xuOvH379sDU
zuVywfrjjjsu1N93BzIZMTTXlkwm8cQTT+Diiy9u+V5H3f98Pj9lZibjuphyTd7AwYMHF8TMy4wR
tMnGjRtRLBaD/H/oB9XkBuRyOXzpS19q+bg+f9/XWtvb7D5qtwvLRNdNBTJdnePj4y3581GLPcOx
7e+nUik899xzwTwKa9aswcqVK4NeDzcG4Fog7vXb32fCKjAi4L7OzRcLmJycxL59+xaECIAWwfQ4
dOhQYDbalcmMDjzppJNaOp4xSd2xBqZC+/xsG3ciUTvgCCt33wiD2cfMM1Cr1bBixYpIi8C37N69
O6j8JvvRWErnnnvuYQlP8LgdYYgzTsEXJ4hznDj33twPOyjoJoGZ+zU2Noarr7562uXOFWgRTIO9
e/eiWCyiVCpNmbbLtJLZbBZPPfVU7OP5KpwtCGGL+3t7/gA3ucUtz1gM/f39WL58+WGDoNzFTqIy
64499lgcffTROOqoo3DEEUccFmX3Rding+8+TWf2ItsdM7EAX8anuSfj4+P46Ec/Oq1rmGtQCKZB
oVDA/v37AzGo1+tTTO2enp6WxQAhfnEUvlbbHMftaTDi4Pu969O7U5cZ099+Oaq7uBH1TrTW9nmG
nXcul2v7uOZ+2F3CZoCTuS6xArWzndY8G1AIpsmtt96KAwcOYGxsDOVyGbAm+Ugmk8GEJXGJygeI
axHAIyBuK+9aC1H4yowaat3Jyu87F/fvdK0M83vz2jW7l8AWAaUUSqVSx65lLsFBRx2iUChg7dq1
WLNmTTBJiW1GT0xMoFwuY/v27bj11lu9vw/DCIuJWvsGL/kmKbHHILhRfLcyh6X8hsUmwhKSfDEA
97MhrPKGTdbiBkMbjQaq1eqURJ64r2A399vEG3K5HPL5/JTegnw+H/wfq9Uq3nrrrXk3B0LcQUe0
CDpEoVDAtm3bMDExEaSZmoph3AQTQHzsscfaKiOOZRC3wvnM7PlAlHvgzg0Zhi26ooOntiVgegxM
WfV6HWNjY/NOBFqBvQYdpFAoYPPmzcE4APvNw+7bh7Zs2TKl9XIz5wytmL7NRMC33fd9riNOz4G9
PgrX6jJWkBFpdxwBtAiUSqWO5SnMVSgEHebVV1/FKaecgkajgf7+/kAA7NbKPMAmHdl0GzajmRXg
29f+HnbMuOV1glZnNfJNlWZvc8/TxVR+26WBJQJ2gNDt5TBdhePj4x248rkNYwQzQKFQwJo1a4Lu
tFQqdVjXm5nIpFgs4uWXXw49lv3ANosRuLEAk6wTFgtw1/tiAFGxgGYxAoRU0mYCpZz5EWH1gIR1
ZZpBWG+++WbwHgb7nQuwxMPOy0gkEsjn88HUc2YeylQqFYjA+eefP+1noltwYpIuYlqhTZs2TZk/
wB6TAP1guhOSToe4roH72T3GXHUVzHnZlgAcsVm1ahUOHTo05cWs8PSW2G6Bb3ix6EFc5t2SCx0K
wQxy3XXXATpr7eyzz8aSJUumJKiYvAN4Hm6EuALNXANfpD5sH5tW4xCtEuYStOIq2OcQlmhlWvh0
Oh1YC/AIgQngGiGwXQMj0Oedd15b1zofYa/BLLBx40Zs27YteI24efjtjLV2iYoTtHqMThDH1XT3
cbMZ4xDWe2AmOrXndHTHQpgcAVPxjQjYOQP2kO7FAIVglli/fj1eeuklDA4OYnx8PBhG/Oyzzwb7
tBK4a6XyzrSp36k4U7vHse+JbXH5RMAEBu3BUbYIQPcUmOSwxQJdg1lk48aNAID7778fxxxzDJYs
WdLUZI6q9GHdgHPVx2/HDYjC3BtbQOyXuPrcJ7t8WyxsEahWqxgdHe3Yec4HaBF0gRtuuAE/+clP
sHPnzmCdeEYdzkSFnu4x47babpCu3ePExbUIfEOj7YCgvdhBSBMgXGzvVmT3YZexU11txBkAFNZ9
KFYqsdvl53tlui+VOCy9OE73ISLcFl/gMk7PhU3USEhlvT/CTNKSsN6FYNb7RNXcHzvpq1aroVgs
zuvuQhemGM8T3ISXqIi+b59OuAdxA3xu/74v6Bd2vFaDga3ua67Xjg/YAUFjHWQymcNeXFur1TAx
MYHBwcEFJQKtwBgBaUq7vn2z30Vtb8dSDbOqYIlpwpoU1exfrVYX5BwDrUAhmGNMp/tsps4nrgkf
9xzsfeP8rp0uSYPPkrKtmUajgVKphMsuuyzWuS9UKARzBN8gmpkqp9VzavX4Ua18WA8JPJmDrdIs
/mAnFEGLQL1ex759+9oqbyFBIZgj2A9up7vZ4hA2IUrYvs3O1x0sFLa92TlEbfe5AlFvirazC01w
sVqtdux9lfMZCsEcIqzShO3baZM9Dq5ZjxYquXiGWTcry/3s+2ub+uVy+TB3wBaAcrmMarW6IKcb
mw4UgnlAt7p4XZr59nEsBcQUBZ8IhG2zRcG8bdh1s8y4g6GhIVx//fVtXP3ChkIwh4hrKvta5XaD
dXGJ2wPQaozAZ1VEXXfYd9Pil0olrxAYN4Ai4IdCMAfoZDea65uHHb8V1wJN3JVOxAiaVf4wV8AO
/DUaDUxMTHgTmA4cOIDbb7+96fUuVphZOEcIm7zUfp2aSYBxJxcJm7zUfYtQ2GQjYZmFsF6KErYe
LWYWuuuj8LkAbtDPnpikXC5j165dKJVKuOOOO6b5H1kYcGKSeYqvKy2uWDfz0aN89ri9BlFxAtc9
CNvXZ7VEWQc+a8C1BBqNxrTfQr2YYYrxHKFQKHgro9sCuhXB3s/9jfvZ9z0OvjKjynP/hn2OU0bY
tdsWQbVaXbDvG5gtKARzCDNM2edPx6k48FSwsPVhv29Wrnss32dfZQ/bz+fzR4lHmGuw0GcZnmko
BHOMqJ6DqFbT3TfOd99xowSimVUQVkYzYYhzrT4RMEuxWPReF4kPhWCO4XMR3PcVRrWaaFLhWnUL
fMdvVgY8lT9MDKJEKI4ITE5OLrq5A2YCCsEcxA2cuT6yu833Pc5+zUShk66Buz6uS+J+dl/ouhje
OTAbUAjmIO4ruRDSehqiTOgoQQjbP45rEGaFhLXm7n5RZfu2+d7qXK1WcfXVV7d9n8mvYPfhPMEE
xnwV1bwvIawyNhoN7zh8m7AWOmy92/3XDBVjjIJ77q4QmFmHarUaSqUSLrnkktjlk2hoEcxRwmIF
7tuAfV2KYWa1r5I1I64F4ts37Lvv2G6l91kCpquwUqlQBDoMLYI5jOlOtOc1NJUDVqvsfvelGNvb
fa1zKy2/mzrstvD2/j4roJn1EeYWVCqVIIOQdBZaBPMAIwR26+izCNztUS1yVGwgKlbQijUQtj6s
ovtiASZPwFgC5XKZvQQzAIVgnmCLgT1Db5iLEEcQWnUNWnE54ixRAmBPHlKpVFCpVDA6OkoRmCHo
GsxDlB53n0q9/e8zr/A2LgKsAKIJFNp/7UE/nXQNwva3zztsnSsmdkzADCG+5pprWrxTJC4cfTgP
2bBhw5SIezqdDubot0cihr0W3bfevIPRHUUYd/Qh2hhlaFsTtmVgC8DQ0BBuueWWGbuXC524ow8p
BPMUWwxEv+TEFYO4Lz5p9oITeAQiasgxnMofJgR25bfdg2q1imKxyByBDkAhWCTYyUeuGLhvRnIt
gqg5CsIsAoS8L8AQZhXYGEvA5EW4cYGhoSHcfPPNM3znFgcUgkWEyTkQ523ArqtguwyuFeBOYhI1
MUkr1oCLGwNwMwUZC+gsFIJFinEZzGu+XBEIe4eiTwjiuAZoUvFt3IShWq0WBAIrlQqnFZ8BKATE
6zaY9wK2IgTNXAObqJ4BM6WYaflp/s88FAIS4M6HmMlkprgQrQiBaym4+HIKjAvAyj/7UAhIKMZ9
sGMJZmJUd2nmMviShNzv69ev7/YlL1ooBCQ2hULhMCGI05sAj99fKpWQSqU4i/AcgUJA2sJ2I8wU
6olEApOTk4AVHzBBx2q1ijvvvLOLZ0yioBAQQmILAQcdEUIoBIQQCgEhhEJACAGFgBACCgEhBBQC
QggoBIQQUAgIIaAQEEJAISCEgEJACAGFgBACCgEhBBQCQggoBIQQUAgIIaAQEEJAISCEgEJACAGF
gBACCgEhBBQCQggoBIQQUAgIIaAQEEJAISCEgEJACAGFgBACCgEhBBQCQggoBIQQUAgIIaAQEEJA
ISCEgEJACAGFgBACCgEhBBQCQggoBIQQUAgIIaAQEEJAISCEgEJACAGFgBACCgEhBBQCQggoBIQQ
UAgIIaAQEEJAISCEgEJACAGFgBACCgEhBBQCQggoBIQQUAgIIaAQEEJAISCEgEJACAGFgBACCgEh
BBQCQggoBIQQUAgIIaAQEEJAISCEgEJACAGFgBACCgEhBBQCQggoBIQQUAgIIaAQEEJAISCEgEJA
CAGFgBACCgEhBBQCQggoBIQQUAgIIaAQEEJAISCEgEJACAGFgBACCgEhBBQCQggoBIQQUAgIIQAg
SqlunwMhpMvQIiCEUAgIIRQCQgiFgBACCgEhBBQCQggoBIQQUAgIIaAQEEJAISCEgEJACAGFgBAC
CgEhBBQCQggoBIQQUAgIIaAQEEJAISCEgEJACAGFgBACCgEhBBQCQggA/D+WOOFD8MILjgAAAABJ
RU5ErkJggg==
"/>
</div>
</div>
<div class="output_area">
<div class="prompt"></div>
<div class="output_png output_subarea">
<img src="
AAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo
dHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAHq1JREFUeJztnXuQHFd1xr8z792d1XslywHL67JV
FoQUSSByHkWRB3EVIViO3wo2fmHLZQlcMYaQmOwosYMTQlIpwCIoFStlcOQkfmADZVPEBfzhFKSo
UsA4tsG2niXvaiTtand259k3f7hvc+fqdk/P7Mw+v19V18x093Tf7pn73XPOPfe2KKVACFneJOa7
AISQ+YdCQAihEBBCKASEEAoBIQQUAkIIKATRiEhZRC6f73LMFSJyUEQ+Pt/lIHMPhSACpVROKfUE
3qwk54vI9l6fU0TeIiL/JSJKRNZZ28qOpSEiI/72tIj8o1+hT4vIt0VkS6/L3G1EZLuI/EhESiJy
RES+JCIrjO2/ISLfE5EJETkmIntEJO9vu9dxjyoiEpkwIyK3isiUiHyh3fIsBSgE8bkCQE+FQETe
A+AHAI65tvvCFCwALgBwGsB/+Lv8JYDfBfA+AG8F8L8AviEi2V6Wu5uIyO8A+GcAnwSwAsB7/eVv
/O1vAfAMgKcADPnbfgfAfXjzHt3nuE9fAPBIxDkfA3ATgEPtlmfJoJTiErIAUACuBHAvgIa/lAH8
AgDx/xwvA5j2X683vrsPwFf8P+wZf929AH4Ycb4rAbzT/6MpAOtalO8xAH/rv08AOAVgu7E9B6AE
YFvM6z0I4OPG8e7xr2sGwCsAbjH2vcivkKcBnAHwHQC/5G/r8yvPG/75XwBwlfHdlwHcFVKGdwL4
oLXu7wH8t//+3QAetLYXAByION5JAOdEXHcBQMq/hi+0U56lssx7ARbyooVA/bxif93YdieAIwDe
ASAJ4P0AKgDeZex/0rciEm2et6UQ+PucAJBXP6+YCsDF1n4/AHB/zPOaQnAHgDEAv+ZXkj8CUAfw
Hn/7twA85ItNDsADAL7vb/szAD/yW+wEgG0ApgCsbfM+JABs9cu1K2K/pt/G2vYdAH8a83xnCUEn
5VmMC12DzrkdwOeVUj9WSjWUUt8E8HUANxr7nFJKPaKU8npw/t0APqeUmvI/D/mvp639TgFYh/a5
DcCXlVI/UErVlVKPA/gegGv97at866iilCoD+JRSaquxrQZgWinlKaWeBLBCKXUy7slF5HoAVQDf
BfCQUurzIfu9H8B1AP7ase23Afyi7xrMirjlWaxQCDpnM4D7zKAUgD8EcJ6xz+u9OLGIXOK31F+M
s7tvKbTLBQBetNb9zF8PAH8B4GoAB0VkL4A/EBHxt33RtxKOich/isit/ufYKKUeBpAF8JsArhGR
fzjrwkSuAfDvvsvyvOMwnwTwJUMsOyZOeRYzFILOmQFwuxWYyiilPmjsU+3Rua8B8G2l1KSxbtR/
tVv/dca2dnAFGHVFh1LqGT8g+Se+a/QIgH/ztx3yXabLALzmi8YBERlspwC+pfVDAH8OYKeIpIOC
vNnN+SUAVyilvnJWQUXW+oHTJ9q/9PbLs9ihEHTOT/1AUoCInCciyTk49zYA37DWvQ6gCOBdRnkG
ALwdgKu1bMWrfmU2ebt/3RCRdUqpaaXUY0qpm/0yXSMia/zzZpVS31VKfcL/3rkAfq/VSUXkcyKy
z1qd9QO1nr/PDgAf9+MVz4Yc6gMAin7F7Zg45VkKUAjiMwPgrSKySkQyvvl7s4i8T0RSIvLrAH7o
uwc9w88tON8PxgX4cYg9AD4lIhf5re8DfoX+tv/dnSLyVMxT/QuAW0XkV/z8hO1+oOxfRaQPwE9F
ZJeIZP2W8V1+8HIcwOMAviwiq3134Zf9yvOzGOd9DsAfi8iV/nkvAPAJAE8rpRoisgnA3/k9IT+O
OM67ATi3i8hLIvL7Me9DZHliHmPhM9/RyoW8WL0Gv+VH0ScB/KpvJn8KwGFfJF4GsMP47lmR7Bjd
h9/yA3BV/9xlf7nX2Ocd/rbNju+n/Epywu/SfBbABcb2AoAfRZzf7j78K7/yngHwPwAuNfZ9L4Dv
+70B434Qbau/7a0AnvbXT/ndhzcY3w3tPvS3Xwfg//xrPwrgnwCsNu6heW+CxTrGYwAeifG7vsc4
huf3jDQdL6o8S2URxRmKlg0ikgLwTaVU3NaQLBPoGiwvPtBhvIAscWgREEJoERBCKASEED/KPC+0
GhZKCJk9SimJsRstAkIIhYAQQiEghIBCQAgBhYAQAgoBIQQUAkIIKASEEFAICCGgEBBCQCEghIBC
QAgBhYAQAgoBIQQUAkIIKASEEFAICCGgEBBCQCEghIBCQAgBhYAQAgoBIQQUAkIIKASEEFAICCGg
EBBCQCEghIBCQAgBhYAQAgoBIQQUAkIIKASEEFAICCGgEBBCQCEghIBCQAgBhYAQAgoBIQQUAkII
KASEEFAICCGgEBBCQCEghIBCQAgBhYAQAgoBIQQAUvNdALJwuf/++5FMJpFIJJBIJCAiTa8f/ehH
57uIpEuIUmp+TiwyPycmLfnMZz4TCEAqlQoVAhGBiODWW2+d7yKTEJRSEmc/CgEBABQKBaRSKeTz
+SYrQAuBLQKmEIgIMpkMGo0Grrrqqvm+FGIQVwjoGpCAROLNkJGu/MlkMtQ1SCaTTSKQzWYxX40K
mT0UAhLgeR5E3mxA0ul0IAYuIUin08hkMsGriKDRaMz3JZAOoWuwDHnqqacwNDSEVCoFpRQ8z8Mz
zzyDTCaD/v5+DAwMIJVKIZvNIp1On2UhJJNJZLNZpFKpwDLwPA/FYhHJZBJ40yQFAFSrVVx++eXz
fMXLF8YISMDDDz+MzZs3I5lMQimFSqWCRqMRtP6e56FareL555/HihUrkM/nkcvlkM1m0d/fH1R4
bSWkUqngPQA0Gg1MTU1hbGysyT1QSkFEkM1mAzfi5MmTDC7OIRSCZcojjzyC4eFhpFIpzMzMIJfL
4dxzz0U6nUa9XsfevXuD1lwLga6k+v34+Dj6+vowODiI1atXN1kGpgVQr9eRTCbx6quvhpbH8zxk
MplAIMz/W19fH/r6+jA5OYmPfOQjPb83yxEKwTJj37592LJlCxqNBqrVKpLJJM477zykUins3bs3
COppMx+WANhMTEwgk8lg5cqVgQhoIUilUnjb296GYrGIn/zkJ00iorGPq5RCo9GA53nBZ/3fy+Vy
SKVSyOVyuP7663t2j5YjFIJlxPPPPw8AKJfLgW/f39+Pxx9/PAjowaj4YZXfRCmFiYkJrFq1Kqio
esnlclizZg1efPHFJlGBw7pw4XkePM9DqVRqshD0se+8884u3BUCCsHy4LOf/Sy2bt2KarUKpRQS
iQT6+/vx7LPPQkQwMDAQWkHt310HDXVLrZTCzMwMVq9ejUwm09RDMDAwAAA4ePDgWclFcawDjRaE
kydPBpYCAJx77rlQStFd6AIUgiXO3r17sWXLFkxPT6NeryOdTuOVV15BsVhEOp1GOp0OIvhRVoCu
9I1GIxCDcrkcbF+/fj36+/uRy+WQy+UCQUgkEjh48CDq9XpwDterptX5RQRHjx4N1uXzeaxfvx4f
/vCHu3K/lisUgiXMQw89hAsuuADT09NoNBo4cuQIRkdHg2i+DgSGuQJ2ZN/03yuVStA660Bjf38/
+vr6kM1mg8Bho9FAsVhEpVIJvqMtirjYlol+f/jw4WD70NAQcrkcbrnlllnft+UIhWAJ8uijj2Lt
2rWYmZkJBGBychLw/et0On2WKxDVErvei0gQFMxkMsjn88hms4EloK0M3WtQr9dRrVbRaDSCz7CC
ga4eA4RYDUop1Go1iEggCEopDA8P48Ybb+zCXVxeMMV4CbJmzRpMTU3B8zwcO3YMZ86cged5QTDP
9tGjhMDlw5tZg4lEInjVFgOM7EPTAkgkEvA8L0g6MuMM2uzXr61IJBLIZrOoVCrYtGkTDh06BPjx
CNI7OB/BImFkZARTU1Oo1+s4evQoJiYm4HneWSnAYSMEzUXvb6YQ69Zedy+aeQa60tfrddRqNdRq
taD1bzQaQXzBPrYrNTlqMccx9Pf3Q0Rw/vnnB+V49NFH5/lXWLpQCBYJmUwGtVoNx44dw/j4OOr1
elNFblXJXJVUf9cccqwThrQZryu6FoBarYZqtYpqtYpardYkAnHPH7XefO3r6wvEAL7lsn///nn+
JZYmdA26zH333RfaKrq67ADg7rvvjjxmoVDAhg0bMDY2hsnJycASMCuyq+surAvP5UK4KiJ8a8A0
8XUg0TxeWAzA3s+FK05g5ibkcjlUq1UMDw/D87wgJ4J0FwYLu0ChUAgi6tqktls/E7sSuRZdAT3P
w8TEBC666CIUi0WMj49DKYVcLheIgPblbQGwk30QIgJ6X7u1dq2zv2deh3099jb7vUsktGtgbtcu
ied5WLlyJUqlErZv397277QcYbBwDnjggQeautR0xN2uRFGERdb162uvvQalFMbHx1GpVJp8cTM+
4BICV8DQValhBArtspnWgMvSCKOdIKVdNjv/wRzcpCdPId2FQtAhIyMj6OvrC7Lu9Jh800wPE4Io
s1q/mpl2IhIE5uzjhFUm13tECEFYa29G/e11cQRBH9PVa2B/tt0S0xrR6cd63f79+3HttdfGOj9p
DYWgAwqFQjByzhyQExW0Q0TWXVjs4MCBA8E67R9XKhXnsREiAlEV3fV91/sw4nYJRl17WKzCfu95
HrLZbNBVmc1mY52XxINC0CHaCtB/VrMF1+gKbf+pzT9/WKAPRksKADMzM4HwuM4Fq6VuJUBRAtIO
