pytorch3d/tests/test_compositing.py
Tim Hatch 34bbb3ad32 apply import merging for fbcode/vision/fair (2 of 2)
Summary:
Applies new import merging and sorting from µsort v1.0.

When merging imports, µsort will make a best-effort to move associated
comments to match merged elements, but there are known limitations due to
the diynamic nature of Python and developer tooling. These changes should
not produce any dangerous runtime changes, but may require touch-ups to
satisfy linters and other tooling.

Note that µsort uses case-insensitive, lexicographical sorting, which
results in a different ordering compared to isort. This provides a more
consistent sorting order, matching the case-insensitive order used when
sorting import statements by module name, and ensures that "frog", "FROG",
and "Frog" always sort next to each other.

For details on µsort's sorting and merging semantics, see the user guide:
https://usort.readthedocs.io/en/stable/guide.html#sorting

Reviewed By: bottler

Differential Revision: D35553814

fbshipit-source-id: be49bdb6a4c25264ff8d4db3a601f18736d17be1
2022-04-13 06:51:33 -07:00

428 lines
14 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import unittest
import torch
from common_testing import get_random_cuda_device, TestCaseMixin
from pytorch3d.renderer.compositing import (
alpha_composite,
norm_weighted_sum,
weighted_sum,
)
class TestAccumulatePoints(TestCaseMixin, unittest.TestCase):
# NAIVE PYTHON IMPLEMENTATIONS (USED FOR TESTING)
@staticmethod
def accumulate_alphacomposite_python(points_idx, alphas, features):
"""
Naive pure PyTorch implementation of alpha_composite.
Inputs / Outputs: Same as function
"""
B, K, H, W = points_idx.size()
C = features.size(0)
output = torch.zeros(B, C, H, W, dtype=alphas.dtype)
for b in range(0, B):
for c in range(0, C):
for i in range(0, W):
for j in range(0, H):
t_alpha = 1
for k in range(0, K):
n_idx = points_idx[b, k, j, i]
if n_idx < 0:
continue
alpha = alphas[b, k, j, i]
output[b, c, j, i] += features[c, n_idx] * alpha * t_alpha
t_alpha = (1 - alpha) * t_alpha
return output
@staticmethod
def accumulate_weightedsum_python(points_idx, alphas, features):
"""
Naive pure PyTorch implementation of weighted_sum rasterization.
Inputs / Outputs: Same as function
"""
B, K, H, W = points_idx.size()
C = features.size(0)
output = torch.zeros(B, C, H, W, dtype=alphas.dtype)
for b in range(0, B):
for c in range(0, C):
for i in range(0, W):
for j in range(0, H):
for k in range(0, K):
n_idx = points_idx[b, k, j, i]
if n_idx < 0:
continue
alpha = alphas[b, k, j, i]
output[b, c, j, i] += features[c, n_idx] * alpha
return output
@staticmethod
def accumulate_weightedsumnorm_python(points_idx, alphas, features):
"""
Naive pure PyTorch implementation of norm_weighted_sum.
Inputs / Outputs: Same as function
"""
B, K, H, W = points_idx.size()
C = features.size(0)
output = torch.zeros(B, C, H, W, dtype=alphas.dtype)
for b in range(0, B):
for c in range(0, C):
for i in range(0, W):
for j in range(0, H):
t_alpha = 0
for k in range(0, K):
n_idx = points_idx[b, k, j, i]
if n_idx < 0:
continue
t_alpha += alphas[b, k, j, i]
