mirror of
https://github.com/facebookresearch/pytorch3d.git
synced 2025-08-02 03:42:50 +08:00
Summary: This is a somewhat not BC change: some None paths will be replaced by metadata paths, even when they were not used for data loading. Moreover, removing the legacy fix to the paths in the old CO3D release. Reviewed By: bottler Differential Revision: D69048238 fbshipit-source-id: 2a8b26d7b9f5e2adf39c65888b5863a5a9de1996
257 lines
10 KiB
Python
257 lines
10 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the BSD-style license found in the
|
|
# LICENSE file in the root directory of this source tree.
|
|
|
|
import contextlib
|
|
import gzip
|
|
import os
|
|
import unittest
|
|
from typing import List
|
|
|
|
import numpy as np
|
|
import torch
|
|
|
|
from pytorch3d.implicitron.dataset import types
|
|
from pytorch3d.implicitron.dataset.dataset_base import FrameData
|
|
from pytorch3d.implicitron.dataset.frame_data import FrameDataBuilder
|
|
from pytorch3d.implicitron.dataset.utils import (
|
|
get_bbox_from_mask,
|
|
load_16big_png_depth,
|
|
load_1bit_png_mask,
|
|
load_depth,
|
|
load_depth_mask,
|
|
load_image,
|
|
load_mask,
|
|
safe_as_tensor,
|
|
transpose_normalize_image,
|
|
)
|
|
from pytorch3d.implicitron.tools.config import get_default_args
|
|
from pytorch3d.renderer.cameras import PerspectiveCameras
|
|
|
|
from tests.common_testing import TestCaseMixin
|
|
from tests.implicitron.common_resources import get_skateboard_data
|
|
|
|
|
|
class TestFrameDataBuilder(TestCaseMixin, unittest.TestCase):
|
|
def setUp(self):
|
|
torch.manual_seed(42)
|
|
|
|
category = "skateboard"
|
|
stack = contextlib.ExitStack()
|
|
self.dataset_root, self.path_manager = stack.enter_context(
|
|
get_skateboard_data()
|
|
)
|
|
self.addCleanup(stack.close)
|
|
self.image_height = 768
|
|
self.image_width = 512
|
|
|
|
self.frame_data_builder = FrameDataBuilder(
|
|
image_height=self.image_height,
|
|
image_width=self.image_width,
|
|
dataset_root=self.dataset_root,
|
|
path_manager=self.path_manager,
|
|
)
|
|
|
|
# loading single frame annotation of dataset (see JsonIndexDataset._load_frames())
|
|
frame_file = os.path.join(self.dataset_root, category, "frame_annotations.jgz")
|
|
local_file = self.path_manager.get_local_path(frame_file)
|
|
with gzip.open(local_file, "rt", encoding="utf8") as zipfile:
|
|
frame_annots_list = types.load_dataclass(
|
|
zipfile, List[types.FrameAnnotation]
|
|
)
|
|
self.frame_annotation = frame_annots_list[0]
|
|
|
|
sequence_annotations_file = os.path.join(
|
|
self.dataset_root, category, "sequence_annotations.jgz"
|
|
)
|
|
local_file = self.path_manager.get_local_path(sequence_annotations_file)
|
|
with gzip.open(local_file, "rt", encoding="utf8") as zipfile:
|
|
seq_annots_list = types.load_dataclass(
|
|
zipfile, List[types.SequenceAnnotation]
|
|
)
|
|
seq_annots = {entry.sequence_name: entry for entry in seq_annots_list}
|
|
self.seq_annotation = seq_annots[self.frame_annotation.sequence_name]
|
|
|
|
point_cloud = self.seq_annotation.point_cloud
|
|
self.frame_data = FrameData(
|
|
frame_number=safe_as_tensor(self.frame_annotation.frame_number, torch.long),
|
|
frame_timestamp=safe_as_tensor(
|
|
self.frame_annotation.frame_timestamp, torch.float
|
|
