mirror of
https://github.com/facebookresearch/pytorch3d.git
synced 2025-08-02 03:42:50 +08:00
Summary: Avoid calculating all_train_cameras before it is needed, because it is slow in some datasets. Reviewed By: shapovalov Differential Revision: D38037157 fbshipit-source-id: 95461226655cde2626b680661951ab17ebb0ec75
707 lines
23 KiB
Python
Executable File
707 lines
23 KiB
Python
Executable File
#!/usr/bin/env python
|
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the BSD-style license found in the
|
|
# LICENSE file in the root directory of this source tree.
|
|
|
|
""""
|
|
This file is the entry point for launching experiments with Implicitron.
|
|
|
|
Main functions
|
|
---------------
|
|
- `run_training` is the wrapper for the train, val, test loops
|
|
and checkpointing
|
|
- `trainvalidate` is the inner loop which runs the model forward/backward
|
|
pass, visualizations and metric printing
|
|
|
|
Launch Training
|
|
---------------
|
|
Experiment config .yaml files are located in the
|
|
`projects/implicitron_trainer/configs` folder. To launch
|
|
an experiment, specify the name of the file. Specific config values can
|
|
also be overridden from the command line, for example:
|
|
|
|
```
|
|
./experiment.py --config-name base_config.yaml override.param.one=42 override.param.two=84
|
|
```
|
|
|
|
To run an experiment on a specific GPU, specify the `gpu_idx` key
|
|
in the config file / CLI. To run on a different device, specify the
|
|
device in `run_training`.
|
|
|
|
Outputs
|
|
--------
|
|
The outputs of the experiment are saved and logged in multiple ways:
|
|
- Checkpoints:
|
|
Model, optimizer and stats are stored in the directory
|
|
named by the `exp_dir` key from the config file / CLI parameters.
|
|
- Stats
|
|
Stats are logged and plotted to the file "train_stats.pdf" in the
|
|
same directory. The stats are also saved as part of the checkpoint file.
|
|
- Visualizations
|
|
Prredictions are plotted to a visdom server running at the
|
|
port specified by the `visdom_server` and `visdom_port` keys in the
|
|
config file.
|
|
|
|
"""
|
|
import copy
|
|
import json
|
|
import logging
|
|
import os
|
|
import random
|
|
import time
|
|
import warnings
|
|
from typing import Any, Dict, Optional, Tuple
|
|
|
|
import hydra
|
|
import lpips
|
|
import numpy as np
|
|
import torch
|
|
import tqdm
|
|
from accelerate import Accelerator
|
|
from omegaconf import DictConfig, OmegaConf
|
|
from packaging import version
|
|
from pytorch3d.implicitron.dataset import utils as ds_utils
|
|
from pytorch3d.implicitron.dataset.data_loader_map_provider import DataLoaderMap
|
|
from pytorch3d.implicitron.dataset.data_source import ImplicitronDataSource, Task
|
|
from pytorch3d.implicitron.dataset.dataset_map_provider import DatasetMap
|
|
from pytorch3d.implicitron.evaluation import evaluate_new_view_synthesis as evaluate
|
|
from pytorch3d.implicitron.models.generic_model import EvaluationMode, GenericModel
|
|
from pytorch3d.implicitron.models.renderer.multipass_ea import (
|
|
MultiPassEmissionAbsorptionRenderer,
|
|
)
|
|
from pytorch3d.implicitron.models.renderer.ray_sampler import AdaptiveRaySampler
|
|
from pytorch3d.implicitron.tools import model_io, vis_utils
|
|
from pytorch3d.implicitron.tools.config import (
|
|
expand_args_fields,
|
|
remove_unused_components,
|
|
)
|
|
from pytorch3d.implicitron.tools.stats import Stats
|
|
from pytorch3d.renderer.cameras import CamerasBase
|
|
|
|
from .impl.experiment_config import ExperimentConfig
|
|
from .impl.optimization import init_optimizer
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
if version.parse(hydra.__version__) < version.Version("1.1"):
|
|
raise ValueError(
|
|
f"Hydra version {hydra.__version__} is too old."
