pytorch3d/tests/test_graph_conv.py
Tim Hatch 34bbb3ad32 apply import merging for fbcode/vision/fair (2 of 2)
Summary:
Applies new import merging and sorting from µsort v1.0.

When merging imports, µsort will make a best-effort to move associated
comments to match merged elements, but there are known limitations due to
the diynamic nature of Python and developer tooling. These changes should
not produce any dangerous runtime changes, but may require touch-ups to
satisfy linters and other tooling.

Note that µsort uses case-insensitive, lexicographical sorting, which
results in a different ordering compared to isort. This provides a more
consistent sorting order, matching the case-insensitive order used when
sorting import statements by module name, and ensures that "frog", "FROG",
and "Frog" always sort next to each other.

For details on µsort's sorting and merging semantics, see the user guide:
https://usort.readthedocs.io/en/stable/guide.html#sorting

Reviewed By: bottler

Differential Revision: D35553814

fbshipit-source-id: be49bdb6a4c25264ff8d4db3a601f18736d17be1
2022-04-13 06:51:33 -07:00

204 lines
7.2 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import unittest
import torch
import torch.nn as nn
from common_testing import get_random_cuda_device, TestCaseMixin
from pytorch3d import _C
from pytorch3d.ops.graph_conv import gather_scatter, gather_scatter_python, GraphConv
from pytorch3d.structures.meshes import Meshes
from pytorch3d.utils import ico_sphere
class TestGraphConv(TestCaseMixin, unittest.TestCase):
def test_undirected(self):
dtype = torch.float32
device = get_random_cuda_device()
verts = torch.tensor(
[[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype=dtype, device=device
)
edges = torch.tensor([[0, 1], [0, 2]], device=device)
w0 = torch.tensor([[1, 1, 1]], dtype=dtype, device=device)
w1 = torch.tensor([[-1, -1, -1]], dtype=dtype, device=device)
expected_y = torch.tensor(
[
[1 + 2 + 3 - 4 - 5 - 6 - 7 - 8 - 9],
[4 + 5 + 6 - 1 - 2 - 3],
[7 + 8 + 9 - 1 - 2 - 3],
],
dtype=dtype,
device=device,
)
conv = GraphConv(3, 1, directed=False).to(device)
conv.w0.weight.data.copy_(w0)
conv.w0.bias.data.zero_()
conv.w1.weight.data.copy_(w1)
conv.w1.bias.data.zero_()
y = conv(verts, edges)
self.assertClose(y, expected_y)
def test_no_edges(self):
dtype = torch.float32
verts = torch.tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype=dtype)
edges = torch.zeros(0, 2, dtype=torch.int64)
w0 = torch.tensor([[1, -1, -2]], dtype=dtype)
expected_y = torch.tensor(
[[1 - 2 - 2 * 3], [4 - 5 - 2 * 6], [7 - 8 - 2 * 9]], dtype=dtype
)
conv = GraphConv(3, 1).to(dtype)
conv.w0.weight.data.copy_(w0)
conv.w0.bias.data.zero_()
y = conv(verts, edges)
self.assertClose(y, expected_y)
def test_no_verts_and_edges(self):
dtype = torch.float32
verts = torch.tensor([], dtype=dtype, requires_grad=True)
edges = torch.tensor([], dtype=dtype)
w0 = torch.tensor([[1, -1, -2]], dtype=dtype)
conv = GraphConv(3, 1).to(dtype)
conv.w0.weight.data.copy_(w0)
conv.w0.bias.data.zero_()
y = conv(verts, edges)
self.assertClose(y, torch.zeros((0, 1)))
self.assertTrue(y.requires_grad)
conv2 = GraphConv(3, 2).to(dtype)
conv2.w0.weight.data.copy_(w0.repeat(2, 1))
conv2.w0.bias.data.zero_()
y = conv2(verts, edges)
self.assertClose(y, torch.zeros((0, 2)))
self.assertTrue(y.requires_grad)
def test_directed(self):
dtype = torch.float32
verts = torch.tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype=dtype)
edges = torch.tensor([[0, 1], [0, 2]])
w0 = torch.tensor([[1, 1, 1]], dtype=dtype)
