mirror of
https://github.com/facebookresearch/pytorch3d.git
synced 2025-08-02 03:42:50 +08:00
Summary: Applies new import merging and sorting from µsort v1.0. When merging imports, µsort will make a best-effort to move associated comments to match merged elements, but there are known limitations due to the diynamic nature of Python and developer tooling. These changes should not produce any dangerous runtime changes, but may require touch-ups to satisfy linters and other tooling. Note that µsort uses case-insensitive, lexicographical sorting, which results in a different ordering compared to isort. This provides a more consistent sorting order, matching the case-insensitive order used when sorting import statements by module name, and ensures that "frog", "FROG", and "Frog" always sort next to each other. For details on µsort's sorting and merging semantics, see the user guide: https://usort.readthedocs.io/en/stable/guide.html#sorting Reviewed By: bottler Differential Revision: D35553814 fbshipit-source-id: be49bdb6a4c25264ff8d4db3a601f18736d17be1
197 lines
6.1 KiB
Python
197 lines
6.1 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the BSD-style license found in the
|
|
# LICENSE file in the root directory of this source tree.
|
|
|
|
import unittest
|
|
from math import radians
|
|
|
|
import numpy as np
|
|
import torch
|
|
from common_testing import get_pytorch3d_dir, get_tests_dir, TestCaseMixin
|
|
from PIL import Image
|
|
from pytorch3d.io import IO
|
|
from pytorch3d.io.experimental_gltf_io import MeshGlbFormat
|
|
from pytorch3d.renderer import (
|
|
AmbientLights,
|
|
BlendParams,
|
|
FoVPerspectiveCameras,
|
|
look_at_view_transform,
|
|
PointLights,
|
|
RasterizationSettings,
|
|
rotate_on_spot,
|
|
)
|
|
from pytorch3d.renderer.mesh import (
|
|
HardPhongShader,
|
|
MeshRasterizer,
|
|
MeshRenderer,
|
|
TexturesVertex,
|
|
)
|
|
from pytorch3d.structures import Meshes
|
|
from pytorch3d.transforms import axis_angle_to_matrix
|
|
from pytorch3d.vis.texture_vis import texturesuv_image_PIL
|
|
|
|
|
|
DATA_DIR = get_tests_dir() / "data"
|
|
TUTORIAL_DATA_DIR = get_pytorch3d_dir() / "docs/tutorials/data"
|
|
DEBUG = False
|
|
|
|
|
|
def _load(path, **kwargs) -> Meshes:
|
|
io = IO()
|
|
io.register_meshes_format(MeshGlbFormat())
|
|
return io.load_mesh(path, **kwargs)
|
|
|
|
|
|
def _render(
|
|
mesh: Meshes,
|
|
name: str,
|
|
dist: float = 3.0,
|
|
elev: float = 10.0,
|
|
azim: float = 0,
|
|
image_size: int = 256,
|
|
pan=None,
|
|
RT=None,
|
|
use_ambient=False,
|
|
):
|
|
device = mesh.device
|
|
if RT is not None:
|
|
R, T = RT
|
|
else:
|
|
R, T = look_at_view_transform(dist, elev, azim)
|
|
if pan is not None:
|
|
R, T = rotate_on_spot(R, T, pan)
|
|
cameras = FoVPerspectiveCameras(device=device, R=R, T=T)
|
|
|
|
raster_settings = RasterizationSettings(
|
|
image_size=image_size, blur_radius=0.0, faces_per_pixel=1
|
|
)
|
|
|
|
# Init shader settings
|
|
if use_ambient:
|
|
lights = AmbientLights(device=device)
|
|
else:
|
|
lights = PointLights(device=device)
|
|
lights.location = torch.tensor([0.0, 0.0, 2.0], device=device)[None]
|
|
|
|
blend_params = BlendParams(
|
|
sigma=1e-1,
|
|
gamma=1e-4,
|
|
background_color=torch.tensor([1.0, 1.0, 1.0], device=device),
|
|
)
|
|
# Init renderer
|
|
renderer = MeshRenderer(
|
|
rasterizer=MeshRasterizer(cameras=cameras, raster_settings=raster_settings),
|
|
shader=HardPhongShader(
|
|
device=device, lights=lights, cameras=cameras, blend_params=blend_params
|
|
),
|
|
)
|
|
|
|
output = renderer(mesh)
|
|
|
|
image = (output[0, ..., :3].cpu().numpy() * 255).astype(np.uint8)
|
|
|
|
if DEBUG:
|
|
Image.fromarray(image).save(DATA_DIR / f"glb_{name}_.png")
|
|
|
|
return image
|
|
|
|
|
|
class TestMeshGltfIO(TestCaseMixin, unittest.TestCase):
|
|
def test_load_apartment(self):
|
|
"""
|
|
This is the example habitat example scene from inside
|
|
http://dl.fbaipublicfiles.com/habitat/habitat-test-scenes.zip
|
|
|
|
The scene is "already lit", i.e. the textures reflect the lighting
|
|
already, so we want to render them with full ambient light.
