pytorch3d/pytorch3d/csrc/compositing/norm_weighted_sum.cu
Nikhila Ravi 3d769a66cb Non Square image rasterization for pointclouds
Summary:
Similar to non square image rasterization for meshes, apply the same updates to the pointcloud rasterizer.

Main API Change:
- PointRasterizationSettings now accepts a tuple/list of (H, W) for the image size.

Reviewed By: jcjohnson

Differential Revision: D25465206

fbshipit-source-id: 7370d83c431af1b972158cecae19d82364623380
2020-12-15 14:15:32 -08:00

244 lines
9.0 KiB
Plaintext

// Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
#include <ATen/ATen.h>
#include <ATen/core/TensorAccessor.h>
#include <ATen/cuda/CUDAContext.h>
#include <c10/cuda/CUDAGuard.h>
#include <cuda.h>
#include <cuda_runtime.h>
#include <stdio.h>
#include <vector>
__constant__ const float kEpsilon = 1e-4;
// TODO(gkioxari) support all data types once AtomicAdd supports doubles.
// Currently, support is for floats only.
__global__ void weightedSumNormCudaForwardKernel(
// clang-format off
at::PackedTensorAccessor64<float, 4, at::RestrictPtrTraits> result,
const at::PackedTensorAccessor64<float, 2, at::RestrictPtrTraits> features,
const at::PackedTensorAccessor64<float, 4, at::RestrictPtrTraits> alphas,
const at::PackedTensorAccessor64<int64_t, 4, at::RestrictPtrTraits> points_idx) {
// clang-format on
const int64_t batch_size = result.size(0);
const int64_t C = features.size(0);
const int64_t H = points_idx.size(2);
const int64_t W = points_idx.size(3);
// Get the batch and index
const int batch = blockIdx.x;
const int num_pixels = C * H * W;
const int num_threads = gridDim.y * blockDim.x;
const int tid = blockIdx.y * blockDim.x + threadIdx.x;
// Parallelize over each feature in each pixel in images of size H * W,
// for each image in the batch of size batch_size
for (int pid = tid; pid < num_pixels; pid += num_threads) {
int ch = pid / (H * W);
int j = (pid % (H * W)) / W;
int i = (pid % (H * W)) % W;
// Store the accumulated alpha value
float cum_alpha = 0.;
// Iterate through the closest K points for this pixel
for (int k = 0; k < points_idx.size(1); ++k) {
int n_idx = points_idx[batch][k][j][i];
// Sentinel value is -1 indicating no point overlaps the pixel
if (n_idx < 0) {
continue;
}
cum_alpha += alphas[batch][k][j][i];
}
if (cum_alpha < kEpsilon) {
cum_alpha = kEpsilon;
}
// Iterate through the closest K points for this pixel
for (int k = 0; k < points_idx.size(1); ++k) {
int n_idx = points_idx[batch][k][j][i];
// Sentinel value is -1 indicating no point overlaps the pixel
if (n_idx < 0) {
continue;
}
float alpha = alphas[batch][k][j][i];
// TODO(gkioxari) It might be more efficient to have threads write in a
// local variable, and move atomicAdd outside of the loop such that
// atomicAdd is executed once per thread.
atomicAdd(
&result[batch][ch][j][i], features[ch][n_idx] * alpha / cum_alpha);
}
}
}
// TODO(gkioxari) support all data types once AtomicAdd supports doubles.
// Currently, support is for floats only.
__global__ void weightedSumNormCudaBackwardKernel(
// clang-format off
at::PackedTensorAccessor64<float, 2, at::RestrictPtrTraits> grad_features,
at::PackedTensorAccessor64<float, 4, at::RestrictPtrTraits> grad_alphas,
const at::PackedTensorAccessor64<float, 4, at::RestrictPtrTraits> grad_outputs,
const at::PackedTensorAccessor64<float, 2, at::RestrictPtrTraits> features,
const at::PackedTensorAccessor64<float, 4, at::RestrictPtrTraits> alphas,
const at::PackedTensorAccessor64<int64_t, 4, at::RestrictPtrTraits> points_idx) {
// clang-format on
const int64_t batch_size = points_idx.size(0);
const int64_t C = features.size(0);
const int64_t H = points_idx.size(2);
const int64_t W = points_idx.size(3);
// Get the batch and index
const int batch = blockIdx.x;
const int num_pixels = C * W * H;
const int num_threads = gridDim.y * blockDim.x;
const int tid = blockIdx.y * blockDim.x + threadIdx.x;
// Parallelize over each feature in each pixel in images of size H * W,
// for each image in the batch of size batch_size
for (int pid = tid; pid < num_pixels; pid += num_threads) {
int ch = pid / (H * W);
int j = (pid % (H * W)) / W;
int i = (pid % (H * W)) % W;
float sum_alpha = 0.;
float sum_alphafs = 0.;
// Iterate through the closest K points for this pixel to calculate the
// cumulative sum of the alphas for this pixel
for (int k = 0; k < points_idx.size(1); ++k) {
int n_idx = points_idx[batch][k][j][i];
// Sentinel value is -1 indicating no point overlaps the pixel
if (n_idx < 0) {
continue;
