pytorch3d/tests/test_packed_to_padded.py
Tim Hatch 34bbb3ad32 apply import merging for fbcode/vision/fair (2 of 2)
Summary:
Applies new import merging and sorting from µsort v1.0.

When merging imports, µsort will make a best-effort to move associated
comments to match merged elements, but there are known limitations due to
the diynamic nature of Python and developer tooling. These changes should
not produce any dangerous runtime changes, but may require touch-ups to
satisfy linters and other tooling.

Note that µsort uses case-insensitive, lexicographical sorting, which
results in a different ordering compared to isort. This provides a more
consistent sorting order, matching the case-insensitive order used when
sorting import statements by module name, and ensures that "frog", "FROG",
and "Frog" always sort next to each other.

For details on µsort's sorting and merging semantics, see the user guide:
https://usort.readthedocs.io/en/stable/guide.html#sorting

Reviewed By: bottler

Differential Revision: D35553814

fbshipit-source-id: be49bdb6a4c25264ff8d4db3a601f18736d17be1
2022-04-13 06:51:33 -07:00

273 lines
10 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import unittest
import torch
from common_testing import get_random_cuda_device, TestCaseMixin
from pytorch3d.ops import packed_to_padded, padded_to_packed
from pytorch3d.structures.meshes import Meshes
class TestPackedToPadded(TestCaseMixin, unittest.TestCase):
def setUp(self) -> None:
super().setUp()
torch.manual_seed(1)
@staticmethod
def init_meshes(
num_meshes: int = 10,
num_verts: int = 1000,
num_faces: int = 3000,
device: str = "cpu",
):
device = torch.device(device)
verts_list = []
faces_list = []
for _ in range(num_meshes):
verts = torch.rand((num_verts, 3), dtype=torch.float32, device=device)
faces = torch.randint(
num_verts, size=(num_faces, 3), dtype=torch.int64, device=device
)
verts_list.append(verts)
faces_list.append(faces)
meshes = Meshes(verts_list, faces_list)
return meshes
@staticmethod
def packed_to_padded_python(inputs, first_idxs, max_size, device):
"""
PyTorch implementation of packed_to_padded function.
"""
num_meshes = first_idxs.size(0)
D = inputs.shape[1] if inputs.dim() == 2 else 0
if D == 0:
inputs_padded = torch.zeros((num_meshes, max_size), device=device)
else:
inputs_padded = torch.zeros((num_meshes, max_size, D), device=device)
for m in range(num_meshes):
s = first_idxs[m]
if m == num_meshes - 1:
f = inputs.shape[0]
else:
f = first_idxs[m + 1]
inputs_padded[m, :f] = inputs[s:f]
return inputs_padded
@staticmethod
def padded_to_packed_python(inputs, first_idxs, num_inputs, device):
"""
PyTorch implementation of padded_to_packed function.
"""
num_meshes = inputs.size(0)
D = inputs.shape[2] if inputs.dim() == 3 else 0
if D == 0:
inputs_packed = torch.zeros((num_inputs,), device=device)
else:
inputs_packed = torch.zeros((num_inputs, D), device=device)
for m in range(num_meshes):
s = first_idxs[m]
if m == num_meshes - 1:
f = num_inputs
else:
f = first_idxs[m + 1]
inputs_packed[s:f] = inputs[m, :f]
return inputs_packed
def _test_packed_to_padded_helper(self, D, device):
"""
Check the results from packed_to_padded and PyTorch implementations
are the same.
"""
meshes = self.init_meshes(16, 100, 300, device=device)
faces = meshes.faces_packed()
mesh_to_faces_packed_first_idx = meshes.mesh_to_faces_packed_first_idx()
max_faces = meshes.num_faces_per_mesh().max().item()
if D == 0:
values = torch.rand((faces.shape[0],), device=device, requires_grad=True)
else:
values = torch.rand((faces.shape[0], D), device=device, requires_grad=True)
values_torch = values.detach().clone()
values_torch.requires_grad = True
values_padded = packed_to_padded(
values, mesh_to_faces_packed_first_idx, max_faces
)
values_padded_torch = TestPackedToPadded.packed_to_padded_python(
values_torch, mesh_to_faces_packed_first_idx, max_faces, device
)
# check forward
self.assertClose(values_padded, values_padded_torch)
# check backward
if D == 0:
grad_inputs = torch.rand((len(meshes), max_faces), device=device)
else:
grad_inputs = torch.rand((len(meshes), max_faces, D), device=device)
values_padded.backward(grad_inputs)
grad_outputs = values.grad
values_padded_torch.backward(grad_inputs)
grad_outputs_torch1 = values_torch.grad
grad_outputs_torch2 = TestPackedToPadded.padded_to_packed_python(
grad_inputs, mesh_to_faces_packed_first_idx, values.size(0), device=device
)
self.assertClose(grad_outputs, grad_outputs_torch1)
self.assertClose(grad_outputs, grad_outputs_torch2)
def test_packed_to_padded_flat_cpu(self):
self._test_packed_to_padded_helper(0, "cpu")
def test_packed_to_padded_D1_cpu(self):
self._test_packed_to_padded_helper(1, "cpu")
def test_packed_to_padded_D16_cpu(self):