),
|
|
sequence_name=self.frame_annotation.sequence_name,
|
|
sequence_category=self.seq_annotation.category,
|
|
camera_quality_score=safe_as_tensor(
|
|
self.seq_annotation.viewpoint_quality_score, torch.float
|
|
),
|
|
point_cloud_quality_score=(
|
|
safe_as_tensor(point_cloud.quality_score, torch.float)
|
|
if point_cloud is not None
|
|
else None
|
|
),
|
|
)
|
|
|
|
def test_frame_data_builder_args(self):
|
|
# test that FrameDataBuilder works with get_default_args
|
|
get_default_args(FrameDataBuilder)
|
|
|
|
def test_load_and_adjust_frame_data(self):
|
|
self.frame_data.image_size_hw = safe_as_tensor(
|
|
self.frame_annotation.image.size, torch.long
|
|
)
|
|
self.frame_data.effective_image_size_hw = self.frame_data.image_size_hw
|
|
|
|
mask_path = os.path.join(self.dataset_root, self.frame_annotation.mask.path)
|
|
fg_mask_np = self.frame_data_builder._load_fg_probability(
|
|
self.frame_annotation, mask_path
|
|
)
|
|
self.frame_data.mask_path = mask_path
|
|
self.frame_data.fg_probability = safe_as_tensor(fg_mask_np, torch.float)
|
|
mask_thr = self.frame_data_builder.box_crop_mask_thr
|
|
bbox_xywh = get_bbox_from_mask(fg_mask_np, mask_thr)
|
|
self.frame_data.bbox_xywh = safe_as_tensor(bbox_xywh, torch.long)
|
|
|
|
self.assertTrue(torch.is_tensor(self.frame_data.fg_probability))
|
|
self.assertTrue(torch.is_tensor(self.frame_data.bbox_xywh))
|
|
# assert bboxes shape
|
|
self.assertEqual(self.frame_data.bbox_xywh.shape, torch.Size([4]))
|
|
|
|
image_path = os.path.join(
|
|
self.frame_data_builder.dataset_root, self.frame_annotation.image.path
|
|
)
|
|
image_np = load_image(self.frame_data_builder._local_path(image_path))
|
|
self.assertIsInstance(image_np, np.ndarray)
|
|
self.frame_data.image_rgb = self.frame_data_builder._postprocess_image(
|
|
image_np, self.frame_annotation.image.size, self.frame_data.fg_probability
|
|
)
|
|
self.assertIsInstance(self.frame_data.image_rgb, torch.Tensor)
|
|
|
|
depth_path = os.path.join(self.dataset_root, self.frame_annotation.depth.path)
|
|
(
|
|
self.frame_data.depth_map,
|
|
self.frame_data.depth_mask,
|
|
) = self.frame_data_builder._load_mask_depth(
|
|
self.frame_annotation,
|
|
depth_path,
|
|
self.frame_data.fg_probability,
|
|
)
|
|
self.assertTrue(torch.is_tensor(self.frame_data.depth_map))
|
|
self.assertTrue(torch.is_tensor(self.frame_data.depth_mask))
|
|
|
|
new_size = (self.image_height, self.image_width)
|
|
|
|
if self.frame_data_builder.box_crop:
|
|
self.frame_data.crop_by_metadata_bbox_(
|
|
self.frame_data_builder.box_crop_context,
|
|
)
|
|
|
|
# assert image and mask shapes after resize
|
|
self.frame_data.resize_frame_(
|
|
new_size_hw=torch.tensor(new_size, dtype=torch.long),
|
|
)
|
|
self.assertEqual(
|
|
self.frame_data.mask_crop.shape,
|
|
torch.Size([1, self.image_height, self.image_width]),
|
|
)
|
|
self.assertEqual(
|
|
self.frame_data.image_rgb.shape,
|
|
torch.Size([3, self.image_height, self.image_width]),
|
|
)
|
|
self.assertEqual(
|
|
self.frame_data.mask_crop.shape,
|
|
torch.Size([1, self.image_height, self.image_width]),
|
|
)
|
|
self.assertEqual(
|
|
self.frame_data.fg_probability.shape,
|
|
torch.Size([1, self.image_height, self.image_width]),
|
|
)
|
|
self.assertEqual(
|
|