|
|
" (Implicitron requires version 1.1 or later.)"
|
|
)
|
|
|
|
try:
|
|
# only makes sense in FAIR cluster
|
|
import pytorch3d.implicitron.fair_cluster.slurm # noqa: F401
|
|
except ModuleNotFoundError:
|
|
pass
|
|
|
|
no_accelerate = os.environ.get("PYTORCH3D_NO_ACCELERATE") is not None
|
|
|
|
|
|
def init_model(
|
|
*,
|
|
cfg: DictConfig,
|
|
accelerator: Optional[Accelerator] = None,
|
|
force_load: bool = False,
|
|
clear_stats: bool = False,
|
|
load_model_only: bool = False,
|
|
) -> Tuple[GenericModel, Stats, Optional[Dict[str, Any]]]:
|
|
"""
|
|
Returns an instance of `GenericModel`.
|
|
|
|
If `cfg.resume` is set or `force_load` is true,
|
|
attempts to load the last checkpoint from `cfg.exp_dir`. Failure to do so
|
|
will return the model with initial weights, unless `force_load` is passed,
|
|
in which case a FileNotFoundError is raised.
|
|
|
|
Args:
|
|
force_load: If true, force load model from checkpoint even if
|
|
cfg.resume is false.
|
|
clear_stats: If true, clear the stats object loaded from checkpoint
|
|
load_model_only: If true, load only the model weights from checkpoint
|
|
and do not load the state of the optimizer and stats.
|
|
|
|
Returns:
|
|
model: The model with optionally loaded weights from checkpoint
|
|
stats: The stats structure (optionally loaded from checkpoint)
|
|
optimizer_state: The optimizer state dict containing
|
|
`state` and `param_groups` keys (optionally loaded from checkpoint)
|
|
|
|
Raise:
|
|
FileNotFoundError if `force_load` is passed but checkpoint is not found.
|
|
"""
|
|
|
|
# Initialize the model
|
|
if cfg.architecture == "generic":
|
|
model = GenericModel(**cfg.generic_model_args)
|
|
else:
|
|
raise ValueError(f"No such arch {cfg.architecture}.")
|
|
|
|
# Determine the network outputs that should be logged
|
|
if hasattr(model, "log_vars"):
|
|
log_vars = copy.deepcopy(list(model.log_vars))
|
|
else:
|
|
log_vars = ["objective"]
|
|
|
|
visdom_env_charts = vis_utils.get_visdom_env(cfg) + "_charts"
|
|
|
|
# Init the stats struct
|
|
stats = Stats(
|
|
log_vars,
|
|
visdom_env=visdom_env_charts,
|
|
verbose=False,
|
|
visdom_server=cfg.visdom_server,
|
|
visdom_port=cfg.visdom_port,
|
|
)
|
|
|
|
# Retrieve the last checkpoint
|
|
if cfg.resume_epoch > 0:
|
|
model_path = model_io.get_checkpoint(cfg.exp_dir, cfg.resume_epoch)
|
|
else:
|
|
model_path = model_io.find_last_checkpoint(cfg.exp_dir)
|
|
|
|
optimizer_state = None
|
|
if model_path is not None:
|
|
logger.info("found previous model %s" % model_path)
|
|
if force_load or cfg.resume:
|
|
logger.info(" -> resuming")
|
|
|
|
map_location = None
|
|
if accelerator is not None and not accelerator.is_local_main_process:
|
|
map_location = {
|
|
"cuda:%d" % 0: "cuda:%d" % accelerator.local_process_index
|
|
}
|
|
if load_model_only:
|
|
model_state_dict = torch.load(
|
|
model_io.get_model_path(model_path), map_location=map_location
|
|
)
|
|
stats_load, optimizer_state = None, None
|
|
else:
|
|
