mirror of
https://github.com/facebookresearch/pytorch3d.git
synced 2025-08-02 03:42:50 +08:00
Summary: Applies new import merging and sorting from µsort v1.0. When merging imports, µsort will make a best-effort to move associated comments to match merged elements, but there are known limitations due to the diynamic nature of Python and developer tooling. These changes should not produce any dangerous runtime changes, but may require touch-ups to satisfy linters and other tooling. Note that µsort uses case-insensitive, lexicographical sorting, which results in a different ordering compared to isort. This provides a more consistent sorting order, matching the case-insensitive order used when sorting import statements by module name, and ensures that "frog", "FROG", and "Frog" always sort next to each other. For details on µsort's sorting and merging semantics, see the user guide: https://usort.readthedocs.io/en/stable/guide.html#sorting Reviewed By: bottler Differential Revision: D35553814 fbshipit-source-id: be49bdb6a4c25264ff8d4db3a601f18736d17be1
689 lines
25 KiB
Python
689 lines
25 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the BSD-style license found in the
|
|
# LICENSE file in the root directory of this source tree.
|
|
|
|
import unittest
|
|
|
|
import numpy as np
|
|
import torch
|
|
from common_testing import get_tests_dir, TestCaseMixin
|
|
from pytorch3d.ops import points_alignment
|
|
from pytorch3d.structures.pointclouds import Pointclouds
|
|
from pytorch3d.transforms import rotation_conversions
|
|
|
|
|
|
def _apply_pcl_transformation(X, R, T, s=None):
|
|
"""
|
|
Apply a batch of similarity/rigid transformations, parametrized with
|
|
rotation `R`, translation `T` and scale `s`, to an input batch of
|
|
point clouds `X`.
|
|
"""
|
|
if isinstance(X, Pointclouds):
|
|
num_points = X.num_points_per_cloud()
|
|
X_t = X.points_padded()
|
|
else:
|
|
X_t = X
|
|
|
|
if s is not None:
|
|
X_t = s[:, None, None] * X_t
|
|
|
|
X_t = torch.bmm(X_t, R) + T[:, None, :]
|
|
|
|
if isinstance(X, Pointclouds):
|
|
X_list = [x[:n_p] for x, n_p in zip(X_t, num_points)]
|
|
X_t = Pointclouds(X_list)
|
|
|
|
return X_t
|
|
|
|
|
|
class TestICP(TestCaseMixin, unittest.TestCase):
|
|
def setUp(self) -> None:
|
|
super().setUp()
|
|
torch.manual_seed(42)
|
|
np.random.seed(42)
|
|
trimesh_results_path = get_tests_dir() / "data/icp_data.pth"
|
|
self.trimesh_results = torch.load(trimesh_results_path)
|
|
|
|
@staticmethod
|
|
def iterative_closest_point(
|
|
batch_size=10,
|
|
n_points_X=100,
|
|
n_points_Y=100,
|
|
dim=3,
|
|
use_pointclouds=False,
|
|
estimate_scale=False,
|
|
):
|
|
|
|
device = torch.device("cuda:0")
|
|
|
|
# initialize a ground truth point cloud
|
|
X, Y = [
|
|
TestCorrespondingPointsAlignment.init_point_cloud(
|
|
batch_size=batch_size,
|
|
n_points=n_points,
|
|
dim=dim,
|
|
device=device,
|
|
use_pointclouds=use_pointclouds,
|
|
random_pcl_size=True,
|
|
fix_seed=i,
|
|
)
|
|
for i, n_points in enumerate((n_points_X, n_points_Y))
|
|
]
|
|
|
|
torch.cuda.synchronize()
|
|
|
|
def run_iterative_closest_point():
|
|
points_alignment.iterative_closest_point(
|
|
X,
|
|
Y,
|
|
estimate_scale=estimate_scale,
|
|
allow_reflection=False,
|
|
verbose=False,
|
|
max_iterations=100,
|
|
relative_rmse_thr=1e-4,
|
|
)
|
|
torch.cuda.synchronize()
|
|
|
|
return run_iterative_closest_point
|
|
|
|
def test_init_transformation(self, batch_size=10):
|
|
"""
|
|
First runs a full ICP on a random problem. Then takes a given point
|
|
in the history of ICP iteration transformations, initializes
|
|
a second run of ICP with this transformation and checks whether
|
|
both runs ended with the same solution.
