pytorch3d/tests/implicitron/test_ray_point_refiner.py
Jeremy Reizenstein 34f648ede0 move targets
Summary: Move testing targets from pytorch3d/tests/TARGETS to pytorch3d/TARGETS.

Reviewed By: shapovalov

Differential Revision: D36186940

fbshipit-source-id: a4c52c4d99351f885e2b0bf870532d530324039b
2022-05-25 06:16:03 -07:00

58 lines
2.3 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import unittest
import torch
from pytorch3d.implicitron.models.renderer.ray_point_refiner import RayPointRefiner
from pytorch3d.renderer import RayBundle
from tests.common_testing import TestCaseMixin
class TestRayPointRefiner(TestCaseMixin, unittest.TestCase):
def test_simple(self):
length = 15
n_pts_per_ray = 10
for add_input_samples in [False, True]:
ray_point_refiner = RayPointRefiner(
n_pts_per_ray=n_pts_per_ray,
random_sampling=False,
add_input_samples=add_input_samples,
)
lengths = torch.arange(length, dtype=torch.float32).expand(3, 25, length)
bundle = RayBundle(lengths=lengths, origins=None, directions=None, xys=None)
weights = torch.ones(3, 25, length)
refined = ray_point_refiner(bundle, weights)
self.assertIsNone(refined.directions)
self.assertIsNone(refined.origins)
self.assertIsNone(refined.xys)
expected = torch.linspace(0.5, length - 1.5, n_pts_per_ray)
expected = expected.expand(3, 25, n_pts_per_ray)
if add_input_samples:
full_expected = torch.cat((lengths, expected), dim=-1).sort()[0]
else:
full_expected = expected
self.assertClose(refined.lengths, full_expected)
ray_point_refiner_random = RayPointRefiner(
n_pts_per_ray=n_pts_per_ray,
random_sampling=True,
add_input_samples=add_input_samples,
)
refined_random = ray_point_refiner_random(bundle, weights)
lengths_random = refined_random.lengths
self.assertEqual(lengths_random.shape, full_expected.shape)
if not add_input_samples:
self.assertGreater(lengths_random.min().item(), 0.5)
self.assertLess(lengths_random.max().item(), length - 1.5)
# Check sorted
self.assertTrue(
(lengths_random[..., 1:] - lengths_random[..., :-1] > 0).all()
)