model_state_dict, stats_load, optimizer_state = model_io.load_model(
|
|
model_path, map_location=map_location
|
|
)
|
|
|
|
# Determine if stats should be reset
|
|
if not clear_stats:
|
|
if stats_load is None:
|
|
logger.info("\n\n\n\nCORRUPT STATS -> clearing stats\n\n\n\n")
|
|
last_epoch = model_io.parse_epoch_from_model_path(model_path)
|
|
logger.info(f"Estimated resume epoch = {last_epoch}")
|
|
|
|
# Reset the stats struct
|
|
for _ in range(last_epoch + 1):
|
|
stats.new_epoch()
|
|
assert last_epoch == stats.epoch
|
|
else:
|
|
stats = stats_load
|
|
|
|
# Update stats properties incase it was reset on load
|
|
stats.visdom_env = visdom_env_charts
|
|
stats.visdom_server = cfg.visdom_server
|
|
stats.visdom_port = cfg.visdom_port
|
|
stats.plot_file = os.path.join(cfg.exp_dir, "train_stats.pdf")
|
|
stats.synchronize_logged_vars(log_vars)
|
|
else:
|
|
logger.info(" -> clearing stats")
|
|
|
|
try:
|
|
# TODO: fix on creation of the buffers
|
|
# after the hack above, this will not pass in most cases
|
|
# ... but this is fine for now
|
|
model.load_state_dict(model_state_dict, strict=True)
|
|
except RuntimeError as e:
|
|
logger.error(e)
|
|
logger.info("Cant load state dict in strict mode! -> trying non-strict")
|
|
model.load_state_dict(model_state_dict, strict=False)
|
|
model.log_vars = log_vars
|
|
else:
|
|
logger.info(" -> but not resuming -> starting from scratch")
|
|
elif force_load:
|
|
raise FileNotFoundError(f"Cannot find a checkpoint in {cfg.exp_dir}!")
|
|
|
|
return model, stats, optimizer_state
|
|
|
|
|
|
def trainvalidate(
|
|
model,
|
|
stats,
|
|
epoch,
|
|
loader,
|
|
optimizer,
|
|
validation: bool,
|
|
*,
|
|
accelerator: Optional[Accelerator],
|
|
device: torch.device,
|
|
bp_var: str = "objective",
|
|
metric_print_interval: int = 5,
|
|
visualize_interval: int = 100,
|
|
visdom_env_root: str = "trainvalidate",
|
|
clip_grad: float = 0.0,
|
|
**kwargs,
|
|
) -> None:
|
|
"""
|
|
This is the main loop for training and evaluation including:
|
|
model forward pass, loss computation, backward pass and visualization.
|
|
|
|
Args:
|
|
model: The model module optionally loaded from checkpoint
|
|
stats: The stats struct, also optionally loaded from checkpoint
|
|
epoch: The index of the current epoch
|
|
loader: The dataloader to use for the loop
|
|
optimizer: The optimizer module optionally loaded from checkpoint
|
|
validation: If true, run the loop with the model in eval mode
|
|
and skip the backward pass
|
|
bp_var: The name of the key in the model output `preds` dict which
|
|
should be used as the loss for the backward pass.
|
|
metric_print_interval: The batch interval at which the stats should be
|
|
logged.
|
|
visualize_interval: The batch interval at which the visualizations
|
|
should be plotted
|
|
visdom_env_root: The name of the visdom environment to use for plotting
|
|
clip_grad: Optionally clip the gradient norms.
|
|
If set to a value <=0.0, no clipping
|
|
device: The device on which to run the model.