|
|
"""
|
|
|
|
device = torch.device("cuda:0")
|
|
|
|
for dim in (2, 3, 11):
|
|
for n_points_X in (30, 100):
|
|
for n_points_Y in (30, 100):
|
|
# initialize ground truth point clouds
|
|
X, Y = [
|
|
TestCorrespondingPointsAlignment.init_point_cloud(
|
|
batch_size=batch_size,
|
|
n_points=n_points,
|
|
dim=dim,
|
|
device=device,
|
|
use_pointclouds=False,
|
|
random_pcl_size=True,
|
|
)
|
|
for n_points in (n_points_X, n_points_Y)
|
|
]
|
|
|
|
# run full icp
|
|
(
|
|
converged,
|
|
_,
|
|
Xt,
|
|
(R, T, s),
|
|
t_hist,
|
|
) = points_alignment.iterative_closest_point(
|
|
X,
|
|
Y,
|
|
estimate_scale=False,
|
|
allow_reflection=False,
|
|
verbose=False,
|
|
max_iterations=100,
|
|
)
|
|
|
|
# start from the solution after the third
|
|
# iteration of the previous ICP
|
|
t_init = t_hist[min(2, len(t_hist) - 1)]
|
|
|
|
# rerun the ICP
|
|
(
|
|
converged_init,
|
|
_,
|
|
Xt_init,
|
|
(R_init, T_init, s_init),
|
|
t_hist_init,
|
|
) = points_alignment.iterative_closest_point(
|
|
X,
|
|
Y,
|
|
init_transform=t_init,
|
|
estimate_scale=False,
|
|
allow_reflection=False,
|
|
verbose=False,
|
|
max_iterations=100,
|
|
)
|
|
|
|
# compare transformations and obtained clouds
|
|
# check that both sets of transforms are the same
|
|
atol = 3e-5
|
|
self.assertClose(R_init, R, atol=atol)
|
|
self.assertClose(T_init, T, atol=atol)
|
|
self.assertClose(s_init, s, atol=atol)
|
|
self.assertClose(Xt_init, Xt, atol=atol)
|
|
|
|
def test_heterogeneous_inputs(self, batch_size=7):
|
|
"""
|
|
Tests whether we get the same result when running ICP on
|
|
a set of randomly-sized Pointclouds and on their padded versions.
|
|
"""
|
|
|
|
torch.manual_seed(4)
|
|
device = torch.device("cuda:0")
|
|
|
|
for estimate_scale in (True, False):
|
|
for max_n_points in (10, 30, 100):
|
|
# initialize ground truth point clouds
|
|
X_pcl, Y_pcl = [
|
|
TestCorrespondingPointsAlignment.init_point_cloud(
|
|
batch_size=batch_size,
|
|
n_points=max_n_points,
|
|
dim=3,
|
|
device=device,
|
|
use_pointclouds=True,
|
|
random_pcl_size=True,
|
|
)
|
|
for _ in range(2)
|
|
]
|
|
|
|
# get the padded versions and their num of points
|
|
X_padded = X_pcl.points_padded()
|
|
Y_padded = Y_pcl.points_padded()
|
|
n_points_X = X_pcl.num_points_per_cloud()
|
|
n_points_Y = Y_pcl.num_points_per_cloud()
|
|
|
|
# run icp with Pointlouds inputs
|
|
(
|
|
_,
|
|
_,
|
|
Xt_pcl,
|
|
(R_pcl, T_pcl, s_pcl),
|
|
_,
|
|
) = points_alignment.iterative_closest_point(
|
|
X_pcl,
|
|
Y_pcl,
|
|
estimate_scale=estimate_scale,
|
|
allow_reflection=False,
|
|
verbose=False,
|
|
max_iterations=100,
|
|
)
|
|
Xt_pcl = Xt_pcl.points_padded()
|
|
|
|
# run icp with tensor inputs on each element
|
|
# of the batch separately
|
|
icp_results = [
|
|
points_alignment.iterative_closest_point(
|
|
X_[None, :n_X, :],
|
|
Y_[None, :n_Y, :],
|
|
estimate_scale=estimate_scale,
|
|
allow_reflection=False,
|
|