ccQgjjtgC4Be4IugDo7q72QymbbK2U1GRkaCFOiLL74Y4s/OVK1W4XleEM/Q6dq1Wg2VSgU33HDD
vJW5FQwWtkmhUEAmk8GKFSuwevVqeJ7XlFVXKpWClFszESeXy501B2AikQjW6647vbzwwguAVbnP
OeccjI+Po1arBZaI7v8P669HC/O/lXUQJVKu93G2R1kBLiFoNBp47bXXsGXLluCe1ut1TE1N4eqr
r57V79kuIyMj2LBhA9LpNIaHhzEwMBDEUer1elOQV+de6PRt3RXreR6uueaaOSkvg4U9RKfc6h9a
K//g4CB27NjRlXMUCoWmz0opTE9PY+3atSgWi01/ODur0KSVINj7uLabZeik9Q8TgrBEKNNKUkrh
5MmTuPDCCwO3QG+ba6ugUCgEg69SqRRGR0fRaDSCrk179KY5jqNUKqFaraJer7dtdc0FFIIOEBHk
83msXLkySLFNp9Oo1Wo9OZemXC4HI/Oy2SwmJibO2tduWdGGRWCfL04MoZ11rlbftU67ACdOnMC6
deuwadOmJvdL3/O5EAItyP39/cHgq4GBgWCEp54JyszKtO+/dm0OHTqEnTt39rzMnUAh6ADtTmWz
WSSTSVx44YU4fPgwpqene3pebYHolnJgYCAwNcWIzNsVPY4FEFWh291mb2+VTehyB06dOoX169cH
bk9Y9mIvKRQKEH9eh76+vqZh2Oakrvre699HWwGNRgNHjx7Fbbfd1tNydgOmGLeJ/nPoFimTyeDY
sWMQv4urG4yMjDjX2/GIer0enDMsqy+sRbbNcdf+9qvrWPY2O4U5bNH7mDMf6fW1Wg3r1q0L4h9R
1/HVr361K/fcRTKZRD6fD+ZjMLuK7SdAiR8wrNfrqFQqmJqawvHjxxeFCIAWQWecOXMGQ0NDZ/Wx
p1IpfO1rX8Nll102q+OH+ebaDzWXer2OXC4H8XMNzGOEVdhOzHrXujAhsNeHdavapvTo6ChWr16N
/v7+wDKw74ttGfSqG7FQKASWgH6Ai44N2QFf+L+RHoNx+vRp3HTTTT0pV6+gEHRAoVDAnj17Ap/V
/NN2649pB+a0X6zNTrMyNBqNwEcVEZw5cwYrV66MLQStLAFNXIvA3icqFiAiGBsbw6pVq3DOOec0
xQhgZDeamMfqRZxAxwW0O2Bmj9oWjSnKY2Nji3bOBHYfdsjIyAi2bt2KwcHBIJ9A+c8MKJfLKJVK
2LZtW0fH1ZXKNWGIa0CTTrSxWyrtNjQajSDzUUKCiO24BIgQg6iuwEOHDmFgYAADAwNBt2lUKrZr
/IW5NBqN4H5fccUVbd9rF4VCAUopDA4OYmhoKBADMyZgxgOKxeKCzg+I233IGEGH7N69uylnAEZg
LJPJIJfL4cEHH+z4+GYyUhi6stkVxB4joEUAfpxBC5VdUc3RjFG+vbY+zOnNXUs6ncaRI0eCKdXO
O+88DA0NIZ/PN8145Mp9sK/Rta7bVoEWATMgaLoCpgU2MzOD0dHRBS0C7UDXYBacOnUq8BvNCqSU
QjabDcbRx8W0Blr9+V0CYQ8Rdg0a0l2d5vd1y6oj3kNDQ85zhpXj+PHjQeU3n4wEAJs2bWoaiOWy
LuJgfi8sg3I2aHdAC4sWAdv60olDk5OTiy4OEAUtgllw/PhxlEollMvlpmm7dCuZzWbx9NNPxz5e
mHnsqnyuSmALgGkd2BOLmtZAKpXC4OAg1qxZg7Vr1zoHQrmGSOtl48aN2LBhA9atW4d8Ph9MdGrO
pmxG/2dbcV2iNJvZi8zkLS0A5rMdzfRmpRSmpqbwoQ99aFbXsNCgEMyCQqGA0dHRQAwajUaTmZ1O
p5HL5doSA8QYs28T5sebfrX93mUtuFwFM/3ZNPltN8DVNRhnGHY7RFlJfX19sz6+jrfoxezeFCNX
YK7Sg+cSCsEsueuuu4KZgyqVCmD0peuZgHO5XFvHFGvYb7sWARymt92624IQp0xRPQFh5eg2YcHM
2ZxTX386nW7qJtT5Avr3UEo1PfNhKcFegy4xMjKCzZs3Y3h4OPDBzYEm09PTqFQqOHjwIHbt2uX8
PhwiAD+xRbdOrl4DO/pud8+5Mvjs9bbpHlXhXethuBuIsFLiCEbUHA22u6PnTdTTqsd9BLs9lqOv
rw/5fD5IINKf9e9Yq9Vw6tSpRTcHAnsN5pjdu3fjlVdeQalUCgYi6Yqh3YRsNovh4eGW/mxYQC2O
ZRDVMs5Vq91LotwDVxKSCztz004Y0rENfa5Go4HJyclFJwLtwF6DLrJ7927s378fnudhcHCw6cnD
9tOHnnjiiZatlw4+xjV9o1rdKBFodeyFJhp2zwEcounCtgK0daRF2hQBHRxsNBpdzVNYqFAIusxL
L72EzZs3BxNtagEws+X0n/bJJ5/Etm3bgv7rOBWylRXQTsWwvxt2vlb7tUO7sxq5pkqzt0WV0ewW
NK0GOyHLfNCrDn7qLM6pqakuXPnChjGCHrFv3z4MDQ1h1apVTRl+etEz85ZKpaZJSGD9ye1MwagY
gem7txsjiPPejgW0ihHAEi9NKxfFnh8RRg+I3Y1p3s96vY4jR44E99Z+5gKMYKl5D/L5PHK5XNMz
HlOpVOASzHbsyHzCGME8c+ONN+Lo0aM4ffo0qtUqYPUmpFKp0B6FTsW5lRsQJ0aw0NwAkzBBMcVm
48aNQcDPnEPAbvV1voBreLEW0FqtFjxbcqlD16CH3H777YBvnl5yySXI5/NNfe467wAhJnOr4GBU
a9tuK9wNVyKKMJegHVfBLINpPdmWkE5h1tYCHN2mOoCrcz3MGIH4acSXXnppR9e6GKFFMAcUCgW8
/PLLKBaLwSxDYjx1GCHdhi7CKmzc3oJOtrdDnGuw97ETnOIQdg/0bEDmnI5mIpS2BEzrQIuAmTNg
DuleDlAI5oiPfexjOHDgAEZHRzE1NRW0VM8991ywT9zAXZx9lxOmZWRmONoioNO+zfRn7aKZD33V
Yy+WE3QN5hAdwd6zZw82btyIFStWAI6UYv25Vddhu92AvSKued+JGxCFvjfm/TMf4urqUTDPb4qF
KQLLKTagoUUwD9xxxx04cOAAXn/99dB92qkwvdrXRVzT3U5p7vQ4cbEtAns4tHYJ9HtzMXsU9DTp
1113XVfLt9Bh9+E8Yye5mNjdhOa8fmaAzB7mq19dY/3N7sOodXG7D2GZ5mGtcKsejTDCRkDqRU/e
qicKSRjPQtDrXVaVvj9m0pd+LsVi7i60YffhIiFKCBAyJ4C93fW5226C3bK7Wnp7bEDcbVHnjIu+
XjM+YCcJ6RiB7iUwewimp6fxxhtvLCkRaAfGCJYIs6n4rSpcp759q+9Fbe/EUnVlH9qDoMzxCHr/
arWKUqm05OYYaAcKwQKg0770uaAXgUBz3zjf66RLUuOyqExrRk/ddtVVV8Uq+1KFQrAAkJDHhqMH
QbV26ESgWrXyUddoVtROaBV/sGdq0inKY2NjHZ1vKUEhWACY/nOvW/qwSuZaH7dCu8ptDxYK2x6n
bGHbXa6ADg66vmtmF+rgYq1WCzJAlzMUggWAWWG6LQa9PF67lTzK8gk7l/3ezkC0P1cqFWdwVQtA
pVJBrVZbktONzQYKwQIhyiwOWzfXCUTtBv9ajS8IExKEiEDYOU1RqNVqTiHQ4w6KxSItAAcUggVA
N+IDnQbrOj1+2OdexgiiXAPd4pfLZacQ0A2IhkKwALArUFRLCatCuSqHnXYbZaq3olVZWh1/tjEC
O//A5RrAmM9wenramcBULBZx9913t7ze5QozCxcI9jx6doKMnlIrbAIS14Qj9oSkrglJojILYY13
CFuPkG46V2ahvT4KVwKTHfQzJyapVqs4fPgwyuUy7rnnnq78LouduJmFtAgWCGGtpyujr13Tu9V2
V5agXQ7XMVwmvVjTi7nyBVxWi33N9jnhEAMYloDnecs2K7AbMMV4gWDOrRcWFY96FkGcCDsiKn0U
YcdxHTPMlI967zqHq/UPswhqtdqSfd7AXEEhWEDs3r07dJur4kcJQpRQIKYghO0TJQhhZWglIq7W
3i5DlGuw1GcZ7jUUggWGy9yO28LHqfyu87WqjK5z2ccLK0PYtrgiFCUCeimVSpHHIq2hECwwdu/e
fZZvbj/ANKySmNtd712f4xDXFXFtb2UlRIlQHBGYmZnB9u3b274m0gyFYAFjVgTTRza3x7EO4roV
rvN3yzWw10edO0zkbBHwPG9ZPHNgLqAQLEDswCFCWk9NlAkd5VaE7R/HNQizQsJac3u/qHO7ttkC
oJ9HeNNNN836fhN2Hy54tBjooJiroiYSiVCTGr5r4RqHbxLWQoett7v/WqFiJkxFCYGedaher6Nc
LuPKK6+MfX4SDS2CBYq2CnQF0iPr7KcBu7oUw8zqVtaBi7gWiGvfdj7bld5lCeiuwmq1ShHoMrQI
FjBaDExR0JUDRqtsf3alGMPKUbBb53Zafjv5yW7hzf2jko9sXAKhRcHzPFSr1UAISHehRbAI0EJg
TsjpsgjM1rOTWEKcWEE71kDY+jD/PywWYFoC1WqVvQQ9gEKwSCgUCoF70EoQXJWrG65BOy5HnKWV
AOh4gBaAM2fOUAR6BF2DRYauRLVaLXjKsn6Et3YRYAQQdaDQfDUH/XTTNQjb3yx72DpbTLQI6KVW
q+GWW25p826RuHD04SJEj1TUFTqTyQRz9JsjEcMeix623h5BGLYexuhDzGKUoWlNmJaBWflPnjyJ
nTt39vR+LmXijj6kECxSRkZGmiqaFgFTDOI++KTVA05gVHLXAkeldwmCjcu10fkBU1NTuPnmm3t+