|
|
|
|
Returns:
|
|
None
|
|
"""
|
|
|
|
if validation:
|
|
model.eval()
|
|
trainmode = "val"
|
|
else:
|
|
model.train()
|
|
trainmode = "train"
|
|
|
|
t_start = time.time()
|
|
|
|
# get the visdom env name
|
|
visdom_env_imgs = visdom_env_root + "_images_" + trainmode
|
|
viz = vis_utils.get_visdom_connection(
|
|
server=stats.visdom_server,
|
|
port=stats.visdom_port,
|
|
)
|
|
|
|
# Iterate through the batches
|
|
n_batches = len(loader)
|
|
for it, net_input in enumerate(loader):
|
|
last_iter = it == n_batches - 1
|
|
|
|
# move to gpu where possible (in place)
|
|
net_input = net_input.to(device)
|
|
|
|
# run the forward pass
|
|
if not validation:
|
|
optimizer.zero_grad()
|
|
preds = model(**{**net_input, "evaluation_mode": EvaluationMode.TRAINING})
|
|
else:
|
|
with torch.no_grad():
|
|
preds = model(
|
|
**{**net_input, "evaluation_mode": EvaluationMode.EVALUATION}
|
|
)
|
|
|
|
# make sure we dont overwrite something
|
|
assert all(k not in preds for k in net_input.keys())
|
|
# merge everything into one big dict
|
|
preds.update(net_input)
|
|
|
|
# update the stats logger
|
|
stats.update(preds, time_start=t_start, stat_set=trainmode)
|
|
assert stats.it[trainmode] == it, "inconsistent stat iteration number!"
|
|
|
|
# print textual status update
|
|
if it % metric_print_interval == 0 or last_iter:
|
|
stats.print(stat_set=trainmode, max_it=n_batches)
|
|
|
|
# visualize results
|
|
if (
|
|
(accelerator is None or accelerator.is_local_main_process)
|
|
and visualize_interval > 0
|
|
and it % visualize_interval == 0
|
|
):
|
|
prefix = f"e{stats.epoch}_it{stats.it[trainmode]}"
|
|
|
|
model.visualize(
|
|
viz,
|
|
visdom_env_imgs,
|
|
preds,
|
|
prefix,
|
|
)
|
|
|
|
# optimizer step
|
|
if not validation:
|
|
loss = preds[bp_var]
|
|
assert torch.isfinite(loss).all(), "Non-finite loss!"
|
|
# backprop
|
|
if accelerator is None:
|
|
loss.backward()
|
|
else:
|
|
accelerator.backward(loss)
|
|
if clip_grad > 0.0:
|
|
# Optionally clip the gradient norms.
|
|
total_norm = torch.nn.utils.clip_grad_norm(
|
|
model.parameters(), clip_grad
|
|
)
|
|
if total_norm > clip_grad:
|
|
logger.info(
|
|
f"Clipping gradient: {total_norm}"
|
|
+ f" with coef {clip_grad / float(total_norm)}."
|
|
)
|
|
|
|
optimizer.step()
|
|
|
|
|
|
def run_training(cfg: DictConfig) -> None:
|
|
"""
|
|
Entry point to run the training and validation loops
|
|
based on the specified config file.
|
|
"""
|
|
|
|
# Initialize the accelerator
|
|
if no_accelerate:
|
|
accelerator = None
|
|
device = torch.device("cuda:0")
|
|
else:
|
|
accelerator = Accelerator(device_placement=False)
|
|
logger.info(accelerator.state)
|
|
device = accelerator.device
|
|
|
|
logger.info(f"Running experiment on device: {device}")
|
|
|
|
# set the debug mode
|
|
if cfg.detect_anomaly:
|
|
logger.info("Anomaly detection!")
|
|
torch.autograd.set_detect_anomaly(cfg.detect_anomaly)
|
|
|
|
# create the output folder
|
|
os.makedirs(cfg.exp_dir, exist_ok=True)
|
|
_seed_all_random_engines(cfg.seed)
|
|
remove_unused_components(cfg)
|
|
|
|
# dump the exp config to the exp dir
|
|
try:
|
|
cfg_filename = os.path.join(cfg.exp_dir, "expconfig.yaml")
|
|
OmegaConf.save(config=cfg, f=cfg_filename)
|
|
except PermissionError:
|
|
warnings.warn("Cant dump config due to insufficient permissions!")