verbose=False,
|
|
max_iterations=100,
|
|
)
|
|
for X_, Y_, n_X, n_Y in zip(
|
|
X_padded, Y_padded, n_points_X, n_points_Y
|
|
)
|
|
]
|
|
|
|
# parse out the transformation results
|
|
R, T, s = [
|
|
torch.cat([x.RTs[i] for x in icp_results], dim=0) for i in range(3)
|
|
]
|
|
|
|
# check that both sets of transforms are the same
|
|
atol = 1e-5
|
|
self.assertClose(R_pcl, R, atol=atol)
|
|
self.assertClose(T_pcl, T, atol=atol)
|
|
self.assertClose(s_pcl, s, atol=atol)
|
|
|
|
# compare the transformed point clouds
|
|
for pcli in range(batch_size):
|
|
nX = n_points_X[pcli]
|
|
Xt_ = icp_results[pcli].Xt[0, :nX]
|
|
Xt_pcl_ = Xt_pcl[pcli][:nX]
|
|
self.assertClose(Xt_pcl_, Xt_, atol=atol)
|
|
|
|
def test_compare_with_trimesh(self):
|
|
"""
|
|
Compares the outputs of `iterative_closest_point` with the results
|
|
of `trimesh.registration.icp` from the `trimesh` python package:
|
|
https://github.com/mikedh/trimesh
|
|
|
|
We have run `trimesh.registration.icp` on several random problems
|
|
with different point cloud sizes. The results of trimesh, together with
|
|
the randomly generated input clouds are loaded in the constructor of
|
|
this class and this test compares the loaded results to our runs.
|
|
"""
|
|
for n_points_X in (10, 20, 50, 100):
|
|
for n_points_Y in (10, 20, 50, 100):
|
|
self._compare_with_trimesh(n_points_X=n_points_X, n_points_Y=n_points_Y)
|
|
|
|
def _compare_with_trimesh(
|
|
self, n_points_X=100, n_points_Y=100, estimate_scale=False
|
|
):
|
|
"""
|
|
Executes a single test for `iterative_closest_point` for a
|
|
specific setting of the inputs / outputs. Compares the result with
|
|
the result of the trimesh package on the same input data.
|
|
"""
|
|
|
|
device = torch.device("cuda:0")
|
|
|
|
# load the trimesh results and the initial point clouds for icp
|
|
key = (int(n_points_X), int(n_points_Y), int(estimate_scale))
|
|
X, Y, R_trimesh, T_trimesh, s_trimesh = [
|
|
x.to(device) for x in self.trimesh_results[key]
|
|
]
|
|
|
|
# run the icp algorithm
|
|
(
|
|
converged,
|
|
_,
|
|
_,
|
|
(R_ours, T_ours, s_ours),
|
|
_,
|
|
) = points_alignment.iterative_closest_point(
|
|
X,
|
|
Y,
|
|
estimate_scale=estimate_scale,
|
|
allow_reflection=False,
|
|
verbose=False,
|
|
max_iterations=100,
|
|
)
|
|
|
|
# check that we have the same transformation
|
|
# and that the icp converged
|
|
atol = 1e-5
|
|
self.assertClose(R_ours, R_trimesh, atol=atol)
|
|
self.assertClose(T_ours, T_trimesh, atol=atol)
|
|
self.assertClose(s_ours, s_trimesh, atol=atol)
|
|
self.assertTrue(converged)
|
|
|
|
|
|
class TestCorrespondingPointsAlignment(TestCaseMixin, unittest.TestCase):
|
|
def setUp(self) -> None:
|
|
super().setUp()
|
|
torch.manual_seed(42)
|
|
np.random.seed(42)
|
|
|
|
@staticmethod
|
|
def random_rotation(batch_size, dim, device=None):
|
|
"""
|
|
Generates a batch of random `dim`-dimensional rotation matrices.