t_alpha = max(t_alpha, 1e-4)
for k in range(0, K):
n_idx = points_idx[b, k, j, i]
if n_idx < 0:
continue
alpha = alphas[b, k, j, i]
output[b, c, j, i] += features[c, n_idx] * alpha / t_alpha
return output
def test_python(self):
device = torch.device("cpu")
self._simple_alphacomposite(self.accumulate_alphacomposite_python, device)
self._simple_wsum(self.accumulate_weightedsum_python, device)
self._simple_wsumnorm(self.accumulate_weightedsumnorm_python, device)
def test_cpu(self):
device = torch.device("cpu")
self._simple_alphacomposite(alpha_composite, device)
self._simple_wsum(weighted_sum, device)
self._simple_wsumnorm(norm_weighted_sum, device)
def test_cuda(self):
device = get_random_cuda_device()
self._simple_alphacomposite(alpha_composite, device)
self._simple_wsum(weighted_sum, device)
self._simple_wsumnorm(norm_weighted_sum, device)
def test_python_vs_cpu_vs_cuda(self):
self._python_vs_cpu_vs_cuda(
self.accumulate_alphacomposite_python, alpha_composite
)
self._python_vs_cpu_vs_cuda(
self.accumulate_weightedsumnorm_python, norm_weighted_sum
)
self._python_vs_cpu_vs_cuda(self.accumulate_weightedsum_python, weighted_sum)
def _python_vs_cpu_vs_cuda(self, accumulate_func_python, accumulate_func):
torch.manual_seed(231)
device = torch.device("cpu")
W = 8
C = 3
P = 32
for d in ["cpu", get_random_cuda_device()]:
# TODO(gkioxari) add torch.float64 to types after double precision
# support is added to atomicAdd
for t in [torch.float32]:
device = torch.device(d)
# Create values
alphas = torch.rand(2, 4, W, W, dtype=t).to(device)
alphas.requires_grad = True
alphas_cpu = alphas.detach().cpu()
alphas_cpu.requires_grad = True
features = torch.randn(C, P, dtype=t).to(device)
features.requires_grad = True
features_cpu = features.detach().cpu()
features_cpu.requires_grad = True
inds = torch.randint(P + 1, size=(2, 4, W, W)).to(device) - 1
inds_cpu = inds.detach().cpu()
args_cuda = (inds, alphas, features)
args_cpu = (inds_cpu, alphas_cpu, features_cpu)
self._compare_impls(
accumulate_func_python,
accumulate_func,
args_cpu,
args_cuda,
(alphas_cpu, features_cpu),
(alphas, features),
compare_grads=True,
)
def _compare_impls(
self, fn1, fn2, args1, args2, grads1, grads2, compare_grads=False
):
res1 = fn1(*args1)
res2 = fn2(*args2)
self.assertClose(res1.cpu(), res2.cpu(), atol=1e-6)
if not compare_grads:
return
# Compare gradients
torch.manual_seed(231)
grad_res = torch.randn_like(res1)
loss1 = (res1 * grad_res).sum()
loss1.backward()
grads1 = [gradsi.grad.data.clone().cpu() for gradsi in grads1]
grad_res = grad_res.to(res2)
loss2 = (res2 * grad_res).sum()
loss2.backward()
grads2 = [gradsi.grad.data.clone().cpu() for gradsi in grads2]
for i in range(0, len(grads1)):
self.assertClose(grads1[i].cpu(), grads2[i].cpu(), atol=1e-6)
def _simple_wsum(self, accum_func, device):
# Initialise variables
features = torch.Tensor([[0.1, 0.4, 0.6, 0.9], [0.1, 0.4, 0.6, 0.9]]).to(device)
alphas = torch.Tensor(
[
[
[
[0.5, 0.5, 0.5, 0.5],
[0.5, 1.0, 1.0, 0.5],
[0.5, 1.0, 1.0, 0.5],
[0.5, 0.5, 0.5, 0.5],
],
[
[0.5, 0.5, 0.5, 0.5],
[0.5, 1.0, 1.0, 0.5],
[0.5, 1.0, 1.0, 0.5],
[0.5, 0.5, 0.5, 0.5],
],
]
]