|
|
|
|
# setup datasets
|
|
datasource = ImplicitronDataSource(**cfg.data_source_args)
|
|
datasets, dataloaders = datasource.get_datasets_and_dataloaders()
|
|
task = datasource.get_task()
|
|
|
|
# init the model
|
|
model, stats, optimizer_state = init_model(cfg=cfg, accelerator=accelerator)
|
|
start_epoch = stats.epoch + 1
|
|
|
|
# move model to gpu
|
|
model.to(device)
|
|
|
|
# only run evaluation on the test dataloader
|
|
if cfg.eval_only:
|
|
_eval_and_dump(
|
|
cfg,
|
|
task,
|
|
datasource.all_train_cameras,
|
|
datasets,
|
|
dataloaders,
|
|
model,
|
|
stats,
|
|
device=device,
|
|
)
|
|
return
|
|
|
|
# init the optimizer
|
|
optimizer, scheduler = init_optimizer(
|
|
model,
|
|
optimizer_state=optimizer_state,
|
|
last_epoch=start_epoch,
|
|
**cfg.solver_args,
|
|
)
|
|
|
|
# check the scheduler and stats have been initialized correctly
|
|
assert scheduler.last_epoch == stats.epoch + 1
|
|
assert scheduler.last_epoch == start_epoch
|
|
|
|
# Wrap all modules in the distributed library
|
|
# Note: we don't pass the scheduler to prepare as it
|
|
# doesn't need to be stepped at each optimizer step
|
|
train_loader = dataloaders.train
|
|
val_loader = dataloaders.val
|
|
if accelerator is not None:
|
|
(
|
|
model,
|
|
optimizer,
|
|
train_loader,
|
|
val_loader,
|
|
) = accelerator.prepare(model, optimizer, train_loader, val_loader)
|
|
|
|
past_scheduler_lrs = []
|
|
# loop through epochs
|
|
for epoch in range(start_epoch, cfg.solver_args.max_epochs):
|
|
# automatic new_epoch and plotting of stats at every epoch start
|
|
with stats:
|
|
|
|
# Make sure to re-seed random generators to ensure reproducibility
|
|
# even after restart.
|
|
_seed_all_random_engines(cfg.seed + epoch)
|
|
|
|
cur_lr = float(scheduler.get_last_lr()[-1])
|
|
logger.info(f"scheduler lr = {cur_lr:1.2e}")
|
|
past_scheduler_lrs.append(cur_lr)
|
|
|
|
# train loop
|
|
trainvalidate(
|
|
model,
|
|
stats,
|
|
epoch,
|
|
train_loader,
|
|
optimizer,
|
|
False,
|
|
visdom_env_root=vis_utils.get_visdom_env(cfg),
|
|
device=device,
|
|
accelerator=accelerator,
|
|
**cfg,
|
|
)
|
|
|
|
# val loop (optional)
|
|
if val_loader is not None and epoch % cfg.validation_interval == 0:
|
|
trainvalidate(
|
|
model,
|
|
stats,
|
|
epoch,
|
|
val_loader,
|
|
optimizer,
|
|
True,
|
|
visdom_env_root=vis_utils.get_visdom_env(cfg),
|
|
device=device,
|
|
accelerator=accelerator,
|
|
**cfg,
|
|
)
|
|
|
|
# eval loop (optional)
|
|
if (
|
|
dataloaders.test is not None
|
|
and cfg.test_interval > 0
|
|
and epoch % cfg.test_interval == 0
|
|
):
|
|
_run_eval(
|
|
model,
|
|
datasource.all_train_cameras,
|
|
dataloaders.test,
|
|
task,
|
|
camera_difficulty_bin_breaks=cfg.camera_difficulty_bin_breaks,
|
|
device=device,
|
|
)
|
|
|
|
assert stats.epoch == epoch, "inconsistent stats!"