|
|
"""
|
|
if dim == 3:
|
|
R = rotation_conversions.random_rotations(batch_size, device=device)
|
|
else:
|
|
# generate random rotation matrices with orthogonalization of
|
|
# random normal square matrices, followed by a transformation
|
|
# that ensures determinant(R)==1
|
|
H = torch.randn(batch_size, dim, dim, dtype=torch.float32, device=device)
|
|
U, _, V = torch.svd(H)
|
|
E = torch.eye(dim, dtype=torch.float32, device=device)[None].repeat(
|
|
batch_size, 1, 1
|
|
)
|
|
E[:, -1, -1] = torch.det(torch.bmm(U, V.transpose(2, 1)))
|
|
R = torch.bmm(torch.bmm(U, E), V.transpose(2, 1))
|
|
assert torch.allclose(torch.det(R), R.new_ones(batch_size), atol=1e-4)
|
|
|
|
return R
|
|
|
|
@staticmethod
|
|
def init_point_cloud(
|
|
batch_size=10,
|
|
n_points=1000,
|
|
dim=3,
|
|
device=None,
|
|
use_pointclouds=False,
|
|
random_pcl_size=True,
|
|
fix_seed=None,
|
|
):
|
|
"""
|
|
Generate a batch of normally distributed point clouds.
|
|
"""
|
|
|
|
if fix_seed is not None:
|
|
# make sure we always generate the same pointcloud
|
|
seed = torch.random.get_rng_state()
|
|
torch.manual_seed(fix_seed)
|
|
|
|
if use_pointclouds:
|
|
assert dim == 3, "Pointclouds support only 3-dim points."
|
|
# generate a `batch_size` point clouds with number of points
|
|
# between 4 and `n_points`
|
|
if random_pcl_size:
|
|
n_points_per_batch = torch.randint(
|
|
low=4,
|
|
high=n_points,
|
|
size=(batch_size,),
|
|
device=device,
|
|
dtype=torch.int64,
|
|
)
|
|
X_list = [
|
|
torch.randn(int(n_pt), dim, device=device, dtype=torch.float32)
|
|
for n_pt in n_points_per_batch
|
|
]
|
|
X = Pointclouds(X_list)
|
|
else:
|
|
X = torch.randn(
|
|
batch_size, n_points, dim, device=device, dtype=torch.float32
|
|
)
|
|
X = Pointclouds(list(X))
|
|
else:
|
|
X = torch.randn(
|
|
batch_size, n_points, dim, device=device, dtype=torch.float32
|
|
)
|
|
|
|
if fix_seed:
|
|
torch.random.set_rng_state(seed)
|
|
|
|
return X
|
|
|
|
@staticmethod
|
|
def generate_pcl_transformation(
|
|
batch_size=10, scale=False, reflect=False, dim=3, device=None
|
|
):
|
|
"""
|
|
Generate a batch of random rigid/similarity transformations.
|
|
"""
|
|
R = TestCorrespondingPointsAlignment.random_rotation(
|
|
batch_size, dim, device=device
|
|
)
|
|
T = torch.randn(batch_size, dim, dtype=torch.float32, device=device)
|
|
if scale:
|
|
s = torch.rand(batch_size, dtype=torch.float32, device=device) + 0.1
|
|
else:
|
|
s = torch.ones(batch_size, dtype=torch.float32, device=device)
|
|
|
|
return R, T, s
|
|
|
|
@staticmethod
|
|
def generate_random_reflection(batch_size=10, dim=3, device=None):
|
|
"""
|
|
Generate a batch of reflection matrices of shape (batch_size, dim, dim),
|
|
where M_i is an identity matrix with one random entry on the
|
|
diagonal equal to -1.