self._test_packed_to_padded_helper(16, "cpu")
def test_packed_to_padded_flat_cuda(self):
device = get_random_cuda_device()
self._test_packed_to_padded_helper(0, device)
def test_packed_to_padded_D1_cuda(self):
device = get_random_cuda_device()
self._test_packed_to_padded_helper(1, device)
def test_packed_to_padded_D16_cuda(self):
device = get_random_cuda_device()
self._test_packed_to_padded_helper(16, device)
def _test_padded_to_packed_helper(self, D, device):
"""
Check the results from packed_to_padded and PyTorch implementations
are the same.
"""
meshes = self.init_meshes(16, 100, 300, device=device)
mesh_to_faces_packed_first_idx = meshes.mesh_to_faces_packed_first_idx()
num_faces_per_mesh = meshes.num_faces_per_mesh()
max_faces = num_faces_per_mesh.max().item()
if D == 0:
values = torch.rand((len(meshes), max_faces), device=device)
else:
values = torch.rand((len(meshes), max_faces, D), device=device)
for i, num in enumerate(num_faces_per_mesh):
values[i, num:] = 0
values.requires_grad = True
values_torch = values.detach().clone()
values_torch.requires_grad = True
values_packed = padded_to_packed(
values, mesh_to_faces_packed_first_idx, num_faces_per_mesh.sum().item()
)
values_packed_torch = TestPackedToPadded.padded_to_packed_python(
values_torch,
mesh_to_faces_packed_first_idx,
num_faces_per_mesh.sum().item(),
device,
)
# check forward
self.assertClose(values_packed, values_packed_torch)
# check backward
if D == 0:
grad_inputs = torch.rand((num_faces_per_mesh.sum().item()), device=device)
else:
grad_inputs = torch.rand(
(num_faces_per_mesh.sum().item(), D), device=device
)
values_packed.backward(grad_inputs)
grad_outputs = values.grad
values_packed_torch.backward(grad_inputs)
grad_outputs_torch1 = values_torch.grad
grad_outputs_torch2 = TestPackedToPadded.packed_to_padded_python(
grad_inputs, mesh_to_faces_packed_first_idx, values.size(1), device=device
)
self.assertClose(grad_outputs, grad_outputs_torch1)
self.assertClose(grad_outputs, grad_outputs_torch2)
def test_padded_to_packed_flat_cpu(self):
self._test_padded_to_packed_helper(0, "cpu")
def test_padded_to_packed_D1_cpu(self):
self._test_padded_to_packed_helper(1, "cpu")
def test_padded_to_packed_D16_cpu(self):
self._test_padded_to_packed_helper(16, "cpu")
def test_padded_to_packed_flat_cuda(self):
device = get_random_cuda_device()
self._test_padded_to_packed_helper(0, device)
def test_padded_to_packed_D1_cuda(self):
device = get_random_cuda_device()
self._test_padded_to_packed_helper(1, device)
def test_padded_to_packed_D16_cuda(self):
device = get_random_cuda_device()
self._test_padded_to_packed_helper(16, device)
def test_invalid_inputs_shapes(self, device="cuda:0"):
with self.assertRaisesRegex(ValueError, "input can only be 2-dimensional."):
values = torch.rand((100, 50, 2), device=device)
first_idxs = torch.tensor([0, 80], dtype=torch.int64, device=device)
packed_to_padded(values, first_idxs, 100)
with self.assertRaisesRegex(ValueError, "input can only be 3-dimensional."):
values = torch.rand((100,), device=device)
first_idxs = torch.tensor([0, 80], dtype=torch.int64, device=device)
padded_to_packed(values, first_idxs, 20)
with self.assertRaisesRegex(ValueError, "input can only be 3-dimensional."):
values = torch.rand((100, 50, 2, 2), device=device)
first_idxs = torch.tensor([0, 80], dtype=torch.int64, device=device)
padded_to_packed(values, first_idxs, 20)
@staticmethod
def packed_to_padded_with_init(
num_meshes: int, num_verts: int, num_faces: int, num_d: int, device: str = "cpu"
):
meshes = TestPackedToPadded.init_meshes(
num_meshes, num_verts, num_faces, device
)
faces = meshes.faces_packed()
mesh_to_faces_packed_first_idx = meshes.mesh_to_faces_packed_first_idx()
max_faces = meshes.num_faces_per_mesh().max().item()
if num_d == 0:
values = torch.rand((faces.shape[0],), device=meshes.device)
else:
values = torch.rand((faces.shape[0], num_d), device=meshes.device)
torch.cuda.synchronize()
def out():
packed_to_padded(values, mesh_to_faces_packed_first_idx, max_faces)
torch.cuda.synchronize()
return out
@staticmethod
def packed_to_padded_with_init_torch(
num_meshes: int, num_verts: int, num_faces: int, num_d: int, device: str = "cpu"
):
meshes = TestPackedToPadded.init_meshes(
num_meshes, num_verts, num_faces, device
)
faces = meshes.faces_packed()
mesh_to_faces_packed_first_idx = meshes.mesh_to_faces_packed_first_idx()
max_faces = meshes.num_faces_per_mesh().max().item()
if num_d == 0:
values = torch.rand((faces.shape[0],), device=meshes.device)
else:
values = torch.rand((faces.shape[0], num_d), device=meshes.device)
torch.cuda.synchronize()
def out():
TestPackedToPadded.packed_to_padded_python(
values, mesh_to_faces_packed_first_idx, max_faces, device
)
torch.cuda.synchronize()
return out