w1 = torch.tensor([[-1, -1, -1]], dtype=dtype)
expected_y = torch.tensor(
[[1 + 2 + 3 - 4 - 5 - 6 - 7 - 8 - 9], [4 + 5 + 6], [7 + 8 + 9]], dtype=dtype
)
conv = GraphConv(3, 1, directed=True).to(dtype)
conv.w0.weight.data.copy_(w0)
conv.w0.bias.data.zero_()
conv.w1.weight.data.copy_(w1)
conv.w1.bias.data.zero_()
y = conv(verts, edges)
self.assertClose(y, expected_y)
def test_backward(self):
device = get_random_cuda_device()
mesh = ico_sphere()
verts = mesh.verts_packed()
edges = mesh.edges_packed()
verts_cpu = verts.clone()
edges_cpu = edges.clone()
verts_cuda = verts.clone().to(device)
edges_cuda = edges.clone().to(device)
verts.requires_grad = True
verts_cpu.requires_grad = True
verts_cuda.requires_grad = True
neighbor_sums_cuda = gather_scatter(verts_cuda, edges_cuda, False)
neighbor_sums_cpu = gather_scatter(verts_cpu, edges_cpu, False)
neighbor_sums = gather_scatter_python(verts, edges, False)
randoms = torch.rand_like(neighbor_sums)
(neighbor_sums_cuda * randoms.to(device)).sum().backward()
(neighbor_sums_cpu * randoms).sum().backward()
(neighbor_sums * randoms).sum().backward()
self.assertClose(verts.grad, verts_cuda.grad.cpu())
self.assertClose(verts.grad, verts_cpu.grad)
def test_repr(self):
conv = GraphConv(32, 64, directed=True)
self.assertEqual(repr(conv), "GraphConv(32 -> 64, directed=True)")
def test_cpu_cuda_tensor_error(self):
device = get_random_cuda_device()
verts = torch.tensor(
[[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype=torch.float32, device=device
)
edges = torch.tensor([[0, 1], [0, 2]])
conv = GraphConv(3, 1, directed=True).to(torch.float32)
with self.assertRaises(Exception) as err:
conv(verts, edges)
self.assertTrue("tensors must be on the same device." in str(err.exception))
def test_gather_scatter(self):
"""
Check gather_scatter cuda and python versions give the same results.
Check that gather_scatter cuda version throws an error if cpu tensors
are given as input.
"""
device = get_random_cuda_device()
mesh = ico_sphere()
verts = mesh.verts_packed()
edges = mesh.edges_packed()
w0 = nn.Linear(3, 1)
input = w0(verts)
# undirected
output_python = gather_scatter_python(input, edges, False)
output_cuda = _C.gather_scatter(
input.to(device=device), edges.to(device=device), False, False
)
self.assertClose(output_cuda.cpu(), output_python)
output_cpu = _C.gather_scatter(input.cpu(), edges.cpu(), False, False)
self.assertClose(output_cpu, output_python)
# directed
output_python = gather_scatter_python(input, edges, True)
output_cuda = _C.gather_scatter(
input.to(device=device), edges.to(device=device), True, False
)
self.assertClose(output_cuda.cpu(), output_python)
output_cpu = _C.gather_scatter(input.cpu(), edges.cpu(), True, False)
self.assertClose(output_cpu, output_python)
@staticmethod
def graph_conv_forward_backward(
gconv_dim,
num_meshes,
num_verts,
num_faces,
directed: bool,
backend: str = "cuda",
):
device = torch.device("cuda") if backend == "cuda" else "cpu"
verts_list = torch.tensor(num_verts * [[0.11, 0.22, 0.33]], device=device).view(
-1, 3
)
faces_list = torch.tensor(num_faces * [[1, 2, 3]], device=device).view(-1, 3)
meshes = Meshes(num_meshes * [verts_list], num_meshes * [faces_list])
gconv = GraphConv(gconv_dim, gconv_dim, directed=directed)
gconv.to(device)
edges = meshes.edges_packed()
total_verts = meshes.verts_packed().shape[0]
# Features.
x = torch.randn(total_verts, gconv_dim, device=device, requires_grad=True)
torch.cuda.synchronize()
def run_graph_conv():
y1 = gconv(x, edges)
y1.sum().backward()
torch.cuda.synchronize()
return run_graph_conv