|
|
"""
|
|
# randomly select one of the dimensions to reflect for each
|
|
# element in the batch
|
|
dim_to_reflect = torch.randint(
|
|
low=0, high=dim, size=(batch_size,), device=device, dtype=torch.int64
|
|
)
|
|
|
|
# convert dim_to_reflect to a batch of reflection matrices M
|
|
M = torch.diag_embed(
|
|
(
|
|
dim_to_reflect[:, None]
|
|
!= torch.arange(dim, device=device, dtype=torch.float32)
|
|
).float()
|
|
* 2
|
|
- 1,
|
|
dim1=1,
|
|
dim2=2,
|
|
)
|
|
|
|
return M
|
|
|
|
@staticmethod
|
|
def corresponding_points_alignment(
|
|
batch_size=10,
|
|
n_points=100,
|
|
dim=3,
|
|
use_pointclouds=False,
|
|
estimate_scale=False,
|
|
allow_reflection=False,
|
|
reflect=False,
|
|
random_weights=False,
|
|
):
|
|
|
|
device = torch.device("cuda:0")
|
|
|
|
# initialize a ground truth point cloud
|
|
X = TestCorrespondingPointsAlignment.init_point_cloud(
|
|
batch_size=batch_size,
|
|
n_points=n_points,
|
|
dim=dim,
|
|
device=device,
|
|
use_pointclouds=use_pointclouds,
|
|
random_pcl_size=True,
|
|
)
|
|
|
|
# generate the true transformation
|
|
R, T, s = TestCorrespondingPointsAlignment.generate_pcl_transformation(
|
|
batch_size=batch_size,
|
|
scale=estimate_scale,
|
|
reflect=reflect,
|
|
dim=dim,
|
|
device=device,
|
|
)
|
|
|
|
# apply the generated transformation to the generated
|
|
# point cloud X
|
|
X_t = _apply_pcl_transformation(X, R, T, s=s)
|
|
|
|
weights = None
|
|
if random_weights:
|
|
template = X.points_padded() if use_pointclouds else X
|
|
weights = torch.rand_like(template[:, :, 0])
|
|
weights = weights / weights.sum(dim=1, keepdim=True)
|
|
# zero out some weights as zero weights are a common use case
|
|
# this guarantees there are no zero weight
|
|
weights *= (weights * template.size()[1] > 0.3).to(weights)
|
|
if use_pointclouds: # convert to List[Tensor]
|
|
weights = [
|
|
w[:npts] for w, npts in zip(weights, X.num_points_per_cloud())
|
|
]
|
|
|
|
torch.cuda.synchronize()
|
|
|
|
def run_corresponding_points_alignment():
|
|
points_alignment.corresponding_points_alignment(
|
|
X,
|
|
X_t,
|
|
weights,
|
|
allow_reflection=allow_reflection,
|
|
estimate_scale=estimate_scale,
|
|
)
|
|
torch.cuda.synchronize()
|
|
|
|
return run_corresponding_points_alignment
|
|
|
|
def test_corresponding_points_alignment(self, batch_size=10):
|
|
"""
|
|
Tests whether we can estimate a rigid/similarity motion between
|
|
a randomly initialized point cloud and its randomly transformed version.
|
|
|
|
The tests are done for all possible combinations
|
|
of the following boolean flags:
|
|
- estimate_scale ... Estimate also a scaling component of
|
|
the transformation.
|
|
- reflect ... The ground truth orthonormal part of the generated
|
|
transformation is a reflection (det==-1).
|
|
- allow_reflection ... If True, the orthonormal matrix of the
|
|
estimated transformation is allowed to be
|
|
a reflection (det==-1).
|
|
- use_pointclouds ... If True, passes the Pointclouds objects
|
|
to corresponding_points_alignment.