self.frame_data.depth_map.shape,
|
|
torch.Size([1, self.image_height, self.image_width]),
|
|
)
|
|
self.assertEqual(
|
|
self.frame_data.depth_mask.shape,
|
|
torch.Size([1, self.image_height, self.image_width]),
|
|
)
|
|
self.frame_data.camera = self.frame_data_builder._get_pytorch3d_camera(
|
|
self.frame_annotation,
|
|
)
|
|
self.assertEqual(type(self.frame_data.camera), PerspectiveCameras)
|
|
|
|
def test_transpose_normalize_image(self):
|
|
def inverse_transpose_normalize_image(image: np.ndarray) -> np.ndarray:
|
|
im = image * 255.0
|
|
return im.transpose((1, 2, 0)).astype(np.uint8)
|
|
|
|
# Test 2D input
|
|
input_image = np.array(
|
|
[[10, 20, 30], [40, 50, 60], [70, 80, 90]], dtype=np.uint8
|
|
)
|
|
expected_input = inverse_transpose_normalize_image(
|
|
transpose_normalize_image(input_image)
|
|
)
|
|
self.assertClose(input_image[..., None], expected_input)
|
|
|
|
# Test 3D input
|
|
input_image = np.array(
|
|
[
|
|
[[10, 20, 30], [40, 50, 60], [70, 80, 90]],
|
|
[[100, 110, 120], [130, 140, 150], [160, 170, 180]],
|
|
[[190, 200, 210], [220, 230, 240], [250, 255, 255]],
|
|
],
|
|
dtype=np.uint8,
|
|
)
|
|
expected_input = inverse_transpose_normalize_image(
|
|
transpose_normalize_image(input_image)
|
|
)
|
|
self.assertClose(input_image, expected_input)
|
|
|
|
def test_load_image(self):
|
|
path = os.path.join(self.dataset_root, self.frame_annotation.image.path)
|
|
local_path = self.path_manager.get_local_path(path)
|
|
image = load_image(local_path)
|
|
self.assertEqual(image.dtype, np.float32)
|
|
self.assertLessEqual(np.max(image), 1.0)
|
|
self.assertGreaterEqual(np.min(image), 0.0)
|
|
|
|
def test_load_mask(self):
|
|
path = os.path.join(self.dataset_root, self.frame_annotation.mask.path)
|
|
path = self.path_manager.get_local_path(path)
|
|
mask = load_mask(path)
|
|
self.assertEqual(mask.dtype, np.float32)
|
|
self.assertLessEqual(np.max(mask), 1.0)
|
|
self.assertGreaterEqual(np.min(mask), 0.0)
|
|
|
|
def test_load_depth(self):
|
|
path = os.path.join(self.dataset_root, self.frame_annotation.depth.path)
|
|
path = self.path_manager.get_local_path(path)
|
|
depth_map = load_depth(path, self.frame_annotation.depth.scale_adjustment)
|
|
self.assertEqual(depth_map.dtype, np.float32)
|
|
self.assertEqual(len(depth_map.shape), 3)
|
|
|
|
def test_load_16big_png_depth(self):
|
|
path = os.path.join(self.dataset_root, self.frame_annotation.depth.path)
|
|
path = self.path_manager.get_local_path(path)
|
|
depth_map = load_16big_png_depth(path)
|
|
self.assertEqual(depth_map.dtype, np.float32)
|
|
self.assertEqual(len(depth_map.shape), 2)
|
|
|
|
def test_load_1bit_png_mask(self):
|
|
mask_path = os.path.join(
|
|
self.dataset_root, self.frame_annotation.depth.mask_path
|
|
)
|
|
mask_path = self.path_manager.get_local_path(mask_path)
|
|
mask = load_1bit_png_mask(mask_path)
|
|
self.assertEqual(mask.dtype, np.float32)
|
|
self.assertEqual(len(mask.shape), 2)
|
|
|
|
def test_load_depth_mask(self):
|
|
mask_path = os.path.join(
|
|
self.dataset_root, self.frame_annotation.depth.mask_path
|
|
)
|
|
mask_path = self.path_manager.get_local_path(mask_path)
|
|
mask = load_depth_mask(mask_path)
|
|
self.assertEqual(mask.dtype, np.float32)
|
|
self.assertEqual(len(mask.shape), 3)
|