H5c6FIJlgvmAFFMMtBDYT0syLYKoOQrCLAI4nhdgv7YSAW0J6LwIOy5w4sQJWgFdgkKwjCgUCkGX
oPk04DAhMNfrimtPYhI1MUk71oCNGbw0g57aEmAsoLtQCJYp2kLQj/lqJQQuK6Ed1wAtKr6JnRtg
xgKq1Sp27NjRwzuzPKEQkCa3wYwf6CnP4gqBXenFenSYXh/VKwDjkeO68t955509vX5CISAWZk9D
NpttciHiCkGYRWDiyinQLgAr/9xDISChaEvBFANzYlRbCMLWI2RwkP1+165d83zFyxcKAYnNyMgI
MpmMs8WPshRc2YLlchmpVIqzCC8QKASkI8z8BB1Y1O5DqVRqchfS6TSq1So+/elPz3exSQgUAkJI
bCHgoCNCCIWAEEIhIIRQCAghoBAQQkAhIISAQkAIAYWAEAIKASEEFAJCCCgEhBBQCAghoBAQQkAh
IISAQkAIAYWAEAIKASEEFAJCCCgEhBBQCAghoBAQQkAhIISAQkAIAYWAEAIKASEEFAJCCCgEhBBQ
CAghoBAQQkAhIISAQkAIAYWAEAIKASEEFAJCCCgEhBBQCAghoBAQQkAhIISAQkAIAYWAEAIKASEE
FAJCCCgEhBBQCAghoBAQQkAhIISAQkAIAYWAEAIKASEEFAJCCCgEhBBQCAghoBAQQkAhIISAQkAI
AYWAEAIKASEEFAJCCCgEhBBQCAghoBAQQkAhIISAQkAIAYWAEAIKASEEFAJCCCgEhBBQCAghoBAQ
QkAhIISAQkAIAYWAEAIKASEEFAJCCCgEhBBQCAghoBAQQkAhIISAQkAIAYWAEAIKASEEFAJCCCgE
hBBQCAghoBAQQkAhIISAQkAIAYWAEAIKASEEAEQpNd9lIITMM7QICCEUAkIIhYAQQiEghIBCQAgB
hYAQAgoBIQQUAkIIKASEEFAICCGgEBBCQCEghIBCQAgBhYAQAgoBIQQUAkIIKASEEFAICCGgEBBC
QCEghIBCQAgBhYAQAgD/D/gMYMHD6wYuAAAAAElFTkSuQmCC
"/>
</div>
</div>
<div class="output_area">
<div class="prompt"></div>
<div class="output_png output_subarea">
<img src="
AAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo
dHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAH1pJREFUeJztnXuQJVd93z9n7nNm7j61u9IKo91V
WEBySLkSE4idouzEhjIQSUTvBQErAVKQBFQEduyA58qBkqoSJU5hI5x1gioWSCjWA4tySSihbKqi
lEmwJaIoEtFGu+xupFnNrvYxd2bu8+QP9Wmfe7a7b9/ZOzuzO99PVdft26dvn+6+fb7n9/udRxtr
LUKI1c3Ycp+AEGL5kRAIISQEQggJgRBCQiCEQEIghEBCkI0xZsEY86HlPo8zhTFmnzHm88t9HuLM
IyHIwFpbtdY+yhuFZLsxZtdS52mM+RljzH8xxlhjzKYgbZ0x5g+MMYeMMSeMMT8yxlzupZeMMf82
KtCvG2P+szHmkqU+51FjjNlljPmxMaZhjDlgjPm6MWatl/4LxpgfGGOOR/fiXmNMLUr7YiTg/tI0
xqR2mDHGXGGM+UtjzEljzPPGmE94aXVjTC/hmL92Bm7FmcNaqyXHAtwBfHeJ83gP8P+A/whYYFOQ
/h+AHwIXAkXg40AbeFuUfhfwHLATqAH3AP8XqOTMfx/w+WW+z/8AmAN+DSgAfwN4Abg3Sv8Z4ATw
eaAcXeuLwO9mHPMe4JspaT8LNIFrgEqUfwP41Si9DvzZcj9/S37fl/sEVvISFcargC8C3WhZAN4E
GOA3oodwLvq8wfvtfcD9wJ8AJ6JtXwR+lJHfVcDPAb+UIgT/C/hSsK0NXBlZd0eBXV5aNXqor8h5
vbEQRMf7QnRd88BPgJu8fXcCTwCvRwXzz4C/FaWNA38IvBrl/xxwtffbF4HPpZzDzwGXBdv+NfDf
ovV3Al8L0uvAMxnHOwJckJL+u8D3gm3/HnjMSgi0WE8I7F8X7O96abcCB4B3RDXX+6Oa5ee9/Y8A
u4CxIfNNE4K7gL8Ctkd53hQV/s1RwbTA24Pf/BD4Ss58fSH4J8Bh4O9G1sc/BjrAe6L07wHfiMSm
CtwN/EWU9lvAj6PzGgOuAGaB84a8D2PAu6Lzuj1jv/vSrLVIoP5Zxm//K3B3sO3TwCH710LwEvBU
JHr7gU8v97M56qW4FO7GKuFm4KvW2v8Zff9TY8x3I3P9f0TbjlprvzXCPP858Dbg5ajQHweus9a+
ZozZGe3zevCbo8CmhGMN4lPAv7PW/jD6/ogx5gfAdcAPgPXAXqBprbXGmN+0Nh64sj6yVOastT3g
MWPM2mg9F8aYGyKh6QB3WWu/mrLf+4HrgV9OSPtl4G8CH8zIavOAe3YwsmB+K3JRPgA8YIw5NuL/
dllRsHDxvBX4sh9AAv4RcJG3z8sjzvOrwJao9l8DfAb4Y2PMOzJ+YyLRGJaLgeeDbS9F2wF+O/Kr
9xlj9gAfMMaYKO33IyvhkDHmj6PgW3WYzK21fxT57L8IXGuM+TenXJgx1wIPRS7L0wmH+Q3g69ba
2WHy9u+ZtfYPrbUfsNY+a61tWmsfAR4Adg95zBWNhGDxzAM3Ry0Lbilbay/z9mmNKjNjzARwC/A7
1tqXrLWNqLA8A9wATEe7hrX/Ji9tGCpJp+FWrLVPAG8G/mnkpnwrKiBYa/dHLtPlUbDyt4FnjDFr
hjkBa23XWvujyBK6zRhTik/kjWbOrwNXWmvvP+VEjTkP+IfAowOymV7EPdsLbB3mWlY6EoLF83+i
QFSMMeYiY0xhifIbiwpieHxXYF8GZoCf985nMoqKJ9WWg9gbFWafn42uG2PMJmvtnLX2YWvtjVEc
4FpjzMYo34q19s+ttb8e/e5C4FcGZWqMuccYc1/CNXaBXrTPLVGrwXustU+mHOqDwEwkJFn80L9n
Ee9y9yxqjgybCi+NrKNzh+UOUqzkJQgW3gs8G/m/ZeBjwEngV6Ng2t8DXnMR+qwAVo5804KFT0X+
+Zujc7gmKiC/EKX/TuTHOtfhq1FLQyFKvw34k4x8/WDhHdH1/G2gFAU9u1GhGY/86tujQloCfj0K
Lo4BTwJ/BGyIxOs9UczgHTmu/QPRvldFx70Y+EvgP0Xp26LA47sHHOf3wtYAL+0F4L3R+tuiIO+u
6FreG7UC/WKU/q8ikX1HdD7XROf3K8v9fI70WV/uE1jJSyAEfz960E8Cfyd6wH8T+GnkJrwI3OL9
9hQhyNF8+L2oebIV5b0QLV+M0rdEAbSD0Xn8VdAsV4we3Neih/lJ4GIvvQ78OCP/sPnwX0Q13wng
vwPv8/b9JeAvokJ5DPhz4F1R2puBx6Pts1Hz4Ue936Y2H0bp1wP/O7r2g8AfABu8e+jfm3gJjvEw
8K1B/2v0/f3ROTYji8dvgi0D/zL6nxciEblyuZ/NUS/GaoaiVYMxpgj8qbX2vct9LmJloRjB6uKD
i4wXiHMcWQRCCFkEQggJgRAiijIvC1nDQoUQo8Faa3LsJotACCEhEEJICIQQSAiEEEgIhBBICIQQ
SAiEEEgIhBBICIQQSAiEEEgIhBBICIQQSAiEEEgIhBBICIQQSAiEEEgIhBBICIQQSAiEEEgIhBBI
CIQQSAiEEEgIhBBICIQQSAiEEEgIhBBICIQQSAiEEEgIhBBICIQQSAiEEEgIhBBICIQQSAiEEEgI
hBBICIQQSAiEEEgIhBBICIQQSAiEEEgIhBBICIQQSAiEEEgIhBBICIQQSAiEEADF5T4BsXL5yle+
QrFYxBjD2NgYY2NjGGPi75/5zGeW+xTFiDDW2uXJ2JjlyVgM5K677qJQKDA2NkaxWOwTgfDTGMMn
PvGJ5T5lkYK11uTZT0IgAKjX6xSLRWq1WiwCSUKQZB0YYyiXy3S7Xa6++urlvhThkVcI5BoIeOOB
YWzsjZCRK/yFQqFPFHxLoFAo9IlApVJhuSoVcfpICAS8YaHR6/Uw5o0KpFQqxWKQJATlcplSqUSp
VKJcLmOModvtLvdliEUi12AV8vjjj7N582YKhQLWWnq9Hk888QTlcpmJiQkmJycpFotUKhVKpdIp
FkKhUKBarcbrTkRmZmZioXDPVavV4kMf+tByX/KqRTECEXP//fezc+fOuOA3m016vV6c3uv1aLVa
PP3006xdu5ZarUa1WqVSqTAxMUGxWKRQKMRWQrFYjNcBut0us7OzHD58uM89sNZijKFSqcRuxNGj
R7npppuW5T6sRiQEq5QHHniAHTt2MDY2xsLCAtVqlQsvvJBSqUSn02HPnj1UKpW4WZDILfDXjx8/
TrVaZc2aNWzYsKHPMvAtgE6nQ6FQYO/evann40RmcnISInFwjI+PU61WaTQaanlYIiQEq4z77ruP
Sy65hG63S6vVolAocNFFF1EsFtmzZ0/s1zszn0AAQo4fP065XGbdunWxCDghKBaLXHrppbz22ms8
//zzfSLif/o4F8TFEay1sShUq1WKxSLVapUbbrhhye7RakRCsIp4+umnAVhYWIh9+4mJCR555JE4
qIdX8NMKv4+1luPHj7N+/fq4oLqlWq2yceNGnn/++T5RIcG6SDt2r9djdna2z0Jwx7711ltHcFcE
