mirror of
https://github.com/facebookresearch/pytorch3d.git
synced 2025-08-02 20:02:49 +08:00
Summary: Interface and working implementation of ragged KNN. Benchmarks (which aren't ragged) haven't slowed. New benchmark shows that ragged is faster than non-ragged of the same shape. Reviewed By: jcjohnson Differential Revision: D20696507 fbshipit-source-id: 21b80f71343a3475c8d3ee0ce2680f92f0fae4de
182 lines
5.4 KiB
Python
182 lines
5.4 KiB
Python
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
|
|
|
|
from itertools import product
|
|
|
|
import torch
|
|
from fvcore.common.benchmark import benchmark
|
|
from pytorch3d import _C
|
|
from pytorch3d.ops.knn import _knn_points_idx_naive
|
|
|
|
|
|
def bm_knn() -> None:
|
|
""" Entry point for the benchmark """
|
|
benchmark_knn_cpu()
|
|
benchmark_knn_cuda_vs_naive()
|
|
benchmark_knn_cuda_versions()
|
|
benchmark_knn_cuda_versions_ragged()
|
|
|
|
|
|
def benchmark_knn_cuda_versions() -> None:
|
|
# Compare our different KNN implementations,
|
|
# and also compare against our existing 1-NN
|
|
Ns = [1, 2]
|
|
Ps = [4096, 16384]
|
|
Ds = [3]
|
|
Ks = [1, 4, 16, 64]
|
|
versions = [0, 1, 2, 3]
|
|
knn_kwargs, nn_kwargs = [], []
|
|
for N, P, D, K, version in product(Ns, Ps, Ds, Ks, versions):
|
|
if version == 2 and K > 32:
|
|
continue
|
|
if version == 3 and K > 4:
|
|
continue
|
|
knn_kwargs.append({"N": N, "D": D, "P": P, "K": K, "v": version})
|
|
for N, P, D in product(Ns, Ps, Ds):
|
|
nn_kwargs.append({"N": N, "D": D, "P": P})
|
|
benchmark(knn_cuda_with_init, "KNN_CUDA_VERSIONS", knn_kwargs, warmup_iters=1)
|
|
benchmark(nn_cuda_with_init, "NN_CUDA", nn_kwargs, warmup_iters=1)
|
|
|
|
|
|
def benchmark_knn_cuda_versions_ragged() -> None:
|
|
# Compare our different KNN implementations,
|
|
# and also compare against our existing 1-NN
|
|
Ns = [8]
|
|
Ps = [4096, 16384]
|
|
Ds = [3]
|
|
Ks = [1, 4, 16, 64]
|
|
versions = [0, 1, 2, 3]
|
|
knn_kwargs = []
|
|
for N, P, D, K, version in product(Ns, Ps, Ds, Ks, versions):
|
|
if version == 2 and K > 32:
|
|
continue
|
|
if version == 3 and K > 4:
|
|
continue
|
|
knn_kwargs.append({"N": N, "D": D, "P": P, "K": K, "v": version})
|
|
benchmark(knn_cuda_with_init, "KNN_CUDA_COMPARISON", knn_kwargs, warmup_iters=1)
|
|
benchmark(knn_cuda_ragged, "KNN_CUDA_RAGGED", knn_kwargs, warmup_iters=1)
|
|
|
|
|
|
def benchmark_knn_cuda_vs_naive() -> None:
|
|
# Compare against naive pytorch version of KNN
|
|
Ns = [1, 2, 4]
|
|
Ps = [1024, 4096, 16384, 65536]
|
|
Ds = [3]
|
|
Ks = [1, 2, 4, 8, 16]
|
|
knn_kwargs, naive_kwargs = [], []
|
|
for N, P, D, K in product(Ns, Ps, Ds, Ks):
|
|
knn_kwargs.append({"N": N, "D": D, "P": P, "K": K})
|
|
if P <= 4096:
|
|
naive_kwargs.append({"N": N, "D": D, "P": P, "K": K})
|
|
benchmark(
|
|
knn_python_cuda_with_init, "KNN_CUDA_PYTHON", naive_kwargs, warmup_iters=1
|
|
)
|
|
benchmark(knn_cuda_with_init, "KNN_CUDA", knn_kwargs, warmup_iters=1)
|
|
|
|
|
|
def benchmark_knn_cpu() -> None:
|
|
Ns = [1, 2]
|
|
