Jeremy Reizenstein 65f667fd2e loading llff and blender datasets
Summary: Copy code from NeRF for loading LLFF data and blender synthetic data, and create dataset objects for them

Reviewed By: shapovalov

Differential Revision: D35581039

fbshipit-source-id: af7a6f3e9a42499700693381b5b147c991f57e5d
2022-06-16 03:09:15 -07:00

132 lines
3.6 KiB
Python

# @lint-ignore-every LICENSELINT
# Adapted from https://github.com/bmild/nerf/blob/master/load_blender.py
# Copyright (c) 2020 bmild
import json
import os
import numpy as np
import torch
from PIL import Image
def translate_by_t_along_z(t):
tform = np.eye(4).astype(np.float32)
tform[2][3] = t
return tform
def rotate_by_phi_along_x(phi):
tform = np.eye(4).astype(np.float32)
tform[1, 1] = tform[2, 2] = np.cos(phi)
tform[1, 2] = -np.sin(phi)
tform[2, 1] = -tform[1, 2]
return tform
def rotate_by_theta_along_y(theta):
tform = np.eye(4).astype(np.float32)
tform[0, 0] = tform[2, 2] = np.cos(theta)
tform[0, 2] = -np.sin(theta)
tform[2, 0] = -tform[0, 2]
return tform
def pose_spherical(theta, phi, radius):
c2w = translate_by_t_along_z(radius)
c2w = rotate_by_phi_along_x(phi / 180.0 * np.pi) @ c2w
c2w = rotate_by_theta_along_y(theta / 180 * np.pi) @ c2w
c2w = np.array([[-1, 0, 0, 0], [0, 0, 1, 0], [0, 1, 0, 0], [0, 0, 0, 1]]) @ c2w
return c2w
def _local_path(path_manager, path):
if path_manager is None:
return path
return path_manager.get_local_path(path)
def load_blender_data(
basedir, half_res=False, testskip=1, debug=False, path_manager=None
):
splits = ["train", "val", "test"]
metas = {}
for s in splits:
path = os.path.join(basedir, f"transforms_{s}.json")
with open(_local_path(path_manager, path)) as fp:
metas[s] = json.load(fp)
all_imgs = []
all_poses = []
counts = [0]
for s in splits:
meta = metas[s]
imgs = []
poses = []
if s == "train" or testskip == 0:
skip = 1
else:
skip = testskip
for frame in meta["frames"][::skip]:
fname = os.path.join(basedir, frame["file_path"] + ".png")
imgs.append(np.array(Image.open(_local_path(path_manager, fname))))
poses.append(np.array(frame["transform_matrix"]))
imgs = (np.array(imgs) / 255.0).astype(np.float32)
poses = np.array(poses).astype(np.float32)
counts.append(counts[-1] + imgs.shape[0])
all_imgs.append(imgs)
all_poses.append(poses)
i_split = [np.arange(counts[i], counts[i + 1]) for i in range(3)]
imgs = np.concatenate(all_imgs, 0)
poses = np.concatenate(all_poses, 0)
H, W = imgs[0].shape[:2]
camera_angle_x = float(meta["camera_angle_x"])
focal = 0.5 * W / np.tan(0.5 * camera_angle_x)
render_poses = torch.stack(
[
torch.from_numpy(pose_spherical(angle, -30.0, 4.0))
for angle in np.linspace(-180, 180, 40 + 1)[:-1]
],
0,
)
# In debug mode, return extremely tiny images
if debug:
import cv2
H = H // 32
W = W // 32
focal = focal / 32.0
imgs = [
torch.from_numpy(
cv2.resize(imgs[i], dsize=(25, 25), interpolation=cv2.INTER_AREA)
)
for i in range(imgs.shape[0])
]
imgs = torch.stack(imgs, 0)
poses = torch.from_numpy(poses)
return imgs, poses, render_poses, [H, W, focal], i_split
if half_res:
import cv2
# TODO: resize images using INTER_AREA (cv2)
H = H // 2
W = W // 2
focal = focal / 2.0
imgs = [
torch.from_numpy(
cv2.resize(imgs[i], dsize=(400, 400), interpolation=cv2.INTER_AREA)
)
for i in range(imgs.shape[0])
]
imgs = torch.stack(imgs, 0)
poses = torch.from_numpy(poses)
return imgs, poses, render_poses, [H, W, focal], i_split