|
|
|
|
# delete previous models if required
|
|
# save model only on the main process
|
|
if cfg.store_checkpoints and (
|
|
accelerator is None or accelerator.is_local_main_process
|
|
):
|
|
if cfg.store_checkpoints_purge > 0:
|
|
for prev_epoch in range(epoch - cfg.store_checkpoints_purge):
|
|
model_io.purge_epoch(cfg.exp_dir, prev_epoch)
|
|
outfile = model_io.get_checkpoint(cfg.exp_dir, epoch)
|
|
unwrapped_model = (
|
|
model if accelerator is None else accelerator.unwrap_model(model)
|
|
)
|
|
model_io.safe_save_model(
|
|
unwrapped_model, stats, outfile, optimizer=optimizer
|
|
)
|
|
|
|
scheduler.step()
|
|
|
|
new_lr = float(scheduler.get_last_lr()[-1])
|
|
if new_lr != cur_lr:
|
|
logger.info(f"LR change! {cur_lr} -> {new_lr}")
|
|
|
|
if cfg.test_when_finished:
|
|
_eval_and_dump(
|
|
cfg,
|
|
task,
|
|
datasource.all_train_cameras,
|
|
datasets,
|
|
dataloaders,
|
|
model,
|
|
stats,
|
|
device=device,
|
|
)
|
|
|
|
|
|
def _eval_and_dump(
|
|
cfg,
|
|
task: Task,
|
|
all_train_cameras: Optional[CamerasBase],
|
|
datasets: DatasetMap,
|
|
dataloaders: DataLoaderMap,
|
|
model,
|
|
stats,
|
|
device,
|
|
) -> None:
|
|
"""
|
|
Run the evaluation loop with the test data loader and
|
|
save the predictions to the `exp_dir`.
|
|
"""
|
|
|
|
dataloader = dataloaders.test
|
|
|
|
if dataloader is None:
|
|
raise ValueError('DataLoaderMap have to contain the "test" entry for eval!')
|
|
|
|
results = _run_eval(
|
|
model,
|
|
all_train_cameras,
|
|
dataloader,
|
|
task,
|
|
camera_difficulty_bin_breaks=cfg.camera_difficulty_bin_breaks,
|
|
device=device,
|
|
)
|
|
|
|
# add the evaluation epoch to the results
|
|
for r in results:
|
|
r["eval_epoch"] = int(stats.epoch)
|
|
|
|
logger.info("Evaluation results")
|
|
evaluate.pretty_print_nvs_metrics(results)
|
|
|
|
with open(os.path.join(cfg.exp_dir, "results_test.json"), "w") as f:
|
|
json.dump(results, f)
|
|
|
|
|
|
def _get_eval_frame_data(frame_data):
|
|
"""
|
|
Masks the unknown image data to make sure we cannot use it at model evaluation time.
|
|
"""
|
|
frame_data_for_eval = copy.deepcopy(frame_data)
|
|
is_known = ds_utils.is_known_frame(frame_data.frame_type).type_as(
|
|
frame_data.image_rgb
|
|
)[:, None, None, None]
|
|
for k in ("image_rgb", "depth_map", "fg_probability", "mask_crop"):
|
|
value_masked = getattr(frame_data_for_eval, k).clone() * is_known
|
|
setattr(frame_data_for_eval, k, value_masked)
|
|
return frame_data_for_eval
|
|
|
|
|
|
def _run_eval(
|
|
model,
|
|
all_train_cameras,
|
|
loader,
|
|
task: Task,
|
|
camera_difficulty_bin_breaks: Tuple[float, float],
|
|
device,
|
|
):
|
|
"""
|
|
Run the evaluation loop on the test dataloader
|
|
"""
|
|
lpips_model = lpips.LPIPS(net="vgg")
|
|
lpips_model = lpips_model.to(device)
|
|
|
|
model.eval()
|
|
|
|
per_batch_eval_results = []
|
|
logger.info("Evaluating model ...")