EoLVwT333MM73/lOWq1W3Pw3MTHBk08+iTGGycnJ1AIa/u+ucLqa2lrL/Pw8GzZsoFwux0upVIrN
/H379p3SuShJBNIEodfr0ev1OHLkSF/MYuvWrQB88pOfHPk9W21ICM5x9uzZwyWXXMLc3BydTodS
qcRPfvITZmZm4ma9QqEAA1wAV+i73W4sBgsLC3H6li1bmJiYoFqtUq1WYzEYGxtj37598e8GuQeD
8jfGcPDgwXhbrVZjy5YtfOxjHxvRHVudSAjOYe677z527NjB3Nwc3W6XAwcO8Oqrr8YC4AKBaa5A
GNl3QtDr9fpaFFygcWJigvHxcSqVShw47Ha7zMzM0Gw24984iyIvoWXi1g8cOBBv27x5M+Pj49x4
442ndc9WKxKCc5CHHnqIjRs3Mj8/HwvAyZMnIeoAlNQSkFUTJ60bY+KgYLlcplarUalU+iwBv9Wg
0+nQarXodrvxd4JgYPjp5xV+t9bSbrcxxrB///54n+3bt/Pxj398JPdxNaEuxucgGzZsYHZ2ll6v
x6FDhzhx4gS9Xi8O5oU+epYQJJnwrpC7Au8+ncUA9DUfOgtgbGyMXq8Xdzry4wzO7PfdhyzGxsao
VCo0m022b98exyH27ds3orsoktB8BGcJ9Xqd2dlZOp0OBw8e5Pjx4/R6vVO6AKeNEPQXt7+/uJiC
a170rQtX6DudDu12m3a7Hdf+3W63L06QdOyscwnPy41jmJiYwBjDjh07Ykvi29/+9jL/C+cuEoKz
hFKpRLvd5tChQxw7dox2u903FmBQIUsqpO63/pBjV+O7wucKuhOAdrtNq9Wi1WrRbrf7RCBv/lnb
/c/x8fFYDIisF4nB0iDXYMR8+ctfTq0Vk5rsAO64447MY05NTXH++edz+PBhTp48Sa/Xi2twV5CT
mu7SmvCSXIikgkhkDfgmvgsk+sdLiwGE++VJ8/M2xlCtVmm1WuzYsSO+bjF6FCwcAfV6PY6op83o
45NWiPy2fP/z+PHj7Ny5k5mZGY4dO0av12N8fDwWAT+I5x8/7OxDigi4fcPaOmlb+Lu060gLRoaB
yRDnGvjpziXp9XqsW7eORqPBrl27hvyXVicKFp4B7r777r4mNRdxDwtRFmmRdfe5d+9ejDEcO3Ys
bqYLTfswr6yAYVqhTivcvjWQZGmkMShImbSPyyPs/+APbnKTp4jRIiFYJFNTU4yPj/f1ujPBhB1p
QpBlVrtPv6cdUa0YjvdPszaSau40cRhU2/tR/3BbHkFwx0xqNQi/h26J/921jrhtDz74INddd12u
/MVgJASLYGpqKu5k4w/IyQrakWNQTrj+7LPPxvs6/7jZbKbW4oMKeNo+/u+T1tPI2ySYde1psQp/
3VpLoVCgUqnEolCpVHLlK/IhIVgkrpON38HGJ/SFw3iBbwaHAbIk5ufnY+EJ8/LzzCtAWQIyDHnE
II87kDQnoh+wdJOguN+Uy+WhznOU1Ot1Jicn2bJlC29/+9sx0exMrVaLXq8XxzNcd+12u02z2eSj
H/3osp3zIBQsHJJ6vU65XGbt2rVs2LAhHlrr2tUbjQbz8/Pxg+BwowJD394FGF3TnVuee+65vnyN
MVxwwQVx06GzRPzWg7BApQnBIEth0L5Z63nSs6yAJCHodrvs3buXSy+9NO7c1Ol0mJ2d5Zprrhn6
Pzwd6vU6W7ZsoVQqsWPHDiYnJ+M4SqfT6Qvyur4Xrvu2a4rt9Xpce+21Z+R8FSxcQpw14P5op/xr
1qzhlltuGUke9Xq977u1lrm5Oc477zxmZmb6HriwV6HPIEEI90lK989hMbV/mhCkdYTy4yzWWo4c
OcLOnTtjt8ClnWmrYGpqKh58VSwWmZ6eptvtxk2b4ehNfxxHo9Gg1WrFXbBXGhKCRWCMoVarsW7d
uriLrevws5QsLCzEI/MqlQrHjx8/5bzCmpUhLAISCvIgK2CYbUm1ftI25wK89tprbNq0iW3btvW5
X+6enwkhcII8MTERx4UmJyf7BnjNz8/39coM778T63379nHbbbct+TkvBgnBkPiuVKVSoVAosHPn
Tvbv38/c3NzI8zJexN1ZIG7b5ORkbGr6+6UFBLMsgKwCPWxamD6oN2GSO3D06FG2bNkSuz1pvReX
knq9jjEmFgF/GHbokjnrrNPpxFZAt9vl0KFDZ8W8CupiPCR33nknRINvXLPhwYMHMVEfglEQugXu
gQ/jEZ1OJ84zrVdfWo0cmuNJ+4efSccK08IuzGmL28ef+chtb7fbbNq0KS5sWdfxzW9+cyT3PIlC
oUCtVmNycrJPBNyUb2H3bvffNJtNGo0Gr7766lkhAsgiWBwnTpxg8+bN4LWREwUEv/Od73D55ZeP
JJ+wxnN+qL90Oh2q1SrGmD7/M6nmTPoe5jWsqR+uJwlLWrNqaEpPT0+zYcMGJiYmYssgvB+hZbBU
zYiuZcD1FXEdx8rl8ikduYiE2LUOHDt27KwbMi0hWAT1ep1777037unmP7SjeDCTgnLOL/YnAfVr
IuejGmM4ceIE69atyy0EgywBR16LINwnKxZgjOHw4cOsX7+eCy64oC9GgNe70cc/1lLECer1Otba
eJZlJwBOBHwh8EX58OHDZ+2MShKCRTI9Pc22bdtOMREnJyd56qmnaDQaXHHFFUMfd2pqKtX3DbsS
+1OKO6EYGxtj7dq1cYEjan5zPR9NShBxGJeADDHIagrcv38/k5OTsanttr/pTW9KvOY0AfBFsVAo
8PDDD3PllVcOfa/T7j9ArVaLg4PVarXvRS9OjFutFkeOHDknZl5WjGCR1Ot1Go1G39ReJmr6KpfL
VKtV7r333kUdO2mUYlhQ/MLmLISkJixXa/risbCwQKPROKWg+qMZs3x7Z33405snLaVSiQMHDsRT
ql100UVs3ryZWq0W+9tJw6iTrjPt2kdpFbjgoIsDJAUFnQU2Pz/P9PT0OSECyCI4PY4ePdrXw9Av
KJVKhW3btg11PFcbhST510mEQ4STBg25pk7/GN1ul2azGUe8/fhHlnvhlldeeSUu/P6bkYDYajIZ
gck8+L9L60F5Ovj33g8KhvEA13Ho5MmT7N69+7TzXSnIIjgNXnnlFRqNBgsLC33TdrlaslKp8Pjj
j+c+XtaDnVQAw31DAfCtg3BiUd8aKBaLrFmzho0bN3LeeeclDoTy10OrY+vWrZx//vls2rSJWq0W
T3Tq16h+9P90C26SKD300EMjOaYTANfj07eG3PXPzs7ykY985LTyW2lICE6Der3O9PR0LAbdbrfP
zC6VSlSr1aHEYDGk+fF+V9dwPclaSHIVnKj56/5Aq6Tu0UlDo0d1nUnXbaIJTBaLCw66Lt9u8Zs3
jddX4Ex1Dz6TSAhOk8997nPxzEHNZhO8oJ4fLxhEmluQZxowR7juf0+bACUpKp9EmGdSk2DSeYya
tGDm6eTp7nGpVOprJnT9BZwIWGv73vlwLqFBRyOiXq/zlre8hYsvvjj2wf2BJnNzczSbTfbv35/Y
zTRPa4GLWodLOIFp2DyX1IMv3B6a7lkFPmk7nrtBhpWSRzCy5mgI3R03b6KbVj3vK9jDTlvj4+PU
arW+1oJarRb/j+12m6NHj551cyDkHXQki2BE1Ot1XnrpJRqNRjwQyRUM5yZUKhW2b9++qAk4B1kF
SQUt6RhJ62cTWe5BUiekJELrK7QEwndEdLtdTp48edaJwDCo1WCE1Ot1HnzwQXq9HmvWrOnrbBS+
fejRRx/NVXsNY/Zm1bpZIjBIPFaaaIQtB+Q8T2cFOAvDWUcuOOg3Gbr/q9PpsLCwMLJ+CisVCcGI
eeGFF3jrW98aT7TpHii/t5x7aB977DGuuOKKUx7QtAc6jxUwTMHIyivtuKfLsLMaJU2VFqZlWUPu
3oZWg+9a+TEBJwKFQiF27RqNxgiufGWjGMES8Y1vfIMtW7awfv36eGCQixc4n7bdbtNoNOJJSJIe
dv+BHRQj8H33YWMEedbDWMCgGAGBePnXlbTuSJq2LSnA6cdg3CCsAwcOxPc26QWt7rf+PajValSr
1b53PBaLRbrdLrOzs1x22WUjey7ONIoRLDO7d+/m4MGDvP7667RaLQhaE4rFYu4WhbwMcgPy1PAr
zQ3wSRMUX2y2bt0aB/z8OQTCIcSuv0BSmhPQdrsdv1vyXEeuwRJy8803Q2Sevvvd76ZWq/W1ubt+
B2FHH3897xL+fthaeBSuRBZpLsEwroJ/Dr4bFVpCrguzsxZIaDZ1AVzX18OPEZioG/H73ve+RV3r
2YgsgjNAvV7nxRdfZGZmJu6FaLy3DuclqeD7aVm/G3TcUZHH1UwaSzFMnwYyxMxNdOrP6eiPfXCW
gB8TcCLg9xlYqVOKLRUSgjPEZz/7WZ555hmmp6eZnZ2Na6rvf//7i6qJT6fgn2v4Aun3cAxFwHX7
9rs/OxctbC50ncNWC3INziAugv21r32NCy+8kLVr154S+fbJsgAYUhyG2WdY8pr3i3EDsnD3xrci
/Je4JrUo+Pn7YuGLwGqKDThkESwDn/70p3nmmWd4+eWXR1IwzqQFkNd0TxqwtJjj5CW0CMLh0OHQ
Yn9x98+5BLOzs1x//fUjPb+VjpoPlxk34CWpMIfNhOEkKO4zHObrPpPG+vvNh1nb8jYfkhLUJCVw
maflwicUlKSpwv1p2/zJWNz2JKvK3R+/01en02Fubu6sbi4MUfPhWYKbDCONtNYBPz3p+6ithKSa
Pe17lgUwTMUzzL7uev34QNhJyMUIXCuB30IwNzfH9PT0OSUCw6AYwVnKYuIDaQwqcGlzKA7Kc9A+