|
|
"""
|
|
self.skipTest("Data not available")
|
|
|
|
glb = DATA_DIR / "apartment_1.glb"
|
|
self.assertTrue(glb.is_file())
|
|
device = torch.device("cuda:0")
|
|
mesh = _load(glb, device=device)
|
|
|
|
if DEBUG:
|
|
texturesuv_image_PIL(mesh.textures).save(DATA_DIR / "out_apartment.png")
|
|
|
|
for i in range(19):
|
|
# random locations in the apartment
|
|
eye = ((np.random.uniform(-6, 0.5), np.random.uniform(-8, 2), 0),)
|
|
at = ((np.random.uniform(-6, 0.5), np.random.uniform(-8, 2), 0),)
|
|
up = ((0, 0, -1),)
|
|
RT = look_at_view_transform(eye=eye, at=at, up=up)
|
|
_render(mesh, f"apartment_eau{i}", RT=RT, use_ambient=True)
|
|
|
|
for i in range(12):
|
|
# panning around the inner room from one location
|
|
pan = axis_angle_to_matrix(torch.FloatTensor([0, radians(30 * i), 0]))
|
|
_render(mesh, f"apartment{i}", 1.0, -90, pan, use_ambient=True)
|
|
|
|
def test_load_cow(self):
|
|
"""
|
|
Load the cow as converted to a single mesh in a glb file.
|
|
"""
|
|
glb = DATA_DIR / "cow.glb"
|
|
self.assertTrue(glb.is_file())
|
|
device = torch.device("cuda:0")
|
|
mesh = _load(glb, device=device)
|
|
self.assertEqual(mesh.device, device)
|
|
|
|
self.assertEqual(mesh.faces_packed().shape, (5856, 3))
|
|
self.assertEqual(mesh.verts_packed().shape, (3225, 3))
|
|
mesh_obj = _load(TUTORIAL_DATA_DIR / "cow_mesh/cow.obj")
|
|
self.assertClose(
|
|
mesh_obj.get_bounding_boxes().cpu(), mesh_obj.get_bounding_boxes()
|
|
)
|
|
|
|
self.assertClose(
|
|
mesh.textures.verts_uvs_padded().cpu(), mesh_obj.textures.verts_uvs_padded()
|
|
)
|
|
|
|
self.assertClose(
|
|
mesh.textures.faces_uvs_padded().cpu(), mesh_obj.textures.faces_uvs_padded()
|
|
)
|
|
|
|
self.assertClose(
|
|
mesh.textures.maps_padded().cpu(), mesh_obj.textures.maps_padded()
|
|
)
|
|
|
|
if DEBUG:
|
|
texturesuv_image_PIL(mesh.textures).save(DATA_DIR / "out_cow.png")
|
|
|
|
image = _render(mesh, "cow", azim=4)
|
|
with Image.open(DATA_DIR / "glb_cow.png") as f:
|
|
expected = np.array(f)
|
|
|
|
self.assertClose(image, expected)
|
|
|
|
def test_load_cow_no_texture(self):
|
|
"""
|
|
Load the cow as converted to a single mesh in a glb file.
|
|
"""
|
|
glb = DATA_DIR / "cow.glb"
|
|
self.assertTrue(glb.is_file())
|
|
device = torch.device("cuda:0")
|
|
mesh = _load(glb, device=device, include_textures=False)
|
|
self.assertEqual(len(mesh), 1)
|
|
self.assertIsNone(mesh.textures)
|
|
|
|
self.assertEqual(mesh.faces_packed().shape, (5856, 3))
|
|
self.assertEqual(mesh.verts_packed().shape, (3225, 3))
|
|
mesh_obj = _load(TUTORIAL_DATA_DIR / "cow_mesh/cow.obj")
|
|
self.assertClose(
|
|
mesh_obj.get_bounding_boxes().cpu(), mesh_obj.get_bounding_boxes()
|
|
)
|
|
|
|
mesh.textures = TexturesVertex(0.5 * torch.ones_like(mesh.verts_padded()))
|
|
|
|
image = _render(mesh, "cow_gray")
|
|
|
|
with Image.open(DATA_DIR / "glb_cow_gray.png") as f:
|
|
expected = np.array(f)
|
|
|
|
self.assertClose(image, expected)
|