mirror of
https://github.com/facebookresearch/pytorch3d.git
synced 2025-08-01 03:12:49 +08:00
Summary: Threaded the for loop: ``` for (int yi = 0; yi < H; ++yi) {...} ``` in function `RasterizeMeshesNaiveCpu()`. Chunk size is approx equal. Reviewed By: bottler Differential Revision: D40063604 fbshipit-source-id: 09150269405538119b0f1b029892179501421e68
128 lines
3.6 KiB
Python
128 lines
3.6 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the BSD-style license found in the
|
|
# LICENSE file in the root directory of this source tree.
|
|
|
|
import os
|
|
from itertools import product
|
|
|
|
import torch
|
|
from fvcore.common.benchmark import benchmark
|
|
from tests.test_rasterize_meshes import TestRasterizeMeshes
|
|
|
|
BM_RASTERIZE_MESHES_N_THREADS = os.getenv("BM_RASTERIZE_MESHES_N_THREADS", 1)
|
|
torch.set_num_threads(int(BM_RASTERIZE_MESHES_N_THREADS))
|
|
|
|
# ico levels:
|
|
# 0: (12 verts, 20 faces)
|
|
# 1: (42 verts, 80 faces)
|
|
# 3: (642 verts, 1280 faces)
|
|
# 4: (2562 verts, 5120 faces)
|
|
# 5: (10242 verts, 20480 faces)
|
|
# 6: (40962 verts, 81920 faces)
|
|
|
|
|
|
def bm_rasterize_meshes() -> None:
|
|
kwargs_list = [
|
|
{
|
|
"num_meshes": 1,
|
|
"ico_level": 0,
|
|
"image_size": 10, # very slow with large image size
|
|
"blur_radius": 0.0,
|
|
"faces_per_pixel": 3,
|
|
}
|
|
]
|
|
benchmark(
|
|
TestRasterizeMeshes.rasterize_meshes_python_with_init,
|
|
"RASTERIZE_MESHES",
|
|
kwargs_list,
|
|
warmup_iters=1,
|
|
)
|
|
|
|
kwargs_list = []
|
|
num_meshes = [1]
|
|
ico_level = [1]
|
|
image_size = [64, 128, 512]
|
|
blur = [1e-6]
|
|
faces_per_pixel = [3, 50]
|
|
test_cases = product(num_meshes, ico_level, image_size, blur, faces_per_pixel)
|
|
for case in test_cases:
|
|
n, ic, im, b, f = case
|
|
kwargs_list.append(
|
|
{
|
|
"num_meshes": n,
|
|
"ico_level": ic,
|
|
"image_size": im,
|
|
"blur_radius": b,
|
|
"faces_per_pixel": f,
|
|
}
|
|
)
|
|
benchmark(
|
|
TestRasterizeMeshes.rasterize_meshes_cpu_with_init,
|
|
"RASTERIZE_MESHES",
|
|
kwargs_list,
|
|
warmup_iters=1,
|
|
)
|
|
|
|
if torch.cuda.is_available():
|
|
kwargs_list = []
|
|
num_meshes = [8, 16]
|
|
ico_level = [4, 5, 6]
|
|
# Square and non square cases
|
|
image_size = [64, 128, 512, (512, 256), (256, 512)]
|
|
blur = [1e-6]
|
|
faces_per_pixel = [40]
|
|
test_cases = product(num_meshes, ico_level, image_size, blur, faces_per_pixel)
|
|
|
|
for case in test_cases:
|
|
n, ic, im, b, f = case
|
|
kwargs_list.append(
|
|
{
|
|
"num_meshes": n,
|
|
"ico_level": ic,
|
|
"image_size": im,
|
|
"blur_radius": b,
|
|
"faces_per_pixel": f,
|
|
}
|
|
)
|
|
benchmark(
|
|
TestRasterizeMeshes.rasterize_meshes_cuda_with_init,
|
|
"RASTERIZE_MESHES_CUDA",
|
|
kwargs_list,
|
|
warmup_iters=1,
|
|
)
|
|
|
|
# Test a subset of the cases with the
|
|
# image plane intersecting the mesh.
|
|
kwargs_list = []
|
|
num_meshes = [8, 16]
|
|
# Square and non square cases
|
|
image_size = [64, 128, 512, (512, 256), (256, 512)]
|
|
dist = [3, 0.8, 0.5]
|
|
test_cases = product(num_meshes, dist, image_size)
|
|
|
|
for case in test_cases:
|
|
n, d, im = case
|
|
kwargs_list.append(
|
|
{
|
|
"num_meshes": n,
|
|
"ico_level": 4,
|
|
"image_size": im,
|
|
"blur_radius": 1e-6,
|
|
"faces_per_pixel": 40,
|
|
"dist": d,
|
|
}
|
|
)
|
|
|
|
benchmark(
|
|
TestRasterizeMeshes.bm_rasterize_meshes_with_clipping,
|
|
"RASTERIZE_MESHES_CUDA_CLIPPING",
|
|
kwargs_list,
|
|
warmup_iters=1,
|
|
)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
bm_rasterize_meshes()
|