mirror of
https://github.com/facebookresearch/pytorch3d.git
synced 2025-08-02 03:42:50 +08:00
Summary: Applies new import merging and sorting from µsort v1.0. When merging imports, µsort will make a best-effort to move associated comments to match merged elements, but there are known limitations due to the diynamic nature of Python and developer tooling. These changes should not produce any dangerous runtime changes, but may require touch-ups to satisfy linters and other tooling. Note that µsort uses case-insensitive, lexicographical sorting, which results in a different ordering compared to isort. This provides a more consistent sorting order, matching the case-insensitive order used when sorting import statements by module name, and ensures that "frog", "FROG", and "Frog" always sort next to each other. For details on µsort's sorting and merging semantics, see the user guide: https://usort.readthedocs.io/en/stable/guide.html#sorting Reviewed By: bottler Differential Revision: D35553814 fbshipit-source-id: be49bdb6a4c25264ff8d4db3a601f18736d17be1
144 lines
5.1 KiB
Python
144 lines
5.1 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the BSD-style license found in the
|
|
# LICENSE file in the root directory of this source tree.
|
|
|
|
|
|
import unittest
|
|
|
|
import torch
|
|
from common_testing import get_random_cuda_device, TestCaseMixin
|
|
from pytorch3d.ops import mesh_face_areas_normals
|
|
from pytorch3d.structures.meshes import Meshes
|
|
|
|
|
|
class TestFaceAreasNormals(TestCaseMixin, unittest.TestCase):
|
|
def setUp(self) -> None:
|
|
super().setUp()
|
|
torch.manual_seed(1)
|
|
|
|
@staticmethod
|
|
def init_meshes(
|
|
num_meshes: int = 10,
|
|
num_verts: int = 1000,
|
|
num_faces: int = 3000,
|
|
device: str = "cpu",
|
|
):
|
|
device = torch.device(device)
|
|
verts_list = []
|
|
faces_list = []
|
|
for _ in range(num_meshes):
|
|
verts = torch.rand(
|
|
(num_verts, 3), dtype=torch.float32, device=device, requires_grad=True
|
|
)
|
|
faces = torch.randint(
|
|
num_verts, size=(num_faces, 3), dtype=torch.int64, device=device
|
|
)
|
|
verts_list.append(verts)
|
|
faces_list.append(faces)
|
|
meshes = Meshes(verts_list, faces_list)
|
|
|
|
return meshes
|
|
|
|
@staticmethod
|
|
def face_areas_normals_python(verts, faces):
|
|
"""
|
|
Pytorch implementation for face areas & normals.
|
|
"""
|
|
# TODO(gkioxari) Change cast to floats once we add support for doubles.
|
|
verts = verts.float()
|
|
vertices_faces = verts[faces] # (F, 3, 3)
|
|
# vector pointing from v0 to v1
|
|
v01 = vertices_faces[:, 1] - vertices_faces[:, 0]
|
|
# vector pointing from v0 to v2
|
|
v02 = vertices_faces[:, 2] - vertices_faces[:, 0]
|
|
normals = torch.cross(v01, v02, dim=1) # (F, 3)
|
|
face_areas = normals.norm(dim=-1) / 2
|
|
face_normals = torch.nn.functional.normalize(normals, p=2, dim=1, eps=1e-6)
|
|
return face_areas, face_normals
|
|
|
|
def _test_face_areas_normals_helper(self, device, dtype=torch.float32):
|
|
"""
|
|
Check the results from face_areas cuda/cpp and PyTorch implementation are
|
|
the same.
|
|
"""
|
|
meshes = self.init_meshes(10, 200, 400, device=device)
|
|
# make them leaf nodes
|
|
verts = meshes.verts_packed().detach().clone().to(dtype)
|
|
verts.requires_grad = True
|
|
faces = meshes.faces_packed().detach().clone()
|
|
|
|
# forward
|
|
areas, normals = mesh_face_areas_normals(verts, faces)
|
|
verts_torch = verts.detach().clone().to(dtype)
|
|
verts_torch.requires_grad = True
|
|
faces_torch = faces.detach().clone()
|
|
(areas_torch, normals_torch) = TestFaceAreasNormals.face_areas_normals_python(
|
|
verts_torch, faces_torch
|
|
)
|
|
self.assertClose(areas_torch, areas, atol=1e-7)
|
|
# normals get normalized by area thus sensitivity increases as areas
|
|
# in our tests can be arbitrarily small. Thus we compare normals after
|
|
# multiplying with areas
|
|
unnormals = normals * areas.view(-1, 1)
|
|
unnormals_torch = normals_torch * areas_torch.view(-1, 1)
|
|
self.assertClose(unnormals_torch, unnormals, atol=1e-6)
|
|
|
|
# backward
|
|
grad_areas = torch.rand(areas.shape, device=device, dtype=dtype)
|
|
grad_normals = torch.rand(normals.shape, device=device, dtype=dtype)
|
|
areas.backward((grad_areas, grad_normals))
|
|
grad_verts = verts.grad
|
|
areas_torch.backward((grad_areas, grad_normals))
|
|
grad_verts_torch = verts_torch.grad
|
|
self.assertClose(grad_verts_torch, grad_verts, atol=1e-6)
|
|
|
|
def test_face_areas_normals_cpu(self):
|
|
self._test_face_areas_normals_helper("cpu")
|
|
|
|
def test_face_areas_normals_cuda(self):
|
|
device = get_random_cuda_device()
|
|
self._test_face_areas_normals_helper(device)
|
|
|
|
def test_nonfloats_cpu(self):
|
|
self._test_face_areas_normals_helper("cpu", dtype=torch.double)
|
|
|
|
def test_nonfloats_cuda(self):
|
|
device = get_random_cuda_device()
|
|
self._test_face_areas_normals_helper(device, dtype=torch.double)
|
|
|
|
@staticmethod
|
|
def face_areas_normals_with_init(
|
|
num_meshes: int, num_verts: int, num_faces: int, device: str = "cpu"
|
|
):
|
|
meshes = TestFaceAreasNormals.init_meshes(
|
|
num_meshes, num_verts, num_faces, device
|
|
)
|
|
verts = meshes.verts_packed()
|
|
faces = meshes.faces_packed()
|
|
torch.cuda.synchronize()
|
|
|
|
def face_areas_normals():
|
|
mesh_face_areas_normals(verts, faces)
|
|
torch.cuda.synchronize()
|
|
|
|
return face_areas_normals
|
|
|
|
@staticmethod
|
|
def face_areas_normals_with_init_torch(
|
|
num_meshes: int, num_verts: int, num_faces: int, device: str = "cpu"
|
|
):
|
|
meshes = TestFaceAreasNormals.init_meshes(
|
|
num_meshes, num_verts, num_faces, device
|
|
)
|
|
verts = meshes.verts_packed()
|
|
faces = meshes.faces_packed()
|
|
torch.cuda.synchronize()
|
|
|
|
def face_areas_normals():
|
|
TestFaceAreasNormals.face_areas_normals_python(verts, faces)
|
|
torch.cuda.synchronize()
|
|
|
|
return face_areas_normals
|