mirror of
https://github.com/facebookresearch/pytorch3d.git
synced 2025-08-02 03:42:50 +08:00
Summary: Avoid calculating all_train_cameras before it is needed, because it is slow in some datasets. Reviewed By: shapovalov Differential Revision: D38037157 fbshipit-source-id: 95461226655cde2626b680661951ab17ebb0ec75
158 lines
6.3 KiB
Python
158 lines
6.3 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the BSD-style license found in the
|
|
# LICENSE file in the root directory of this source tree.
|
|
|
|
import os
|
|
import unittest
|
|
|
|
import torch
|
|
from pytorch3d.implicitron.dataset.blender_dataset_map_provider import (
|
|
BlenderDatasetMapProvider,
|
|
)
|
|
from pytorch3d.implicitron.dataset.data_source import ImplicitronDataSource
|
|
from pytorch3d.implicitron.dataset.dataset_base import FrameData
|
|
from pytorch3d.implicitron.dataset.llff_dataset_map_provider import (
|
|
LlffDatasetMapProvider,
|
|
)
|
|
from pytorch3d.implicitron.tools.config import expand_args_fields, get_default_args
|
|
from pytorch3d.renderer import PerspectiveCameras
|
|
from tests.common_testing import TestCaseMixin
|
|
|
|
|
|
# These tests are only run internally, where the data is available.
|
|
internal = os.environ.get("FB_TEST", False)
|
|
inside_re_worker = os.environ.get("INSIDE_RE_WORKER", False)
|
|
|
|
|
|
@unittest.skipUnless(internal, "no data")
|
|
class TestDataLlff(TestCaseMixin, unittest.TestCase):
|
|
def test_synthetic(self):
|
|
if inside_re_worker:
|
|
return
|
|
expand_args_fields(BlenderDatasetMapProvider)
|
|
|
|
provider = BlenderDatasetMapProvider(
|
|
base_dir="manifold://co3d/tree/nerf_data/nerf_synthetic/lego",
|
|
object_name="lego",
|
|
)
|
|
dataset_map = provider.get_dataset_map()
|
|
known_matrix = torch.zeros(1, 4, 4)
|
|
known_matrix[0, 0, 0] = 2.7778
|
|
known_matrix[0, 1, 1] = 2.7778
|
|
known_matrix[0, 2, 3] = 1
|
|
known_matrix[0, 3, 2] = 1
|
|
|
|
for name, length in [("train", 100), ("val", 100), ("test", 200)]:
|
|
dataset = getattr(dataset_map, name)
|
|
self.assertEqual(len(dataset), length)
|
|
# try getting a value
|
|
value = dataset[0]
|
|
self.assertEqual(value.image_rgb.shape, (3, 800, 800))
|
|
self.assertEqual(value.fg_probability.shape, (1, 800, 800))
|
|
# corner of image is background
|
|
self.assertEqual(value.fg_probability[0, 0, 0], 0)
|
|
self.assertEqual(value.fg_probability.max(), 1.0)
|
|
self.assertIsInstance(value.camera, PerspectiveCameras)
|
|
self.assertEqual(len(value.camera), 1)
|
|
self.assertIsNone(value.camera.K)
|
|
matrix = value.camera.get_projection_transform().get_matrix()
|
|
self.assertClose(matrix, known_matrix, atol=1e-4)
|
|
self.assertIsInstance(value, FrameData)
|
|
|
|
def test_llff(self):
|
|
if inside_re_worker:
|
|
return
|
|
expand_args_fields(LlffDatasetMapProvider)
|
|
|
|
provider = LlffDatasetMapProvider(
|
|
base_dir="manifold://co3d/tree/nerf_data/nerf_llff_data/fern",
|
|
object_name="fern",
|
|
)
|
|
dataset_map = provider.get_dataset_map()
|
|
known_matrix = torch.zeros(1, 4, 4)
|
|
known_matrix[0, 0, 0] = 2.1564
|
|
known_matrix[0, 1, 1] = 2.1564