WemLsVTTOmThCao/HsHt32q1aDQafPjDHx46z3MFCcEKYNRBtFGyFIFAf9+8gpLnmEkkWVS+deOm
brv66qtznfu5ioRgBeA/oAS1+3LFcBbLoFo+rVMRCfdhWAbFH8KZmlwX5cOHDy8qv3MJCcEKImwK
WwrSjp9Vo+Y5ZprrkDaQKu03w5x7kivggoNJv/V7F7rgYrvdjnuArmYkBCuMpQjyLUXPwcUUcr99
f5i8/PWwB2L4vdlsnuIO+ALQbDZpt9vn5HRjp4OEYAUxaBhyuO+ZjisMG/wbNL4g63qTRCAtT18U
2u12YiuLG3dw5MgRPvWpT+W63tWEhGAFkWYq5w2WLSZYl5dBhTxPjX+6MYIs18DV+AsLC4lC4NwA
iUAyEoIVwLAFM4y6J6WFhWQxzX/ktFKWMkYQimGSa4A3n+Hc3FxiB6aZmRnuuOOOgde7WlHPwhWC
38PQLyT+FOGlUumUCUr9HoRJPQuTegkmTTySNitxnu2kNNMl9SwMt2cRilm4hBOTtFotfvrTn7Kw
sMAXvvCFEf9DZyd5exbKIlghZJnNabV7Xp88Kz3L/cjy77POJ0nQ0vZLyivNBQiFgOAN0aN6C/Vq
RF2MVwh33nlnvB4WirTFJ0+EnQRhycOg4ySZ6mlpSetJeSTV/mkWQbvdPmffN3CmkBCsIMK59n0G
FRx/Oxm1atrx8uSZdKw0AcqzX3gdeQUnyTU412cZXmokBCuctIKQlh7+Nut7eMwsiyPMKzxelosx
SBiyrjtLBNyyGmYZXmokBCuMJKsgfIFpWiHx05PWk77nIa8rkpQ+yErIEqE8IjA/P8+uXbuGvibR
j4RgBeMXBN9H9tPzWAdpbsGZdA3C7Vl5p4lcKAK9Xo/Z2dnMaxD5kBCsQPyXcjiG9aPT1rNEYRjX
IM0KSavNw/2y8k5KCwXAvY9w9+7dp3GnhUPNh2cJLjCWVFDdlOhhzemEpNfrJY7D90mrodO2DztA
yiZ0gsrqZZgkBG7WIfcasquuuip3/iIbWQQrlLRYQfg24KTXm2f542RYB0ksxgJZzPew0CdZAq6p
sNVqSQRGjCyCFYwTA/f2Xr9w4NXK4Xe/tvYLsD8SL6yds2r+tOMkrSftS4IVkGWVJIlCr9ej1WrR
6XRW3VTjZwJZBGcBrrORXzsmWQRhep6aPO+SdYzweKQU6rR8k64pzRJoNptqJVgCJARnCXfeeecp
vnKaICQVrlG4BlkCkLTvoGWQALh4QKvVotVqceLECYnAEiHX4CzCN6vb7Xb8luVCodDnIuAFEF2g
0P/0B/3kcQ3CtDTXIG1/xyB3gMD9cW84dkOIb7rppqHul8iPRh+ehYSBxHK5HM/R749ETHstetr2
cARhnlGJnMYoQ9+a8C0DXwBmZma47bbbluhOnvvkHX0oIThLcQFEokLpRMAXg7wvPhn0ghMGvJmZ
hEKfJAghSa6N6x8wOzvLjTfeuKT3cDUgIVgl+NaBLwZp8xf4FsGg+QiStpPwvoDwc5AIOEvA9YsI
4wIzMzPceuutS37vVgMSglWELwb+24CdICS9Oi20AsJJTLImJhnGGgjxg5d+0NNZAooFjBYJwSrF
iYJ7zdcgIUiyEoZxDRhQ8H3CvgF+ILDVanHLLbcs4Z1ZnUgIRKLb4N4LOIwQhIXeBK8Oy5pdyN/m
phRzNb/M/6VHQiD6mJqaigtspVLpcyHyCkGaReCT1KfAuQAq/GceCYFIxVkKvhj4gcVQCNK2kzI4
KFy//fbbl/mKVy8SApGbqakpyuVybhFwaUm9BRcWFigWi5pFeIUgIRCLwp9W3W+CnJ+fB6/p0AUd
W60WX/rSl5b7tEUKEgIhRG4h0KAjIYSEQAghIRBCSAiEEEgIhBBICIQQSAiEEEgIhBBICIQQSAiE
EEgIhBBICIQQSAiEEEgIhBBICIQQSAiEEEgIhBBICIQQSAiEEEgIhBBICIQQSAiEEEgIhBBICIQQ
SAiEEEgIhBBICIQQSAiEEEgIhBBICIQQSAiEEEgIhBBICIQQSAiEEEgIhBBICIQQSAiEEEgIhBBI
CIQQSAiEEEgIhBBICIQQSAiEEEgIhBBICIQQSAiEEEgIhBBICIQQSAiEEEgIhBBICIQQSAiEEEgI
hBBICIQQSAiEEEgIhBBICIQQSAiEEEgIhBBICIQQSAiEEEgIhBBICIQQSAiEEEgIhBBICIQQSAiE
EEgIhBBICIQQSAiEEEgIhBBICIQQSAiEEEgIhBBICIQQSAiEEEgIhBBICIQQSAiEEEgIhBBICIQQ
SAiEEEgIhBBICIQQSAiEEEgIhBBICIQQSAiEEEgIhBAAxlq73OcghFhmZBEIISQEQggJgRBCQiCE
QEIghEBCIIRAQiCEQEIghEBCIIRAQiCEQEIghEBCIIRAQiCEQEIghEBCIIRAQiCEQEIghEBCIIRA
QiCEQEIghEBCIIRAQiCEAPj/H6FflwRh8HAAAAAASUVORK5CYII=
"/>
</div>
</div>
<div class="output_area">
<div class="prompt"></div>
<div class="output_png output_subarea">
<img src="
AAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBo
dHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAH2hJREFUeJztnXtwXFd9x78/aV+SVrYV20riJsb2
OCGkk5ZpS50+h86UCWVosPMmNEPcEOImJqEN9DWZ0boECHT6GB4pjaFOKQkOdIgJUCbMQJk+UqYt
rdumJY+G2I4FkZCMZGmlfd7TP3LO7dnjc+/eXe1KK+n7mbmzd+/73t3zPb/f7/zOuaKUAiFkfdO3
0hdACFl5KASEEAoBIYRCQAihEBBCQCEghIBCEI+IlERk30pfx3IhIkpErlvp6yDLD4UgBqVUTin1
OF4pJDtE5OZun1NELhKRr+tCucVZt1VEPiUi4yIyLyJfEZGLrfUbROTTev2UiBwTkQu7fc2dRkTu
EZHnRKQoIi+KyAMikrbWv1lE/lVE5kTkhIh8QET69brDWsDtqSIiL8ac750i8t/6eP8uIldHbHex
3ubhLt36ikEhSM61ALoqBCLyiwD+GcB4xCZ/BeDVAH4WwIUAXgBwTEREr/9zABcBeB2ASwCUAPx1
N6+504jIfgD3AbgFwDCAvQB+HcBv6fU/qe/pjwCMALgGwO0A3oVXxPt2LeDhBOBLAB6NON9VAP4Y
wEEAWwA8AODzInK5Z/MHAdS7/QxWBKUUp4gJgAJwnf5j1vVUAvAjAATA7wB4FsCC/rzF2vdhAJ8B
8ASAs3rZfQC+HXO+6wC8FsDr9bm3WOuGAAQA3mgtSwOYBfDT+k9cA/Cz1vqL9XFe28r96vkMgA8B
+C6ARQD/AeBqa9vXAfgHff4fAvgKgIv1uq0APg9gCsA8gH8B8EvWviUA+yKu4eftbfWyLwD4rJ5/
I4D3OesfBnAs4nhvBnACwGDE+mMAHnKWfR3AnzrLbgDwn1qMH17p/2bH/+srfQG9PDkF42EAX7bW
3QXgJQBXAOgH8CYAZQA/ZW0/ra2IvhbP6xOCvBaCNznbjgM4AOANep+cs34SwO1t3O+HtLhdpkXh
IIAKgN16/XMA3gcgBWCDLiCP6XUPAXhSL0/pfccBpFp8DikAV2lB2Ruz3TcBfCxi/+cB3BSz7ziA
A86yDwP4R+v7Jr3dlfp3XXNCQNegfe4A8FGl1H8ppepKqb8B8GUAt1rbnFFKPaqUCpZ6MqXUPIBv
ALhP+6oDIvK72jzerGvhklKq5Ox6RlsLrXI7gD9USj2jlKoopT4G4LQ2xaELR1EpVVNKnQXwdqXU
jda6CoAFvf5jAC5SStWSnlxE7tPC+jkAv6+UOhax3QEAPwHgTzyrbwFQ1ceIYqu2aGzcZ/aHAB5X
Sn0r6fWvNigE7XMpgPvtoBSAXwWw3domMkDVJrfomunfdU3XB+Bb+s8eheiaPjEiMqIF5n+cVf8L
YJee/20tSs+IyEcB/IK13QPaxRkXkc+IyFu11ZQYpdT9AHI6RlAQkXs81/lbuvbep5R6wXOY3wbw
x02E2Pdswmem4zZvBPD7rVz/aoNC0D6LAO5wAlMZpZQdca508oRKqe8rpa5XSm1RSl2klPoAgJ26
pp4AkBORIWe3LXpdK+QilpugJJRSD+vA5P26Vn1SRB7Q6/5NC8atAGYAfATAN01kv4X7rSql/lbX
yL/ZcCEiH9EBxNcrpb5+zoWK/LgW6yeanGbSYzFtATAhIlnt5hzUVs+ahULQPs/rWi9ERLa3+mdv
BRH5Ff0HN98vA/AqAH+vrYQagJ+y1u8GcB6Af2rxVBMA5nT8wxyrT8cLntfftyilZpRSn1FK3QTg
TgC/oddtwisF+atKqYMA9gD4OQA/luAePyci73MWZ22rR0Q+pGMHV2rR8bEXwL8opSabnPKf7Wem
2QPgKR0TuBTAp3Rz7BSAmwDcpOfXDBSC5CwCuFhENolIBsDHAfy6iLxBRFIi8jMAvq3dg25xLYBP
6nyCLQA+AeARpdRLSqkzAD6r3ZVtIrJZm81fU0o9g1cK0AdF5M+anUSb0n8J4F4R2a1rxvdqUXlM
RC4C8D0RuVZE+kVkQIvi8/oQ39LXMaQFZI/2908luMdvArhbRF6vj/3jWmCO6Xu4UovOG5VSp2OO