Ps = [256, 512]
|
|
Ds = [3]
|
|
Ks = [1, 2, 4]
|
|
knn_kwargs, nn_kwargs = [], []
|
|
for N, P, D, K in product(Ns, Ps, Ds, Ks):
|
|
knn_kwargs.append({"N": N, "D": D, "P": P, "K": K})
|
|
for N, P, D in product(Ns, Ps, Ds):
|
|
nn_kwargs.append({"N": N, "D": D, "P": P})
|
|
benchmark(knn_python_cpu_with_init, "KNN_CPU_PYTHON", knn_kwargs, warmup_iters=1)
|
|
benchmark(knn_cpu_with_init, "KNN_CPU_CPP", knn_kwargs, warmup_iters=1)
|
|
benchmark(nn_cpu_with_init, "NN_CPU_CPP", nn_kwargs, warmup_iters=1)
|
|
|
|
|
|
def knn_cuda_with_init(N, D, P, K, v=-1):
|
|
device = torch.device("cuda:0")
|
|
x = torch.randn(N, P, D, device=device)
|
|
y = torch.randn(N, P, D, device=device)
|
|
lengths = torch.full((N,), P, dtype=torch.int64, device=device)
|
|
|
|
torch.cuda.synchronize()
|
|
|
|
def knn():
|
|
_C.knn_points_idx(x, y, lengths, lengths, K, v)
|
|
torch.cuda.synchronize()
|
|
|
|
return knn
|
|
|
|
|
|
def knn_cuda_ragged(N, D, P, K, v=-1):
|
|
device = torch.device("cuda:0")
|
|
x = torch.randn(N, P, D, device=device)
|
|
y = torch.randn(N, P, D, device=device)
|
|
lengths1 = torch.randint(P, size=(N,), device=device, dtype=torch.int64)
|
|
lengths2 = torch.randint(P, size=(N,), device=device, dtype=torch.int64)
|
|
torch.cuda.synchronize()
|
|
|
|
def knn():
|
|
_C.knn_points_idx(x, y, lengths1, lengths2, K, v)
|
|
torch.cuda.synchronize()
|
|
|
|
return knn
|
|
|
|
|
|
def knn_cpu_with_init(N, D, P, K):
|
|
device = torch.device("cpu")
|
|
x = torch.randn(N, P, D, device=device)
|
|
y = torch.randn(N, P, D, device=device)
|
|
lengths = torch.full((N,), P, dtype=torch.int64, device=device)
|
|
|
|
def knn():
|
|
_C.knn_points_idx(x, y, lengths, lengths, K, -1)
|
|
|
|
return knn
|
|
|
|
|
|
def knn_python_cuda_with_init(N, D, P, K):
|
|
device = torch.device("cuda")
|
|
x = torch.randn(N, P, D, device=device)
|
|
y = torch.randn(N, P, D, device=device)
|
|
lengths = torch.full((N,), P, dtype=torch.int64, device=device)
|
|
|
|
torch.cuda.synchronize()
|
|
|
|
def knn():
|
|
_knn_points_idx_naive(x, y, K=K, lengths1=lengths, lengths2=lengths)
|
|
torch.cuda.synchronize()
|
|
|
|
return knn
|
|
|
|
|
|
def knn_python_cpu_with_init(N, D, P, K):
|
|
device = torch.device("cpu")
|
|
x = torch.randn(N, P, D, device=device)
|
|
y = torch.randn(N, P, D, device=device)
|
|
lengths = torch.full((N,), P, dtype=torch.int64, device=device)
|
|
|
|
def knn():
|
|
_knn_points_idx_naive(x, y, K=K, lengths1=lengths, lengths2=lengths)
|
|
|
|
return knn
|
|
|
|
|
|
def nn_cuda_with_init(N, D, P):
|
|
device = torch.device("cuda")
|
|
x = torch.randn(N, P, D, device=device)
|
|
y = torch.randn(N, P, D, device=device)
|
|
torch.cuda.synchronize()
|
|
|
|
def knn():
|
|
_C.nn_points_idx(x, y)
|
|
torch.cuda.synchronize()
|
|
|
|
return knn
|
|
|
|
|
|
def nn_cpu_with_init(N, D, P):
|
|
device = torch.device("cpu")
|
|
x = torch.randn(N, P, D, device=device)
|
|
y = torch.randn(N, P, D, device=device)
|
|
|
|
def knn():
|
|
_C.nn_points_idx(x, y)
|
|
|
|
return knn
|