pytorch3d/tests/test_face_areas_normals.py
Tim Hatch 34bbb3ad32 apply import merging for fbcode/vision/fair (2 of 2)
Summary:
Applies new import merging and sorting from µsort v1.0.

When merging imports, µsort will make a best-effort to move associated
comments to match merged elements, but there are known limitations due to
the diynamic nature of Python and developer tooling. These changes should
not produce any dangerous runtime changes, but may require touch-ups to
satisfy linters and other tooling.

Note that µsort uses case-insensitive, lexicographical sorting, which
results in a different ordering compared to isort. This provides a more
consistent sorting order, matching the case-insensitive order used when
sorting import statements by module name, and ensures that "frog", "FROG",
and "Frog" always sort next to each other.

For details on µsort's sorting and merging semantics, see the user guide:
https://usort.readthedocs.io/en/stable/guide.html#sorting

Reviewed By: bottler

Differential Revision: D35553814

fbshipit-source-id: be49bdb6a4c25264ff8d4db3a601f18736d17be1
2022-04-13 06:51:33 -07:00

144 lines
5.1 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import unittest
import torch
from common_testing import get_random_cuda_device, TestCaseMixin
from pytorch3d.ops import mesh_face_areas_normals
from pytorch3d.structures.meshes import Meshes
class TestFaceAreasNormals(TestCaseMixin, unittest.TestCase):
def setUp(self) -> None:
super().setUp()
torch.manual_seed(1)
@staticmethod
def init_meshes(
num_meshes: int = 10,
num_verts: int = 1000,
num_faces: int = 3000,
device: str = "cpu",
):
device = torch.device(device)
verts_list = []
faces_list = []
for _ in range(num_meshes):
verts = torch.rand(
(num_verts, 3), dtype=torch.float32, device=device, requires_grad=True
)
faces = torch.randint(
num_verts, size=(num_faces, 3), dtype=torch.int64, device=device
)
verts_list.append(verts)
faces_list.append(faces)
meshes = Meshes(verts_list, faces_list)
return meshes
@staticmethod
def face_areas_normals_python(verts, faces):
"""
Pytorch implementation for face areas & normals.
"""
# TODO(gkioxari) Change cast to floats once we add support for doubles.
verts = verts.float()
vertices_faces = verts[faces] # (F, 3, 3)
# vector pointing from v0 to v1
v01 = vertices_faces[:, 1] - vertices_faces[:, 0]
# vector pointing from v0 to v2
v02 = vertices_faces[:, 2] - vertices_faces[:, 0]
normals = torch.cross(v01, v02, dim=1) # (F, 3)
face_areas = normals.norm(dim=-1) / 2
face_normals = torch.nn.functional.normalize(normals, p=2, dim=1, eps=1e-6)
return face_areas, face_normals
def _test_face_areas_normals_helper(self, device, dtype=torch.float32):
"""
Check the results from face_areas cuda/cpp and PyTorch implementation are
the same.
"""
meshes = self.init_meshes(10, 200, 400, device=device)
# make them leaf nodes
verts = meshes.verts_packed().detach().clone().to(dtype)
verts.requires_grad = True
faces = meshes.faces_packed().detach().clone()
# forward
areas, normals = mesh_face_areas_normals(verts, faces)
verts_torch = verts.detach().clone().to(dtype)
verts_torch.requires_grad = True
faces_torch = faces.detach().clone()
(areas_torch, normals_torch) = TestFaceAreasNormals.face_areas_normals_python(
verts_torch, faces_torch
)
self.assertClose(areas_torch, areas, atol=1e-7)
# normals get normalized by area thus sensitivity increases as areas
# in our tests can be arbitrarily small. Thus we compare normals after
# multiplying with areas
unnormals = normals * areas.view(-1, 1)
unnormals_torch = normals_torch * areas_torch.view(-1, 1)
self.assertClose(unnormals_torch, unnormals, atol=1e-6)
# backward
grad_areas = torch.rand(areas.shape, device=device, dtype=dtype)
grad_normals = torch.rand(normals.shape, device=device, dtype=dtype)
areas.backward((grad_areas, grad_normals))
grad_verts = verts.grad
areas_torch.backward((grad_areas, grad_normals))
grad_verts_torch = verts_torch.grad
self.assertClose(grad_verts_torch, grad_verts, atol=1e-6)
def test_face_areas_normals_cpu(self):
self._test_face_areas_normals_helper("cpu")
def test_face_areas_normals_cuda(self):
device = get_random_cuda_device()
self._test_face_areas_normals_helper(device)
def test_nonfloats_cpu(self):
self._test_face_areas_normals_helper("cpu", dtype=torch.double)
def test_nonfloats_cuda(self):
device = get_random_cuda_device()
self._test_face_areas_normals_helper(device, dtype=torch.double)
@staticmethod
def face_areas_normals_with_init(
num_meshes: int, num_verts: int, num_faces: int, device: str = "cpu"
):
meshes = TestFaceAreasNormals.init_meshes(
num_meshes, num_verts, num_faces, device
)
verts = meshes.verts_packed()
faces = meshes.faces_packed()
torch.cuda.synchronize()
def face_areas_normals():
mesh_face_areas_normals(verts, faces)
torch.cuda.synchronize()
return face_areas_normals
@staticmethod
def face_areas_normals_with_init_torch(
num_meshes: int, num_verts: int, num_faces: int, device: str = "cpu"
):
meshes = TestFaceAreasNormals.init_meshes(
num_meshes, num_verts, num_faces, device
)
verts = meshes.verts_packed()
faces = meshes.faces_packed()
torch.cuda.synchronize()
def face_areas_normals():
TestFaceAreasNormals.face_areas_normals_python(verts, faces)
torch.cuda.synchronize()
return face_areas_normals