8zod5W9ARH5EuzM/qhd9HMCNIvLLIpIVkV/TMYfD+j6263sz0xN6eu25p1zFrHS0spcnJ4r+89qM
nAPwk9pM/j39517UEfYD1r4NrQwqWfPh13TTWkWfu6Sn+/T6jboNfVYHtA4DGLL2zwP4C22On9VB
ss3ONT2R8H4HdLv5KX28vzMtIur/mzr/C0BRt458BcCr9borAPytvoazuvnwTda+cc2HAuBuHV8p
6aa/B0xrCIBP6taTkjM96xzn2wA+4Dn+Dn2f9r3cqnMyyrqZ9A0xz2hNthqI4ghF6wYR2Q7gD5RS
tybYnKwj6BqsL67RpjchDdAiIITQIiCEUAgIIToXe0UQEfokhHQZpZQk2IwWASGEQkAIoRAQQkAh
IISAQkAIAYWAEAIKASEEFAJCCCgEhBBQCAghoBAQQkAhIISAQkAIAYWAEAIKASEEFAJCCCgEhBBQ
CAghoBAQQkAhIISAQkAIAYWAEAIKASEEFAJCCCgEhBBQCAghoBAQQkAhIISAQkAIAYWAEAIKASEE
FAJCCCgEhBBQCAghoBAQQkAhIISAQkAIAYWAEAIKASEEFAJCCCgEhBBQCAghoBAQQkAhIISAQkAI
AYWAEAIAqZW+ANK7vP/970d/fz/6+vrQ19cHEWn4vPvuu1f6EkmHEKXUypxYZGVOTJrywQ9+MBSA
VCoVKQQiAgC4/fbbV/qSSQRKKUmyHYWAAAAKhQJSqRTy+Tz6+vrOEQJXBMy8mTKZDOr1Oq6//vqV
vhVikVQI6BoQ4JU/DPr6XgkZpdPpUAziXAMzn8lkkM1msVKVClk6FAISEgRBaO7bYuATgnQ6jUwm
g3Q6HW5br9dX+hZIm9A1WIc88cQT2Lp1K1KpFJRSCIIAX/3qV5HNZjE4OIihoSGkUilks1mk0+nQ
PTCi0N/fj1wuh1Qqhf7+fogIgiDA9PR0aFWY/1WlUsG+fftW+I7XL4wRkJBPf/rTuPTSS8OCXy6X
Ua/Xw9o/CAJUKhU89dRT2LBhA/L5PHK5XCgMpsCbmj+VSoXzZv+5uTlMTk42uAdKKYgIstlsGEuY
np7GO97xjhV7FusNCsE65dFHH8XOnTuRSqWwuLiIXC6Hbdu2IZ1Oo1ar4fDhw6FJb4TAFFIzPzs7
i4GBAeTzeYyMjDRYBsYqqNfrqNVq6O/vxwsvvBB5PUEQIJPJhAJh/98GBgYwMDCAubk5tjx0CQrB
OuPIkSO4/PLLUa/XUalU0N/fj+3btyOVSuHw4cNhUM+Y+XAEwGV2dhaZTAYbN24MRcAIQSqVwmte
8xqcOXMGTz/9dIOIGNzjKqVQr9cRBEH43fz3crkc0uk0stksbrnllq49o/UIhWAd8dRTTwEASqVS
6NsPDg7iC1/4Qlj7wyqcRgjimJ2dhVIKmzZtCuMBZsrlchgZGcF3vvOdBlGBx7rwEQQBgiBAsVhs
sBDMse+6664lPxPyChSCdcCHP/xh7NmzB9VqNWz+GxwcxJNPPgkRwdDQUGQBdX93EzQ0NbVSCouL
ixgZGUEmkwkFJZPJIJ/PQymFEydONLQkRIlAM0GYnp4OzykiuPDCC6GUorvQASgEa5yHHnoIl19+
ORYXF1GtVpFOp/Hcc89hamoqbNLr7+8HmrgApgDW6/VQDEqlUrh+dHQUg4ODyOVyyOVyoSD09fXh
xRdfDJsMXQFwz9fs/CKC06dPh/NDQ0MYHR3F29/+9g49sfUJhWANc+TIEezatQsLCwuo1+t46aWX
MDExEUbzU6lUQw3t89ftedt/L5fLoR9vAo22EJjAYb1ex9TUFMrlcriPsSjaxex76tSp8Jq3bt2K
XC6H2267re3jrmcoBGuQxx57DJs3b8bi4mIoAHNzc4D2r30tAXE1sW9eRMKgoHEDstlsaAkYKyMI
AtRqNdRqNVQqlbAVoVarhcd0Wwrc/5rPalBKoVqtQkRw8uTJcN3OnTtx6623LvEJrj+YYrwGOe+8
8zA/P48gCDA+Po6zZ88iCIIwmOf66HFC4PPh7azBvr6+8NNYDLCyD20LoK+vD0EQhMlGdpzBmPrm
sxl9fX3IZrMol8vYsWMHTpw4AQDhJ+kOHI9glVAoFFAsFlGr1XD69GnMzs4iCIJzUoB9wTt3Mtvb
k900aL7bCUfGAqhWq6hWq2HtX6/Xw/iCry+Cm5rc7LpEBP39/RgYGICIYOfOnYC2Jh577LEV/hXW
LhSCVUI6nUalUsH4+DhmZmZQq9Ua0n7jClaUAJhORWayU4aNGW8KuhGAarWKSqUSioEtAs2EyNdr
0V1uf9piYLY9evToSv8UaxK6Bh3m/vvv99a4UU12AHDvvffGHnNsbAyjo6OYnJzE3Nwc6vV6Q5af
KbxxkXt33nUhfAUR2hqwTXwTSLSPFxUDcLfz4YsT2LkJuVwOlUoFO3fuRBAEYU4E6SwMFnaAQqGA
bDaLbDbbYKrbtZ+NW4h8kymAQRBgdnYWl1xyCaampjAzMwOlFHK5XCgCxpd3BcBN9kGECJhtoywI
X45AVEuEfQ/uOnfeJxLGNbDXG5ckCAJs3LgRxWIRN998c8u/03qEwcJl4IEHHggFwETsjW9tF6I4
oiLr5vO73/0uAGBmZgblcrnBF/eJDjxZfj4h8ImGr3Db1oDP0oiilSCle21u/oMRNGMJ5fP5pucn
rUEhaJOxsTEMDAyEWXeZTCb8E7vmtkuUWW3XlsYEN+tcfxwRNXNUzR0lDlHr7XO7bo0rDM2QiFYD
97vrltjWiEk/NsuOHj2Km266KdH5SXMoBG1QKBTCnnN2h5y4yDhisu6iYgfHjx8P9zf+cblc9h4b
ESIQV9B9+/vmo0jaJBh371GxCnc+CAJks9mwqTKbzSY6L0kGhaBNjBVg/qx2DW4wBdr9U9t//qhA
nzu/uLgYCo/vXHBq6mYCFCcgrZBEDJK4A64AmAnaOjItG2afTCbT0nV2kkKhgMHBQYyOjuKyyy4L
f387sco0uZoU8HK53NPp0gwWtkihUEAmk8GGDRswMjKCIAgasuoWFhYaUm5NIs7AwMA5Pn1/fz+y
2WxDG77Z5umnn244r4jgggsuwMzMTNi3wGQT2k2IcR2AkrgM9vmito2bT7I+zgrwCUG9Xsdzzz2H
K664IkxuqtVqmJ+fxw033NDW79guhUIBo6OjSKfT2LlzJ4aGhkK3zgiACfKa3AuTvm0+a7Xasrk1
DBZ2EZNya35U01FneHgYBw4c6Mg5CoVCw3elFBYWFrB582ZMTU01/OHcrEKbZoLgbuNbb19DO7V/
lBBEJULZVpJSClNTU7jssstCt8CsW26roFAohH0uUqkUJiYmUKvVsGvXroZMS3eq1+tYWFgI8y96
EQpBG4gI8vk8Nm7cGKbYptPprv/IpVIJSikMDw8jk8lgdnb2nOtya1a0YBHAU5CbWQGtLPPV+r5l
xgX4wQ9+gC1btmDHjh0N7pd55sshBEaQBwcHMTg4iIGBAQwNDYU9PM1IUHZWpvv8gyDAzMwMTp48
iTvvvLPr19wOFII2MO6UyRvYvXs3XnrpJRSLxa6e11ggplDk83nUajVvM18rhb6ZRZC0sEftGxVE
NTU/LOvAiMD09DRGR0dDt8cX/2g1ntEqhUIBIhKKgN0N23XJjHVmfg+TkTk+Pr4qxlVginGLmBrC
1EiZTAbj4+OA7gHYyXO4uPGIWq0WDkgaldUXVyO3KhpRx4qq7d0UZneyE6Ls0ZIrlQq2bt0aFra4
cz/yyCMdeeY++vv7kc/nMTQ01CACZsg3N73b/DblchnFYhEvv/zyqhAB0CJoj7m5uXBUILHa2FOp
FL74xS/iLW95y5KOH+WLGz/UDUTmcjmISNgFGJ4C4y5Dh0x9d95NbIqzCFxT+uWXX8bIyAiGhobO
GU7N7cVopm41IxYKBQwNDYW5IiYulMlkzgn6muszrQOzs7M93ULgg0LQBoVCAQ8++GDos9p/2m62
b9smqBmO3NRExkcVEUxOTuL8889PLARJ3Aff9lFC4G4TFwsQEUxMTGBkZAQXXHBBQzMhnBGM7Osw
UzfiBMYiGxgYCAdjsUXAFgJbmCcnJ1edABjYfNgmY2Nj2LNnTxi4M35suVxGqVRCsVjE3r17Wz5u
lFsAbXH4OjT5+jiYrsTQzW8m81EigohJXQI0sTbimgJPnDiBoaGh0NR2X7Dq4ut/4VpE5nlfe+21
LT9rH2NjYxBrqDQjBrbrYscDpqene3rk5aTNh4wRtMmhQ4dQLBYbhvYyAbBMJoNcLodPfOITXb0G
U9jsNmq3CcvUmqag1et1LC4uolgsnlNQbb+9mY/vDm8eNZ06dSocUu1Vr3oVRkdHMTw8HPbP8HWj
9t2n7747bRUYEXBf5+aLBSwuLmJiYqKnRaAV6BosgTNnzoRmo1uAstkstm/f3tLxxsbGItf5fGwX
t4uwrzUhlUo1CIOJcFcqFdRqNWzevDlRzW9P3/ve98KCb96MZGrPHTt2NHTE8lkacYjTT8EXJ0hy
nGYUCoUw1mMHBV1LyyQOzc/PY//+/Us+b69Ai2AJfP/730exWESpVGoYtsvUktlsFl/60pc6ci5f
AXQLgSsAtnXgDiwqVg/GdDqN4eFhnHfeeZFjDdrHMdaHWbZt2zacf/752Lp1K4aHhzE4OHjOOId2
9H+pBdcnSksdvcjcqxEAO+PTjlsopTA/P4+3ve1tSzpfr0EhWAKFQgETExOhGNTr9QYzO51OI5fL