|
|
"""
|
|
# run this for several different point cloud sizes
|
|
for n_points in (100, 3, 2, 1):
|
|
# run this for several different dimensionalities
|
|
for dim in range(2, 10):
|
|
# switches whether we should use the Pointclouds inputs
|
|
use_point_clouds_cases = (
|
|
(True, False) if dim == 3 and n_points > 3 else (False,)
|
|
)
|
|
for random_weights in (False, True):
|
|
for use_pointclouds in use_point_clouds_cases:
|
|
for estimate_scale in (False, True):
|
|
for reflect in (False, True):
|
|
for allow_reflection in (False, True):
|
|
self._test_single_corresponding_points_alignment(
|
|
batch_size=10,
|
|
n_points=n_points,
|
|
dim=dim,
|
|
use_pointclouds=use_pointclouds,
|
|
estimate_scale=estimate_scale,
|
|
reflect=reflect,
|
|
allow_reflection=allow_reflection,
|
|
random_weights=random_weights,
|
|
)
|
|
|
|
def _test_single_corresponding_points_alignment(
|
|
self,
|
|
batch_size=10,
|
|
n_points=100,
|
|
dim=3,
|
|
use_pointclouds=False,
|
|
estimate_scale=False,
|
|
reflect=False,
|
|
allow_reflection=False,
|
|
random_weights=False,
|
|
):
|
|
"""
|
|
Executes a single test for `corresponding_points_alignment` for a
|
|
specific setting of the inputs / outputs.
|
|
"""
|
|
|
|
device = torch.device("cuda:0")
|
|
|
|
# initialize the a ground truth point cloud
|
|
X = TestCorrespondingPointsAlignment.init_point_cloud(
|
|
batch_size=batch_size,
|
|
n_points=n_points,
|
|
dim=dim,
|
|
device=device,
|
|
use_pointclouds=use_pointclouds,
|
|
random_pcl_size=True,
|
|
)
|
|
|
|
# generate the true transformation
|
|
R, T, s = TestCorrespondingPointsAlignment.generate_pcl_transformation(
|
|
batch_size=batch_size,
|
|
scale=estimate_scale,
|
|
reflect=reflect,
|
|
dim=dim,
|
|
device=device,
|
|
)
|
|
|
|
if reflect:
|
|
# generate random reflection M and apply to the rotations
|
|
M = TestCorrespondingPointsAlignment.generate_random_reflection(
|
|
batch_size=batch_size, dim=dim, device=device
|
|
)
|
|
R = torch.bmm(M, R)
|
|
|
|
weights = None
|
|
if random_weights:
|
|
template = X.points_padded() if use_pointclouds else X
|
|
weights = torch.rand_like(template[:, :, 0])
|
|
weights = weights / weights.sum(dim=1, keepdim=True)
|
|
# zero out some weights as zero weights are a common use case
|
|
# this guarantees there are no zero weight
|
|
weights *= (weights * template.size()[1] > 0.3).to(weights)
|
|
if use_pointclouds: # convert to List[Tensor]
|
|
weights = [
|
|
w[:npts] for w, npts in zip(weights, X.num_points_per_cloud())
|
|
]
|
|
|
|
# apply the generated transformation to the generated
|
|
# point cloud X
|
|
X_t = _apply_pcl_transformation(X, R, T, s=s)
|
|
|
|
# run the CorrespondingPointsAlignment algorithm
|
|
R_est, T_est, s_est = points_alignment.corresponding_points_alignment(
|
|
X,
|
|
X_t,
|
|
weights,
|
|
allow_reflection=allow_reflection,
|
|
estimate_scale=estimate_scale,
|
|
)
|
|
|
|
assert_error_message = (
|
|
f"Corresponding_points_alignment assertion failure for "
|
|
f"n_points={n_points}, "
|
|
f"dim={dim}, "
|
|
f"use_pointclouds={use_pointclouds}, "
|
|
f"estimate_scale={estimate_scale}, "
|
|
f"reflect={reflect}, "
|
|
f"allow_reflection={allow_reflection},"
|
|
f"random_weights={random_weights}."