}
sum_alpha += alphas[batch][k][j][i];
sum_alphafs += alphas[batch][k][j][i] * features[ch][n_idx];
}
if (sum_alpha < kEpsilon) {
sum_alpha = kEpsilon;
}
// Iterate again through the closest K points for this pixel to calculate
// the gradient.
for (int k = 0; k < points_idx.size(1); ++k) {
int n_idx = points_idx[batch][k][j][i];
// Sentinel value is -1 indicating no point overlaps the pixel
if (n_idx < 0) {
continue;
}
float alpha = alphas[batch][k][j][i];
// TODO(gkioxari) It might be more efficient to have threads write in a
// local variable, and move atomicAdd outside of the loop such that
// atomicAdd is executed once per thread.
atomicAdd(
&grad_alphas[batch][k][j][i],
(features[ch][n_idx] * sum_alpha - sum_alphafs) /
(sum_alpha * sum_alpha) * grad_outputs[batch][ch][j][i]);
atomicAdd(
&grad_features[ch][n_idx],
alpha * grad_outputs[batch][ch][j][i] / sum_alpha);
}
}
}
at::Tensor weightedSumNormCudaForward(
const at::Tensor& features,
const at::Tensor& alphas,
const at::Tensor& points_idx) {
// Check inputs are on the same device
at::TensorArg features_t{features, "features", 1},
alphas_t{alphas, "alphas", 2}, points_idx_t{points_idx, "points_idx", 3};
at::CheckedFrom c = "weightedSumNormCudaForward";
at::checkAllSameGPU(c, {features_t, alphas_t, points_idx_t});
at::checkAllSameType(c, {features_t, alphas_t});
// Set the device for the kernel launch based on the device of the input
at::cuda::CUDAGuard device_guard(features.device());
cudaStream_t stream = at::cuda::getCurrentCUDAStream();
const int64_t batch_size = points_idx.size(0);
const int64_t C = features.size(0);
const int64_t H = points_idx.size(2);
const int64_t W = points_idx.size(3);
auto result = at::zeros({batch_size, C, H, W}, features.options());
if (result.numel() == 0) {
AT_CUDA_CHECK(cudaGetLastError());
return result;
}
const dim3 threadsPerBlock(64);
const dim3 numBlocks(batch_size, 1024 / batch_size + 1);
// TODO(gkioxari) add AT_DISPATCH_FLOATING_TYPES once atomicAdd supports
// doubles. Currently, support is for floats only.
// clang-format off
weightedSumNormCudaForwardKernel<<<numBlocks, threadsPerBlock, 0, stream>>>(
// As we are using packed accessors here the tensors
// do not need to be made contiguous.
result.packed_accessor64<float, 4, at::RestrictPtrTraits>(),
features.packed_accessor64<float, 2, at::RestrictPtrTraits>(),
alphas.packed_accessor64<float, 4, at::RestrictPtrTraits>(),
points_idx.packed_accessor64<int64_t, 4, at::RestrictPtrTraits>());
// clang-format on
AT_CUDA_CHECK(cudaGetLastError());
return result;
}
std::tuple<at::Tensor, at::Tensor> weightedSumNormCudaBackward(
const at::Tensor& grad_outputs,
const at::Tensor& features,
const at::Tensor& alphas,
const at::Tensor& points_idx) {
// Check inputs are on the same device
at::TensorArg grad_outputs_t{grad_outputs, "grad_outputs", 1},
features_t{features, "features", 2}, alphas_t{alphas, "alphas", 3},
points_idx_t{points_idx, "points_idx", 4};
at::CheckedFrom c = "weightedSumNormCudaBackward";
at::checkAllSameGPU(c, {grad_outputs_t, features_t, alphas_t, points_idx_t});
at::checkAllSameType(c, {grad_outputs_t, features_t, alphas_t});
// Set the device for the kernel launch based on the device of the input
at::cuda::CUDAGuard device_guard(features.device());
cudaStream_t stream = at::cuda::getCurrentCUDAStream();
auto grad_features = at::zeros_like(features);
auto grad_alphas = at::zeros_like(alphas);
if (grad_features.numel() == 0 || grad_alphas.numel() == 0) {
AT_CUDA_CHECK(cudaGetLastError());
return std::make_tuple(grad_features, grad_alphas);
}
const int64_t bs = points_idx.size(0);
const dim3 threadsPerBlock(64);
const dim3 numBlocks(bs, 1024 / bs + 1);
// TODO(gkioxari) add AT_DISPATCH_FLOATING_TYPES once atomicAdd supports
// doubles. Currently, support is for floats only.
weightedSumNormCudaBackwardKernel<<<numBlocks, threadsPerBlock, 0, stream>>>(
// clang-format off
// As we are using packed accessors here the tensors
// do not need to be made contiguous.
grad_features.packed_accessor64<float, 2, at::RestrictPtrTraits>(),
grad_alphas.packed_accessor64<float, 4, at::RestrictPtrTraits>(),
grad_outputs.packed_accessor64<float, 4, at::RestrictPtrTraits>(),
features.packed_accessor64<float, 2, at::RestrictPtrTraits>(),
alphas.packed_accessor64<float, 4, at::RestrictPtrTraits>(),
points_idx.packed_accessor64<int64_t, 4, at::RestrictPtrTraits>());
// clang-format on
AT_CUDA_CHECK(cudaGetLastError());
return std::make_tuple(grad_features, grad_alphas);
}