Files
pytorch3d/pytorch3d/common/linear_with_repeat.py
Conner Nilsen a27755db41 Pyre Configurationless migration for] [batch:85/112] [shard:6/N]
Reviewed By: inseokhwang

Differential Revision: D54438157

fbshipit-source-id: a6acfe146ed29fff82123b5e458906d4b4cee6a2
2024-03-04 18:30:37 -08:00

96 lines
2.6 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
# pyre-unsafe
import math
from typing import Tuple
import torch
import torch.nn.functional as F
from torch.nn import init, Parameter
class LinearWithRepeat(torch.nn.Module):
"""
if x has shape (..., k, n1)
and y has shape (..., n2)
then
LinearWithRepeat(n1 + n2, out_features).forward((x,y))
is equivalent to
Linear(n1 + n2, out_features).forward(
torch.cat([x, y.unsqueeze(-2).expand(..., k, n2)], dim=-1)
)
Or visually:
Given the following, for each ray,
feature ->
ray xxxxxxxx
position xxxxxxxx
| xxxxxxxx
v xxxxxxxx
and
yyyyyyyy
where the y's do not depend on the position
but only on the ray,
we want to evaluate a Linear layer on both
types of data at every position.
It's as if we constructed
xxxxxxxxyyyyyyyy
xxxxxxxxyyyyyyyy
xxxxxxxxyyyyyyyy
xxxxxxxxyyyyyyyy
and sent that through the Linear.
"""
def __init__(
self,
in_features: int,
out_features: int,
bias: bool = True,
device=None,
dtype=None,
) -> None:
"""
Copied from torch.nn.Linear.
"""
factory_kwargs = {"device": device, "dtype": dtype}
super().__init__()
self.in_features = in_features
self.out_features = out_features
self.weight = Parameter(
torch.empty((out_features, in_features), **factory_kwargs)
)
if bias:
self.bias = Parameter(torch.empty(out_features, **factory_kwargs))
else:
self.register_parameter("bias", None)
self.reset_parameters()
def reset_parameters(self) -> None:
"""
Copied from torch.nn.Linear.
"""
init.kaiming_uniform_(self.weight, a=math.sqrt(5))
if self.bias is not None:
fan_in, _ = init._calculate_fan_in_and_fan_out(self.weight)
bound = 1 / math.sqrt(fan_in) if fan_in > 0 else 0
init.uniform_(self.bias, -bound, bound)
def forward(self, input: Tuple[torch.Tensor, torch.Tensor]) -> torch.Tensor:
n1 = input[0].shape[-1]
output1 = F.linear(input[0], self.weight[:, :n1], self.bias)
output2 = F.linear(input[1], self.weight[:, n1:], None)
return output1 + output2.unsqueeze(-2)