pytorch3d/tests/implicitron/test_frame_data_builder.py
Roman Shapovalov 215590b497 In FrameDataBuilder, set all path even if we don’t load blobs
Summary:
This is a somewhat not BC change: some None paths will be replaced by metadata paths, even when they were not used for data loading.

Moreover, removing the legacy fix to the paths in the old CO3D release.

Reviewed By: bottler

Differential Revision: D69048238

fbshipit-source-id: 2a8b26d7b9f5e2adf39c65888b5863a5a9de1996
2025-02-06 09:41:44 -08:00

257 lines
10 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import contextlib
import gzip
import os
import unittest
from typing import List
import numpy as np
import torch
from pytorch3d.implicitron.dataset import types
from pytorch3d.implicitron.dataset.dataset_base import FrameData
from pytorch3d.implicitron.dataset.frame_data import FrameDataBuilder
from pytorch3d.implicitron.dataset.utils import (
get_bbox_from_mask,
load_16big_png_depth,
load_1bit_png_mask,
load_depth,
load_depth_mask,
load_image,
load_mask,
safe_as_tensor,
transpose_normalize_image,
)
from pytorch3d.implicitron.tools.config import get_default_args
from pytorch3d.renderer.cameras import PerspectiveCameras
from tests.common_testing import TestCaseMixin
from tests.implicitron.common_resources import get_skateboard_data
class TestFrameDataBuilder(TestCaseMixin, unittest.TestCase):
def setUp(self):
torch.manual_seed(42)
category = "skateboard"
stack = contextlib.ExitStack()
self.dataset_root, self.path_manager = stack.enter_context(
get_skateboard_data()
)
self.addCleanup(stack.close)
self.image_height = 768
self.image_width = 512
self.frame_data_builder = FrameDataBuilder(
image_height=self.image_height,
image_width=self.image_width,
dataset_root=self.dataset_root,
path_manager=self.path_manager,
)
# loading single frame annotation of dataset (see JsonIndexDataset._load_frames())
frame_file = os.path.join(self.dataset_root, category, "frame_annotations.jgz")
local_file = self.path_manager.get_local_path(frame_file)
with gzip.open(local_file, "rt", encoding="utf8") as zipfile:
frame_annots_list = types.load_dataclass(
zipfile, List[types.FrameAnnotation]
)
self.frame_annotation = frame_annots_list[0]
sequence_annotations_file = os.path.join(
self.dataset_root, category, "sequence_annotations.jgz"
)
local_file = self.path_manager.get_local_path(sequence_annotations_file)
with gzip.open(local_file, "rt", encoding="utf8") as zipfile:
seq_annots_list = types.load_dataclass(
zipfile, List[types.SequenceAnnotation]
)
seq_annots = {entry.sequence_name: entry for entry in seq_annots_list}
self.seq_annotation = seq_annots[self.frame_annotation.sequence_name]
point_cloud = self.seq_annotation.point_cloud
self.frame_data = FrameData(
frame_number=safe_as_tensor(self.frame_annotation.frame_number, torch.long),
frame_timestamp=safe_as_tensor(
self.frame_annotation.frame_timestamp, torch.float
),
sequence_name=self.frame_annotation.sequence_name,
sequence_category=self.seq_annotation.category,
camera_quality_score=safe_as_tensor(
self.seq_annotation.viewpoint_quality_score, torch.float
),
point_cloud_quality_score=(
safe_as_tensor(point_cloud.quality_score, torch.float)
if point_cloud is not None
else None
),
)
def test_frame_data_builder_args(self):
# test that FrameDataBuilder works with get_default_args
get_default_args(FrameDataBuilder)
def test_load_and_adjust_frame_data(self):
self.frame_data.image_size_hw = safe_as_tensor(
self.frame_annotation.image.size, torch.long
)
self.frame_data.effective_image_size_hw = self.frame_data.image_size_hw
mask_path = os.path.join(self.dataset_root, self.frame_annotation.mask.path)
fg_mask_np = self.frame_data_builder._load_fg_probability(
self.frame_annotation, mask_path
)
self.frame_data.mask_path = mask_path
self.frame_data.fg_probability = safe_as_tensor(fg_mask_np, torch.float)
mask_thr = self.frame_data_builder.box_crop_mask_thr
bbox_xywh = get_bbox_from_mask(fg_mask_np, mask_thr)
self.frame_data.bbox_xywh = safe_as_tensor(bbox_xywh, torch.long)
self.assertTrue(torch.is_tensor(self.frame_data.fg_probability))
self.assertTrue(torch.is_tensor(self.frame_data.bbox_xywh))
# assert bboxes shape
self.assertEqual(self.frame_data.bbox_xywh.shape, torch.Size([4]))
image_path = os.path.join(
self.frame_data_builder.dataset_root, self.frame_annotation.image.path
)
