pytorch3d/tests/bm_points_alignment.py
David Novotny 8abbe22ffb ICP - point-to-point version
Summary:
The iterative closest point algorithm - point-to-point version.

Output of `bm_iterative_closest_point`:
Argument key: `batch_size dim n_points_X n_points_Y use_pointclouds`

```
Benchmark                                         Avg Time(μs)      Peak Time(μs) Iterations
--------------------------------------------------------------------------------
IterativeClosestPoint_1_3_100_100_False              107569          111323              5
IterativeClosestPoint_1_3_100_1000_False             118972          122306              5
IterativeClosestPoint_1_3_1000_100_False             108576          110978              5
IterativeClosestPoint_1_3_1000_1000_False            331836          333515              2
IterativeClosestPoint_1_20_100_100_False             134387          137842              4
IterativeClosestPoint_1_20_100_1000_False            149218          153405              4
IterativeClosestPoint_1_20_1000_100_False            414248          416595              2
IterativeClosestPoint_1_20_1000_1000_False           374318          374662              2
IterativeClosestPoint_10_3_100_100_False             539852          539852              1
IterativeClosestPoint_10_3_100_1000_False            752784          752784              1
IterativeClosestPoint_10_3_1000_100_False           1070700         1070700              1
IterativeClosestPoint_10_3_1000_1000_False          1164020         1164020              1
IterativeClosestPoint_10_20_100_100_False            374548          377337              2
IterativeClosestPoint_10_20_100_1000_False           472764          476685              2
IterativeClosestPoint_10_20_1000_100_False          1457175         1457175              1
IterativeClosestPoint_10_20_1000_1000_False         2195820         2195820              1
IterativeClosestPoint_1_3_100_100_True               110084          115824              5
IterativeClosestPoint_1_3_100_1000_True              142728          147696              4
IterativeClosestPoint_1_3_1000_100_True              212966          213966              3
IterativeClosestPoint_1_3_1000_1000_True             369130          375114              2
IterativeClosestPoint_10_3_100_100_True              354615          355179              2
IterativeClosestPoint_10_3_100_1000_True             451815          452704              2
IterativeClosestPoint_10_3_1000_100_True             511833          511833              1
IterativeClosestPoint_10_3_1000_1000_True            798453          798453              1
--------------------------------------------------------------------------------
```

Reviewed By: shapovalov, gkioxari

Differential Revision: D19909952

fbshipit-source-id: f77fadc88fb7c53999909d594114b182ee2a3def
2020-04-16 14:02:16 -07:00

73 lines
2.1 KiB
Python

#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
from copy import deepcopy
from itertools import product
from fvcore.common.benchmark import benchmark
from test_points_alignment import TestCorrespondingPointsAlignment, TestICP
def bm_iterative_closest_point() -> None:
case_grid = {
"batch_size": [1, 10],
"dim": [3, 20],
"n_points_X": [100, 1000],
"n_points_Y": [100, 1000],
"use_pointclouds": [False],
}
test_args = sorted(case_grid.keys())
test_cases = product(*case_grid.values())
kwargs_list = [dict(zip(test_args, case)) for case in test_cases]
# add the use_pointclouds=True test cases whenever we have dim==3
kwargs_to_add = []
for entry in kwargs_list:
if entry["dim"] == 3:
entry_add = deepcopy(entry)
entry_add["use_pointclouds"] = True
kwargs_to_add.append(entry_add)
kwargs_list.extend(kwargs_to_add)
benchmark(
TestICP.iterative_closest_point,
"IterativeClosestPoint",
kwargs_list,
warmup_iters=1,
)
def bm_corresponding_points_alignment() -> None:
case_grid = {
"allow_reflection": [True, False],
"batch_size": [1, 10, 100],
"dim": [3, 20],
"estimate_scale": [True, False],
"n_points": [100, 10000],
"random_weights": [False, True],
"use_pointclouds": [False],
}
test_args = sorted(case_grid.keys())
test_cases = product(*case_grid.values())
kwargs_list = [dict(zip(test_args, case)) for case in test_cases]
# add the use_pointclouds=True test cases whenever we have dim==3
kwargs_to_add = []
for entry in kwargs_list:
if entry["dim"] == 3:
entry_add = deepcopy(entry)
entry_add["use_pointclouds"] = True
kwargs_to_add.append(entry_add)
kwargs_list.extend(kwargs_to_add)
benchmark(
TestCorrespondingPointsAlignment.corresponding_points_alignment,
"CorrespodingPointsAlignment",
kwargs_list,
warmup_iters=1,
)