|
|
)
|
|
|
|
# if we test the weighted case, check that weights help with noise
|
|
if random_weights and not use_pointclouds and n_points >= (dim + 10):
|
|
# add noise to 20% points with smallest weight
|
|
X_noisy = X_t.clone()
|
|
_, mink_idx = torch.topk(-weights, int(n_points * 0.2), dim=1)
|
|
mink_idx = mink_idx[:, :, None].expand(-1, -1, X_t.shape[-1])
|
|
X_noisy.scatter_add_(
|
|
1, mink_idx, 0.3 * torch.randn_like(mink_idx, dtype=X_t.dtype)
|
|
)
|
|
|
|
def align_and_get_mse(weights_):
|
|
R_n, T_n, s_n = points_alignment.corresponding_points_alignment(
|
|
X_noisy,
|
|
X_t,
|
|
weights_,
|
|
allow_reflection=allow_reflection,
|
|
estimate_scale=estimate_scale,
|
|
)
|
|
|
|
X_t_est = _apply_pcl_transformation(X_noisy, R_n, T_n, s=s_n)
|
|
|
|
return (((X_t_est - X_t) * weights[..., None]) ** 2).sum(
|
|
dim=(1, 2)
|
|
) / weights.sum(dim=-1)
|
|
|
|
# check that using weights leads to lower weighted_MSE(X_noisy, X_t)
|
|
self.assertTrue(
|
|
torch.all(align_and_get_mse(weights) <= align_and_get_mse(None))
|
|
)
|
|
|
|
if reflect and not allow_reflection:
|
|
# check that all rotations have det=1
|
|
self._assert_all_close(
|
|
torch.det(R_est),
|
|
R_est.new_ones(batch_size),
|
|
assert_error_message,
|
|
atol=2e-5,
|
|
)
|
|
|
|
else:
|
|
# mask out inputs with too few non-degenerate points for assertions
|
|
w = (
|
|
torch.ones_like(R_est[:, 0, 0])
|
|
if weights is None or n_points >= dim + 10
|
|
else (weights > 0.0).all(dim=1).to(R_est)
|
|
)
|
|
# check that the estimated tranformation is the same
|
|
# as the ground truth
|
|
if n_points >= (dim + 1):
|
|
# the checks on transforms apply only when
|
|
# the problem setup is unambiguous
|
|
msg = assert_error_message
|
|
self._assert_all_close(R_est, R, msg, w[:, None, None], atol=1e-5)
|
|
self._assert_all_close(T_est, T, msg, w[:, None])
|
|
self._assert_all_close(s_est, s, msg, w)
|
|
|
|
# check that the orthonormal part of the
|
|
# transformation has a correct determinant (+1/-1)
|
|
desired_det = R_est.new_ones(batch_size)
|
|
if reflect:
|
|
desired_det *= -1.0
|
|
self._assert_all_close(torch.det(R_est), desired_det, msg, w, atol=2e-5)
|
|
|
|
# check that the transformed point cloud
|
|
# X matches X_t
|
|
X_t_est = _apply_pcl_transformation(X, R_est, T_est, s=s_est)
|
|
self._assert_all_close(
|
|
X_t, X_t_est, assert_error_message, w[:, None, None], atol=2e-5
|
|
)
|
|
|
|
def _assert_all_close(self, a_, b_, err_message, weights=None, atol=1e-6):
|
|
if isinstance(a_, Pointclouds):
|
|
a_ = a_.points_packed()
|
|
if isinstance(b_, Pointclouds):
|
|
b_ = b_.points_packed()
|
|
if weights is None:
|
|
self.assertClose(a_, b_, atol=atol, msg=err_message)
|
|
else:
|
|
self.assertClose(a_ * weights, b_ * weights, atol=atol, msg=err_message)
|