).to(device)
points_idx = (
torch.Tensor(
[
[
# fmt: off
[
[0, 0, 0, 0], # noqa: E241, E201
[0, -1, -1, -1], # noqa: E241, E201
[0, 1, 1, 0], # noqa: E241, E201
[0, 0, 0, 0], # noqa: E241, E201
],
[
[2, 2, 2, 2], # noqa: E241, E201
[2, 3, 3, 2], # noqa: E241, E201
[2, 3, 3, 2], # noqa: E241, E201
[2, 2, -1, 2], # noqa: E241, E201
],
# fmt: on
]
]
)
.long()
.to(device)
)
result = accum_func(points_idx, alphas, features)
self.assertTrue(result.shape == (1, 2, 4, 4))
true_result = torch.Tensor(
[
[
[
[0.35, 0.35, 0.35, 0.35],
[0.35, 0.90, 0.90, 0.30],
[0.35, 1.30, 1.30, 0.35],
[0.35, 0.35, 0.05, 0.35],
],
[
[0.35, 0.35, 0.35, 0.35],
[0.35, 0.90, 0.90, 0.30],
[0.35, 1.30, 1.30, 0.35],
[0.35, 0.35, 0.05, 0.35],
],
]
]
).to(device)
self.assertClose(result.cpu(), true_result.cpu(), rtol=1e-3)
def _simple_wsumnorm(self, accum_func, device):
# Initialise variables
features = torch.Tensor([[0.1, 0.4, 0.6, 0.9], [0.1, 0.4, 0.6, 0.9]]).to(device)
alphas = torch.Tensor(
[
[
[
[0.5, 0.5, 0.5, 0.5],
[0.5, 1.0, 1.0, 0.5],
[0.5, 1.0, 1.0, 0.5],
[0.5, 0.5, 0.5, 0.5],
],
[
[0.5, 0.5, 0.5, 0.5],
[0.5, 1.0, 1.0, 0.5],
[0.5, 1.0, 1.0, 0.5],
[0.5, 0.5, 0.5, 0.5],
],
]
]
).to(device)
# fmt: off
points_idx = (
torch.Tensor(
[
[
[
[0, 0, 0, 0], # noqa: E241, E201
[0, -1, -1, -1], # noqa: E241, E201
[0, 1, 1, 0], # noqa: E241, E201
[0, 0, 0, 0], # noqa: E241, E201
],
[
[2, 2, 2, 2], # noqa: E241, E201
[2, 3, 3, 2], # noqa: E241, E201
[2, 3, 3, 2], # noqa: E241, E201
[2, 2, -1, 2], # noqa: E241, E201
],
]
]
)
.long()
.to(device)
)
# fmt: on
result = accum_func(points_idx, alphas, features)
self.assertTrue(result.shape == (1, 2, 4, 4))
true_result = torch.Tensor(
[
[
[
[0.35, 0.35, 0.35, 0.35],
[0.35, 0.90, 0.90, 0.60],
[0.35, 0.65, 0.65, 0.35],
[0.35, 0.35, 0.10, 0.35],
],
[
[0.35, 0.35, 0.35, 0.35],
[0.35, 0.90, 0.90, 0.60],
[0.35, 0.65, 0.65, 0.35],
[0.35, 0.35, 0.10, 0.35],
],
]
]
).to(device)
self.assertClose(result.cpu(), true_result.cpu(), rtol=1e-3)
def _simple_alphacomposite(self, accum_func, device):
# Initialise variables
features = torch.Tensor([[0.1, 0.4, 0.6, 0.9], [0.1, 0.4, 0.6, 0.9]]).to(device)
alphas = torch.Tensor(
[
[
[
[0.5, 0.5, 0.5, 0.5],
[0.5, 1.0, 1.0, 0.5],
[0.5, 1.0, 1.0, 0.5],
[0.5, 0.5, 0.5, 0.5],
],
[
[0.5, 0.5, 0.5, 0.5],
[0.5, 1.0, 1.0, 0.5],
[0.5, 1.0, 1.0, 0.5],
[0.5, 0.5, 0.5, 0.5],
],
]
]
).to(device)
# fmt: off
points_idx = (
torch.Tensor(
[
[
[
[0, 0, 0, 0], # noqa: E241, E201
[0, -1, -1, -1], # noqa: E241, E201
[0, 1, 1, 0], # noqa: E241, E201
[0, 0, 0, 0], # noqa: E241, E201
],
[
[2, 2, 2, 2], # noqa: E241, E201
[2, 3, 3, 2], # noqa: E241, E201
[2, 3, 3, 2], # noqa: E241, E201
[2, 2, -1, 2], # noqa: E241, E201
],
]
]
)
.long()
.to(device)
)
# fmt: on
result = accum_func(points_idx, alphas, features)
self.assertTrue(result.shape == (1, 2, 4, 4))
true_result = torch.Tensor(
[
[
[
[0.20, 0.20, 0.20, 0.20],
[0.20, 0.90, 0.90, 0.30],
[0.20, 0.40, 0.40, 0.20],
[0.20, 0.20, 0.05, 0.20],
],
[
[0.20, 0.20, 0.20, 0.20],
[0.20, 0.90, 0.90, 0.30],
[0.20, 0.40, 0.40, 0.20],
[0.20, 0.20, 0.05, 0.20],
],
]
]
).to(device)
self.assertTrue((result == true_result).all().item())