|
|
known_matrix[0, 2, 3] = 1
|
|
known_matrix[0, 3, 2] = 1
|
|
|
|
for name, length, frame_type in [
|
|
("train", 17, "known"),
|
|
("test", 3, "unseen"),
|
|
("val", 3, "unseen"),
|
|
]:
|
|
dataset = getattr(dataset_map, name)
|
|
self.assertEqual(len(dataset), length)
|
|
# try getting a value
|
|
value = dataset[0]
|
|
self.assertIsInstance(value, FrameData)
|
|
self.assertEqual(value.frame_type, frame_type)
|
|
self.assertEqual(value.image_rgb.shape, (3, 378, 504))
|
|
self.assertIsInstance(value.camera, PerspectiveCameras)
|
|
self.assertEqual(len(value.camera), 1)
|
|
self.assertIsNone(value.camera.K)
|
|
matrix = value.camera.get_projection_transform().get_matrix()
|
|
self.assertClose(matrix, known_matrix, atol=1e-4)
|
|
|
|
self.assertEqual(len(dataset_map.test.get_eval_batches()), 3)
|
|
for batch in dataset_map.test.get_eval_batches():
|
|
self.assertEqual(len(batch), 1)
|
|
self.assertEqual(dataset_map.test[batch[0]].frame_type, "unseen")
|
|
|
|
def test_include_known_frames(self):
|
|
if inside_re_worker:
|
|
return
|
|
expand_args_fields(LlffDatasetMapProvider)
|
|
|
|
provider = LlffDatasetMapProvider(
|
|
base_dir="manifold://co3d/tree/nerf_data/nerf_llff_data/fern",
|
|
object_name="fern",
|
|
n_known_frames_for_test=2,
|
|
)
|
|
dataset_map = provider.get_dataset_map()
|
|
|
|
for name, types in [
|
|
("train", ["known"] * 17),
|
|
("val", ["unseen"] * 3 + ["known"] * 17),
|
|
("test", ["unseen"] * 3 + ["known"] * 17),
|
|
]:
|
|
dataset = getattr(dataset_map, name)
|
|
self.assertEqual(len(dataset), len(types))
|
|
for i, frame_type in enumerate(types):
|
|
value = dataset[i]
|
|
self.assertEqual(value.frame_type, frame_type)
|
|
self.assertIsNone(value.fg_probability)
|
|
|
|
self.assertEqual(len(dataset_map.test.get_eval_batches()), 3)
|
|
for batch in dataset_map.test.get_eval_batches():
|
|
self.assertEqual(len(batch), 3)
|
|
self.assertEqual(dataset_map.test[batch[0]].frame_type, "unseen")
|
|
for i in batch[1:]:
|
|
self.assertEqual(dataset_map.test[i].frame_type, "known")
|
|
|
|
def test_loaders(self):
|
|
if inside_re_worker:
|
|
return
|
|
args = get_default_args(ImplicitronDataSource)
|
|
args.dataset_map_provider_class_type = "BlenderDatasetMapProvider"
|
|
dataset_args = args.dataset_map_provider_BlenderDatasetMapProvider_args
|
|
dataset_args.object_name = "lego"
|
|
dataset_args.base_dir = "manifold://co3d/tree/nerf_data/nerf_synthetic/lego"
|
|
|
|
data_source = ImplicitronDataSource(**args)
|
|
_, data_loaders = data_source.get_datasets_and_dataloaders()
|
|
for i in data_loaders.train:
|
|
self.assertEqual(i.frame_type, ["known"])
|
|
self.assertEqual(i.image_rgb.shape, (1, 3, 800, 800))
|
|
for i in data_loaders.val:
|
|
self.assertEqual(i.frame_type, ["unseen"])
|
|
self.assertEqual(i.image_rgb.shape, (1, 3, 800, 800))
|
|
for i in data_loaders.test:
|
|
self.assertEqual(i.frame_type, ["unseen"])
|
|
self.assertEqual(i.image_rgb.shape, (1, 3, 800, 800))
|
|
|
|
cameras = data_source.all_train_cameras
|
|
self.assertIsInstance(cameras, PerspectiveCameras)
|
|
self.assertEqual(len(cameras), 100)
|