|
|
for frame_data in tqdm.tqdm(loader):
|
|
frame_data = frame_data.to(device)
|
|
|
|
# mask out the unknown images so that the model does not see them
|
|
frame_data_for_eval = _get_eval_frame_data(frame_data)
|
|
|
|
with torch.no_grad():
|
|
preds = model(
|
|
**{**frame_data_for_eval, "evaluation_mode": EvaluationMode.EVALUATION}
|
|
)
|
|
|
|
# TODO: Cannot use accelerate gather for two reasons:.
|
|
# (1) TypeError: Can't apply _gpu_gather_one on object of type
|
|
# <class 'pytorch3d.implicitron.models.base_model.ImplicitronRender'>,
|
|
# only of nested list/tuple/dicts of objects that satisfy is_torch_tensor.
|
|
# (2) Same error above but for frame_data which contains Cameras.
|
|
|
|
implicitron_render = copy.deepcopy(preds["implicitron_render"])
|
|
|
|
per_batch_eval_results.append(
|
|
evaluate.eval_batch(
|
|
frame_data,
|
|
implicitron_render,
|
|
bg_color="black",
|
|
lpips_model=lpips_model,
|
|
source_cameras=all_train_cameras,
|
|
)
|
|
)
|
|
|
|
_, category_result = evaluate.summarize_nvs_eval_results(
|
|
per_batch_eval_results, task, camera_difficulty_bin_breaks
|
|
)
|
|
|
|
return category_result["results"]
|
|
|
|
|
|
def _seed_all_random_engines(seed: int) -> None:
|
|
np.random.seed(seed)
|
|
torch.manual_seed(seed)
|
|
random.seed(seed)
|
|
|
|
|
|
def _setup_envvars_for_cluster() -> bool:
|
|
"""
|
|
Prepares to run on cluster if relevant.
|
|
Returns whether FAIR cluster in use.
|
|
"""
|
|
# TODO: How much of this is needed in general?
|
|
|
|
try:
|
|
import submitit
|
|
except ImportError:
|
|
return False
|
|
|
|
try:
|
|
# Only needed when launching on cluster with slurm and submitit
|
|
job_env = submitit.JobEnvironment()
|
|
except RuntimeError:
|
|
return False
|
|
|
|
os.environ["LOCAL_RANK"] = str(job_env.local_rank)
|
|
os.environ["RANK"] = str(job_env.global_rank)
|
|
os.environ["WORLD_SIZE"] = str(job_env.num_tasks)
|
|
os.environ["MASTER_ADDR"] = "localhost"
|
|
os.environ["MASTER_PORT"] = "42918"
|
|
logger.info(
|
|
"Num tasks %s, global_rank %s"
|
|
% (str(job_env.num_tasks), str(job_env.global_rank))
|
|
)
|
|
|
|
return True
|
|
|
|
|
|
expand_args_fields(ExperimentConfig)
|
|
cs = hydra.core.config_store.ConfigStore.instance()
|
|
cs.store(name="default_config", node=ExperimentConfig)
|
|
|
|
|
|
@hydra.main(config_path="./configs/", config_name="default_config")
|
|
def experiment(cfg: DictConfig) -> None:
|
|
# CUDA_VISIBLE_DEVICES must have been set.
|
|
|
|
if "CUDA_DEVICE_ORDER" not in os.environ:
|
|
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
|
|
|
|
if not _setup_envvars_for_cluster():
|
|
logger.info("Running locally")
|
|
|
|
# TODO: The following may be needed for hydra/submitit it to work
|
|
expand_args_fields(GenericModel)
|
|
expand_args_fields(AdaptiveRaySampler)
|
|
expand_args_fields(MultiPassEmissionAbsorptionRenderer)
|
|
expand_args_fields(ImplicitronDataSource)
|
|
|
|
run_training(cfg)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
experiment()
|