pytorch3d/tests/test_rendering_utils.py
Nikhila Ravi 5d3cc3569a Rendering texturing fixes
Summary:
Fix errors raised by issue on GitHub - extending mesh textures + rendering with Gourad and Phong shaders.

https://github.com/facebookresearch/pytorch3d/issues/97

Reviewed By: gkioxari

Differential Revision: D20319610

fbshipit-source-id: d1c692ff0b9397a77a9b829c5c731790de70c09f
2020-03-17 08:58:40 -07:00

90 lines
2.9 KiB
Python

# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
import numpy as np
import unittest
import torch
from pytorch3d.renderer.utils import TensorProperties
from common_testing import TestCaseMixin
# Example class for testing
class TensorPropertiesTestClass(TensorProperties):
def __init__(self, x=None, y=None, device="cpu"):
super().__init__(device=device, x=x, y=y)
def clone(self):
other = TensorPropertiesTestClass()
return super().clone(other)
class TestTensorProperties(TestCaseMixin, unittest.TestCase):
def test_init(self):
example = TensorPropertiesTestClass(x=10.0, y=(100.0, 200.0))
# Check kwargs set as attributes + converted to tensors
self.assertTrue(torch.is_tensor(example.x))
self.assertTrue(torch.is_tensor(example.y))
# Check broadcasting
self.assertTrue(example.x.shape == (2,))
self.assertTrue(example.y.shape == (2,))
self.assertTrue(len(example) == 2)
def test_to(self):
# Check to method
example = TensorPropertiesTestClass(x=10.0, y=(100.0, 200.0))
device = torch.device("cuda:0")
new_example = example.to(device=device)
self.assertTrue(new_example.device == device)
def test_clone(self):
# Check clone method
example = TensorPropertiesTestClass(x=10.0, y=(100.0, 200.0))
new_example = example.clone()
self.assertSeparate(example.x, new_example.x)
self.assertSeparate(example.y, new_example.y)
def test_get_set(self):
# Test getitem returns an accessor which can be used to modify
# attributes at a particular index
example = TensorPropertiesTestClass(x=10.0, y=(100.0, 200.0, 300.0))
# update y1
example[1].y = 5.0
self.assertTrue(example.y[1] == 5.0)
# Get item and get value
ex0 = example[0]
self.assertTrue(ex0.y == 100.0)
def test_empty_input(self):
example = TensorPropertiesTestClass(x=(), y=())
self.assertTrue(len(example) == 0)
self.assertTrue(example.isempty())
def test_gather_props(self):
N = 4
x = torch.randn((N, 3, 4))
y = torch.randn((N, 5))
test_class = TensorPropertiesTestClass(x=x, y=y)
S = 15
idx = torch.tensor(np.random.choice(N, S))
test_class_gathered = test_class.gather_props(idx)
self.assertTrue(test_class_gathered.x.shape == (S, 3, 4))
self.assertTrue(test_class_gathered.y.shape == (S, 5))
for i in range(N):
inds = idx == i
if inds.sum() > 0:
# Check the gathered points in the output have the same value from
# the input.
self.assertClose(
test_class_gathered.x[inds].mean(dim=0), x[i, ...]
)
self.assertClose(
test_class_gathered.y[inds].mean(dim=0), y[i, ...]
)