dUwMoogK3Nl+tTsflXvgugp26rNJaTYF3HUD3EBakm7Yrd6n775FBAMDA20f18RljCVnJhNnMRaN
eYY33njjku+l16AQLJF3v/vd4chB5XIZcJJjTLwgCRIxilGcNeCzCOAxvd3a3RWEJNcW1xIQdR2d
Ji5wudTjmteu2a0EtggopRre+bCWYKtBhygUCti9ezd27doVDlJizGiTa14ul3Hy5EkcPHjQu7/t
C9u/i6llo1oN3AFM3eY5X88+d7lruscVeN9yWO4GYqyUJIIRNUiLa9EEQYBqtdqQyHPNNdck/r1s
zEtf8/l8mEqcz+fD37FareLMmTOrbgwEthosM4VCAc8//3w40rDpHGO7CdlsFjt27PD6s64gRxWc
ZpZBXM24XLV2N4lzD+z8gzjswCB0XMC2BOyXxEC3tMzNza06EWgFthp0kEOHDuHo0aMIggDDw8MN
bx523z70+OOPY9++fd7j2OMYtGL6xtW6cSLQTDx6TTTclgN7eRzGCrCHezOp4rYIGCGAFoFO5in0
KhSCDvPMM8/gkksuCQfaNAJg11bmD3zs2DHs3bu3oYayU2njMuqamdutikezdZ0Sg1ZHNfINlWav
g/NcXEzht10aWHEck5Blv+jVBD5N02q3O5P1AowRdIkjR45gdHQUmzZtaqhdzGRG5i0Wi+EgJL5C
4mYKxsUIbN+91RhBknk3FtAsRoCIQtpMYNzxEWG1gPiaMu2OWKdOnQrfw+Ab49Hsaz+DfD6PXC4X
xgZM02G9Xsf8/Dyuvvrqjv0vlhvGCFaY/fv34/Tp0/jhD3+ISqUCOK0JJrHHblHoROTbPU4rBbAT
19BNogTFFptt27aFAT97DAG3C7FpBnXf8mz3eKxWq+G7Jdc6dA26yB133AFo8/TKK69EPp9vaG83
eQduoo89n3Ry92+1Fu6EKxFHlEvQiqtgX4PrFrg1fCaTCa0FeJpN7e7Pdsci0+JTr9dx1VVXtXWv
qxFaBMtAoVDAs88+i6mpqTALUay3DqOFAhZVYJP6+u2sb4UkrqYvV6KVnAbEiJkZ6NQe09FOejKW
gB0TMCJg5wzYXbrXAxSCZeKee+7B8ePHMTExgfn5+bCm+sY3vhFu00r0fikFf61hW0Z2SrBPBOwX
0pj1tghAx3JMcth6ga7BMmIi2A8++CC2bduGDRs2xG4fFw2Hp8B307SPI6l5344bEId5Nm7ylcQ0
L9rfbbGwRWA9xQYMtAhWgDvvvBPHjx/Hiy++mNgUjmM5LYCk1+umNLd7nKS4FkGUO2AHC81knp/d
s/Ctb31rR6+v12Hz4Qrjphbb+AYa8TUVut18zaevr7/dfBi3LGnzISKCmogIXCZ1bwy+HpD2ZI/D
YF4VD12zm+VR57ZHHoZ+2erCwsKqbi50YfPhKiFuRCIkyC6Mcg86bSX4avao73EWQCsVTyvbmvu1
4wOuFWC6hptWAruFYGFhARMTE2tKBFqBMYIeoBOFdinHaFbgfBZLEn+/2TZx69uxVH3Zh24nKHt8
SbN9pVJBsVhcc2MMtAKFoAew28STslxxgW4EAt1elkkEJckxffgsKtu6MW+puv766xNd+1qFQtBD
RNW8q4lmtXxUUhGcEZbaoVn8wR2pyaQoT05OtnW+tQSFoIdYjlo+qpDF1ahJjhnlOkRZO+2IXrMY
hUkoihIBO7vQBBer1WqYAbqeoRD0AHaBacdNiKPTbff29bVayMUZiDTpuex5NwPR/V4ul89xB2wB
KJfLqFara3K4saVAIegR3MSYZnS6gHfinO76Zv0LkgYL456LKwrVatXbymL6HUxPT+Od73xngrtd
X1AIegjXMmilya3dYF1SmhXypIU7zh1oFiOIcw1MjV8qlbxCYNwAioAfCkEP4Oszn7Tm9RUO17po
t/nPPn6rzYCdihG4YuhzDWCNZ7iwsOBNYJqamsK9997b9H7XK8ws7BGiEovsIcLT6fQ5A5TaGYS+
zEJflqBv4JGoUYmTLEdEM50vs9BdHocrZu7kDkxSqVRw6tQplMtlvOc971niL7I2SJpZSIugR4hq
W3cz+uLa4NtJ4IlzP+L8+7jr8bkJUdv5zhXlArhCAOcN0Ut9C/V6hinGPcKhQ4eAJqZw3LsIkkTY
4RGWJDQ7js9Uj1oXJTxx5/Ddu20RVKvVNfu+geWCQtBDFAoFb6ALCQsOYmr4qP3jiNqmWUTfdw3N
hCouBhC1ve0arPVRhrsNhaAHaVbzxq2POo7vu3tMX8H0bRt3ne0IQ5Lj+UTATOthlOFuQyHoMXxB
Q/cFpnG1JpoUuFbdAt/xm50DEYXft1+cCCURgcXFRdx8880t3xNphELQg/jcAttHtpcnsQ6SuhUu
rboGUXEC37XFnTvONbBFIAgCzM/Px94DSQaFoAfxWQVxpnszn9rdv9lxk7gGUVZIVG3ubhd3bt86
VwDM+wj379/f1jMmjbD5cJVgAmO+gmqGRHdrTmNZBEHg7YdvE1VDRy1fSkq02S+uJ6JPCMyoQ7Va
DaVSCdddd13i85N4aBH0KLZVYAqH723AvibFpKZ5koLcjgXS7Lvv2G6h91kCpqmwUqlQBDoMLYIe
xoiB/fJOUzhg1crud19vRnu9r3aOq/mjjuOb920LxwpoZn34RCEIAlQqlfD156Sz0CJYBRghsGtH
n0Xgrk9Skyed4o7hHg8RhTrqvL57irIEyuUyWwm6AIVglWCLgT1Cb5SL4K7vhGsQJwC+bZtNzQTA
xAMqlQoqlQrOnj1LEegSdA1WGaYQVavV8C3L5hXexkWAFUA0gUL70+3piCaugbsuyjWI2t6+9qhl
rpgYETBTtVrFbbfd1uLTIklh78NViNu8mMlkwjH67Z6I7mvR3V6Jdg9CswxOT8JmvQ+xhF6GtjVh
WwbGFajVapiamsLBgwe78hzXA0l7H1IIViljY2MNBc2IgC0G5uUdbqF2X3zS7AUnwLndjOO6HMMp
/FFC4Loudn5AsVhkjkAHoBCsE2xBsMXAHr/AHcPAHqcgbjwC33J43hfgfjYTAWMJmLwINy4wNTWF
u+66a1me31qHQrCOGBsbC+eNGNiCYLsL7nfXNUgyMEkr1oCLbQHYQU9jCTAW0FkoBOsUYyGYV3y5
70+0XQZXHNpxDdCk4Nu4uQF2ILBSqeDAgQNdfTbrEQoBaQgq2paC7TIkEQK30PtcA0Ncy4AZUszU
/DT/uw+FgDRgxxKy2WwoCsZNSCIEURaBjS+nwLgALPzLD4WARGIsBTuW4LYwxMUObIvAlyTkzr/r
Xe9a4Ttev1AISGLGxsaQyWS8hT2uNcGXLVgqlZBKpfDe9753pW+LUAhIu9hxBbsJcnFxEbCaDk3Q
sVqt4r777lvBKyZxUAgIIYmFgJ2OCCEUAkIIhYAQQiEghIBCQAgBhYAQAgoBIQQUAkIIKASEEFAI
CCGgEBBCQCEghIBCQAgBhYAQAgoBIQQUAkIIKASEEFAICCGgEBBCQCEghIBCQAgBhYAQAgoBIQQU
AkIIKASEEFAICCGgEBBCQCEghIBCQAgBhYAQAgoBIQQUAkIIKASEEFAICCGgEBBCQCEghIBCQAgB
hYAQAgoBIQQUAkIIKASEEFAICCGgEBBCQCEghIBCQAgBhYAQAgoBIQQUAkIIKASEEFAICCGgEBBC
QCEghIBCQAgBhYAQAgoBIQQUAkIIKASEEFAICCGgEBBCQCEghIBCQAgBhYAQAgoBIQQUAkIIKASE
EFAICCGgEBBCQCEghIBCQAgBhYAQAgoBIQQUAkIIKASEEFAICCGgEBBCQCEghIBCQAgBhYAQAgoB
IQQUAkIIKASEEFAICCGgEBBCQCEghIBCQAgBhYAQAgoBIQQUAkIIKASEEAAQpdRKXwMhZIWhRUAI
oRAQQigEhBAKASEEFAJCCCgEhBBQCAghoBAQQkAhIISAQkAIAYWAEAIKASEEFAJCCCgEhBBQCAgh
oBAQQkAhIISAQkAIAYWAEAIKASEEFAJCCCgEhBAA+D/lTFqbuBwoKgAAAABJRU5ErkJggg==
"/>
</div>
</div>
</div>
</div>
</div>
</div></div></div></div></div><footer class="nav-footer" id="footer"><section class="sitemap"><div class="footerSection"><div class="social"><a class="github-button" href="https://github.com/facebookresearch/pytorch3d" data-count-href="https://github.com/facebookresearch/pytorch3d/stargazers" data-show-count="true" data-count-aria-label="# stargazers on GitHub" aria-label="Star PyTorch3d on GitHub">pytorch3d</a></div></div></section><a href="https://opensource.facebook.com/" target="_blank" rel="noreferrer noopener" class="fbOpenSource"><img src="/img/oss_logo.png" alt="Facebook Open Source" width="170" height="45"/></a><section class="copyright">Copyright © 2020 Facebook Inc</section></footer></div></body></html>