pytorch3d/tests/test_io_gltf.py
Jeremy Reizenstein 34f648ede0 move targets
Summary: Move testing targets from pytorch3d/tests/TARGETS to pytorch3d/TARGETS.

Reviewed By: shapovalov

Differential Revision: D36186940

fbshipit-source-id: a4c52c4d99351f885e2b0bf870532d530324039b
2022-05-25 06:16:03 -07:00

198 lines
6.1 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import unittest
from math import radians
import numpy as np
import torch
from PIL import Image
from pytorch3d.io import IO
from pytorch3d.io.experimental_gltf_io import MeshGlbFormat
from pytorch3d.renderer import (
AmbientLights,
BlendParams,
FoVPerspectiveCameras,
look_at_view_transform,
PointLights,
RasterizationSettings,
rotate_on_spot,
)
from pytorch3d.renderer.mesh import (
HardPhongShader,
MeshRasterizer,
MeshRenderer,
TexturesVertex,
)
from pytorch3d.structures import Meshes
from pytorch3d.transforms import axis_angle_to_matrix
from pytorch3d.vis.texture_vis import texturesuv_image_PIL
from .common_testing import get_pytorch3d_dir, get_tests_dir, TestCaseMixin
DATA_DIR = get_tests_dir() / "data"
TUTORIAL_DATA_DIR = get_pytorch3d_dir() / "docs/tutorials/data"
DEBUG = False
def _load(path, **kwargs) -> Meshes:
io = IO()
io.register_meshes_format(MeshGlbFormat())
return io.load_mesh(path, **kwargs)
def _render(
mesh: Meshes,
name: str,
dist: float = 3.0,
elev: float = 10.0,
azim: float = 0,
image_size: int = 256,
pan=None,
RT=None,
use_ambient=False,
):
device = mesh.device
if RT is not None:
R, T = RT
else:
R, T = look_at_view_transform(dist, elev, azim)
if pan is not None:
R, T = rotate_on_spot(R, T, pan)
cameras = FoVPerspectiveCameras(device=device, R=R, T=T)
raster_settings = RasterizationSettings(
image_size=image_size, blur_radius=0.0, faces_per_pixel=1
)
# Init shader settings
if use_ambient:
lights = AmbientLights(device=device)
else:
lights = PointLights(device=device)
lights.location = torch.tensor([0.0, 0.0, 2.0], device=device)[None]
blend_params = BlendParams(
sigma=1e-1,
gamma=1e-4,
background_color=torch.tensor([1.0, 1.0, 1.0], device=device),
)
# Init renderer
renderer = MeshRenderer(
rasterizer=MeshRasterizer(cameras=cameras, raster_settings=raster_settings),
shader=HardPhongShader(
device=device, lights=lights, cameras=cameras, blend_params=blend_params
),
)
output = renderer(mesh)
image = (output[0, ..., :3].cpu().numpy() * 255).astype(np.uint8)
if DEBUG:
Image.fromarray(image).save(DATA_DIR / f"glb_{name}_.png")
return image
class TestMeshGltfIO(TestCaseMixin, unittest.TestCase):
def test_load_apartment(self):
"""
This is the example habitat example scene from inside
http://dl.fbaipublicfiles.com/habitat/habitat-test-scenes.zip
The scene is "already lit", i.e. the textures reflect the lighting
already, so we want to render them with full ambient light.
"""
self.skipTest("Data not available")
glb = DATA_DIR / "apartment_1.glb"
self.assertTrue(glb.is_file())
device = torch.device("cuda:0")
mesh = _load(glb, device=device)
if DEBUG:
texturesuv_image_PIL(mesh.textures).save(DATA_DIR / "out_apartment.png")
for i in range(19):
# random locations in the apartment
eye = ((np.random.uniform(-6, 0.5), np.random.uniform(-8, 2), 0),)
at = ((np.random.uniform(-6, 0.5), np.random.uniform(-8, 2), 0),)
up = ((0, 0, -1),)
RT = look_at_view_transform(eye=eye, at=at, up=up)
_render(mesh, f"apartment_eau{i}", RT=RT, use_ambient=True)
for i in range(12):
# panning around the inner room from one location
pan = axis_angle_to_matrix(torch.FloatTensor([0, radians(30 * i), 0]))
_render(mesh, f"apartment{i}", 1.0, -90, pan, use_ambient=True)
def test_load_cow(self):
"""
Load the cow as converted to a single mesh in a glb file.
"""
glb = DATA_DIR / "cow.glb"
self.assertTrue(glb.is_file())
device = torch.device("cuda:0")
mesh = _load(glb, device=device)
self.assertEqual(mesh.device, device)
self.assertEqual(mesh.faces_packed().shape, (5856, 3))
self.assertEqual(mesh.verts_packed().shape, (3225, 3))
mesh_obj = _load(TUTORIAL_DATA_DIR / "cow_mesh/cow.obj")
self.assertClose(
mesh_obj.get_bounding_boxes().cpu(), mesh_obj.get_bounding_boxes()
)
self.assertClose(
mesh.textures.verts_uvs_padded().cpu(), mesh_obj.textures.verts_uvs_padded()
)
self.assertClose(
mesh.textures.faces_uvs_padded().cpu(), mesh_obj.textures.faces_uvs_padded()
)
self.assertClose(
mesh.textures.maps_padded().cpu(), mesh_obj.textures.maps_padded()
)
if DEBUG:
texturesuv_image_PIL(mesh.textures).save(DATA_DIR / "out_cow.png")
image = _render(mesh, "cow", azim=4)
with Image.open(DATA_DIR / "glb_cow.png") as f:
expected = np.array(f)
self.assertClose(image, expected)
def test_load_cow_no_texture(self):
"""
Load the cow as converted to a single mesh in a glb file.
"""
glb = DATA_DIR / "cow.glb"
self.assertTrue(glb.is_file())
device = torch.device("cuda:0")
mesh = _load(glb, device=device, include_textures=False)
self.assertEqual(len(mesh), 1)
self.assertIsNone(mesh.textures)
self.assertEqual(mesh.faces_packed().shape, (5856, 3))
self.assertEqual(mesh.verts_packed().shape, (3225, 3))
mesh_obj = _load(TUTORIAL_DATA_DIR / "cow_mesh/cow.obj")
self.assertClose(
mesh_obj.get_bounding_boxes().cpu(), mesh_obj.get_bounding_boxes()
)
mesh.textures = TexturesVertex(0.5 * torch.ones_like(mesh.verts_padded()))
image = _render(mesh, "cow_gray")
with Image.open(DATA_DIR / "glb_cow_gray.png") as f:
expected = np.array(f)
self.assertClose(image, expected)