image_np = load_image(self.frame_data_builder._local_path(image_path))
self.assertIsInstance(image_np, np.ndarray)
self.frame_data.image_rgb = self.frame_data_builder._postprocess_image(
image_np, self.frame_annotation.image.size, self.frame_data.fg_probability
)
self.assertIsInstance(self.frame_data.image_rgb, torch.Tensor)
depth_path = os.path.join(self.dataset_root, self.frame_annotation.depth.path)
(
self.frame_data.depth_map,
self.frame_data.depth_mask,
) = self.frame_data_builder._load_mask_depth(
self.frame_annotation,
depth_path,
self.frame_data.fg_probability,
)
self.assertTrue(torch.is_tensor(self.frame_data.depth_map))
self.assertTrue(torch.is_tensor(self.frame_data.depth_mask))
new_size = (self.image_height, self.image_width)
if self.frame_data_builder.box_crop:
self.frame_data.crop_by_metadata_bbox_(
self.frame_data_builder.box_crop_context,
)
# assert image and mask shapes after resize
self.frame_data.resize_frame_(
new_size_hw=torch.tensor(new_size, dtype=torch.long),
)
self.assertEqual(
self.frame_data.mask_crop.shape,
torch.Size([1, self.image_height, self.image_width]),
)
self.assertEqual(
self.frame_data.image_rgb.shape,
torch.Size([3, self.image_height, self.image_width]),
)
self.assertEqual(
self.frame_data.mask_crop.shape,
torch.Size([1, self.image_height, self.image_width]),
)
self.assertEqual(
self.frame_data.fg_probability.shape,
torch.Size([1, self.image_height, self.image_width]),
)
self.assertEqual(
self.frame_data.depth_map.shape,
torch.Size([1, self.image_height, self.image_width]),
)
self.assertEqual(
self.frame_data.depth_mask.shape,
torch.Size([1, self.image_height, self.image_width]),
)
self.frame_data.camera = self.frame_data_builder._get_pytorch3d_camera(
self.frame_annotation,
)
self.assertEqual(type(self.frame_data.camera), PerspectiveCameras)
def test_transpose_normalize_image(self):
def inverse_transpose_normalize_image(image: np.ndarray) -> np.ndarray:
im = image * 255.0
return im.transpose((1, 2, 0)).astype(np.uint8)
# Test 2D input
input_image = np.array(
[[10, 20, 30], [40, 50, 60], [70, 80, 90]], dtype=np.uint8
)
expected_input = inverse_transpose_normalize_image(
transpose_normalize_image(input_image)
)
self.assertClose(input_image[..., None], expected_input)
# Test 3D input
input_image = np.array(
[
[[10, 20, 30], [40, 50, 60], [70, 80, 90]],
[[100, 110, 120], [130, 140, 150], [160, 170, 180]],
[[190, 200, 210], [220, 230, 240], [250, 255, 255]],
],
dtype=np.uint8,
)
expected_input = inverse_transpose_normalize_image(
transpose_normalize_image(input_image)
)
self.assertClose(input_image, expected_input)
def test_load_image(self):
path = os.path.join(self.dataset_root, self.frame_annotation.image.path)
local_path = self.path_manager.get_local_path(path)
image = load_image(local_path)
self.assertEqual(image.dtype, np.float32)
self.assertLessEqual(np.max(image), 1.0)
self.assertGreaterEqual(np.min(image), 0.0)
def test_load_mask(self):
path = os.path.join(self.dataset_root, self.frame_annotation.mask.path)
path = self.path_manager.get_local_path(path)
mask = load_mask(path)
self.assertEqual(mask.dtype, np.float32)
self.assertLessEqual(np.max(mask), 1.0)
self.assertGreaterEqual(np.min(mask), 0.0)
def test_load_depth(self):
path = os.path.join(self.dataset_root, self.frame_annotation.depth.path)
path = self.path_manager.get_local_path(path)
depth_map = load_depth(path, self.frame_annotation.depth.scale_adjustment)
self.assertEqual(depth_map.dtype, np.float32)
self.assertEqual(len(depth_map.shape), 3)
def test_load_16big_png_depth(self):
path = os.path.join(self.dataset_root, self.frame_annotation.depth.path)
path = self.path_manager.get_local_path(path)
depth_map = load_16big_png_depth(path)
self.assertEqual(depth_map.dtype, np.float32)
self.assertEqual(len(depth_map.shape), 2)
def test_load_1bit_png_mask(self):
mask_path = os.path.join(
self.dataset_root, self.frame_annotation.depth.mask_path
)
mask_path = self.path_manager.get_local_path(mask_path)
mask = load_1bit_png_mask(mask_path)
self.assertEqual(mask.dtype, np.float32)
self.assertEqual(len(mask.shape), 2)
def test_load_depth_mask(self):
mask_path = os.path.join(
self.dataset_root, self.frame_annotation.depth.mask_path
)
mask_path = self.path_manager.get_local_path(mask_path)
mask = load_depth_mask(mask_path)
self.assertEqual(mask.dtype, np.float32)
self.assertEqual(len(mask.shape), 3)