mirror of
https://github.com/facebookresearch/pytorch3d.git
synced 2025-08-02 03:42:50 +08:00
Summary: Applies new import merging and sorting from µsort v1.0. When merging imports, µsort will make a best-effort to move associated comments to match merged elements, but there are known limitations due to the diynamic nature of Python and developer tooling. These changes should not produce any dangerous runtime changes, but may require touch-ups to satisfy linters and other tooling. Note that µsort uses case-insensitive, lexicographical sorting, which results in a different ordering compared to isort. This provides a more consistent sorting order, matching the case-insensitive order used when sorting import statements by module name, and ensures that "frog", "FROG", and "Frog" always sort next to each other. For details on µsort's sorting and merging semantics, see the user guide: https://usort.readthedocs.io/en/stable/guide.html#sorting Reviewed By: bottler Differential Revision: D35553814 fbshipit-source-id: be49bdb6a4c25264ff8d4db3a601f18736d17be1
428 lines
14 KiB
Python
428 lines
14 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the BSD-style license found in the
|
|
# LICENSE file in the root directory of this source tree.
|
|
|
|
import unittest
|
|
|
|
import torch
|
|
from common_testing import get_random_cuda_device, TestCaseMixin
|
|
from pytorch3d.renderer.compositing import (
|
|
alpha_composite,
|
|
norm_weighted_sum,
|
|
weighted_sum,
|
|
)
|
|
|
|
|
|
class TestAccumulatePoints(TestCaseMixin, unittest.TestCase):
|
|
|
|
# NAIVE PYTHON IMPLEMENTATIONS (USED FOR TESTING)
|
|
@staticmethod
|
|
def accumulate_alphacomposite_python(points_idx, alphas, features):
|
|
"""
|
|
Naive pure PyTorch implementation of alpha_composite.
|
|
Inputs / Outputs: Same as function
|
|
"""
|
|
|
|
B, K, H, W = points_idx.size()
|
|
C = features.size(0)
|
|
|
|
output = torch.zeros(B, C, H, W, dtype=alphas.dtype)
|
|
|
|
for b in range(0, B):
|
|
for c in range(0, C):
|
|
for i in range(0, W):
|
|
for j in range(0, H):
|
|
t_alpha = 1
|
|
for k in range(0, K):
|
|
n_idx = points_idx[b, k, j, i]
|
|
|
|
if n_idx < 0:
|
|
continue
|
|
|
|
alpha = alphas[b, k, j, i]
|
|
output[b, c, j, i] += features[c, n_idx] * alpha * t_alpha
|
|
t_alpha = (1 - alpha) * t_alpha
|
|
|
|
return output
|
|
|
|
@staticmethod
|
|
def accumulate_weightedsum_python(points_idx, alphas, features):
|
|
"""
|
|
Naive pure PyTorch implementation of weighted_sum rasterization.
|
|
Inputs / Outputs: Same as function
|
|
"""
|
|
B, K, H, W = points_idx.size()
|
|
C = features.size(0)
|
|
|
|
output = torch.zeros(B, C, H, W, dtype=alphas.dtype)
|
|
|
|
for b in range(0, B):
|
|
for c in range(0, C):
|
|
for i in range(0, W):
|
|
for j in range(0, H):
|
|
|
|
for k in range(0, K):
|
|
n_idx = points_idx[b, k, j, i]
|
|
|
|
if n_idx < 0:
|
|
continue
|
|
|
|
alpha = alphas[b, k, j, i]
|
|
output[b, c, j, i] += features[c, n_idx] * alpha
|
|
|
|
return output
|
|
|
|
@staticmethod
|
|
def accumulate_weightedsumnorm_python(points_idx, alphas, features):
|
|
"""
|
|
Naive pure PyTorch implementation of norm_weighted_sum.
|
|
Inputs / Outputs: Same as function
|
|
"""
|
|
|
|
B, K, H, W = points_idx.size()
|
|
C = features.size(0)
|
|
|
|
output = torch.zeros(B, C, H, W, dtype=alphas.dtype)
|
|
|
|
for b in range(0, B):
|
|
for c in range(0, C):
|
|
for i in range(0, W):
|
|
for j in range(0, H):
|
|
t_alpha = 0
|
|
for k in range(0, K):
|
|
n_idx = points_idx[b, k, j, i]
|
|
|
|
if n_idx < 0:
|
|
continue
|
|
|
|
t_alpha += alphas[b, k, j, i]
|
|
|
|
t_alpha = max(t_alpha, 1e-4)
|
|
|
|
for k in range(0, K):
|
|
n_idx = points_idx[b, k, j, i]
|
|
|
|
if n_idx < 0:
|
|
continue
|
|
|
|
alpha = alphas[b, k, j, i]
|
|
output[b, c, j, i] += features[c, n_idx] * alpha / t_alpha
|
|
|
|
return output
|
|
|
|
def test_python(self):
|
|
device = torch.device("cpu")
|
|
self._simple_alphacomposite(self.accumulate_alphacomposite_python, device)
|
|
self._simple_wsum(self.accumulate_weightedsum_python, device)
|
|
self._simple_wsumnorm(self.accumulate_weightedsumnorm_python, device)
|
|
|
|
def test_cpu(self):
|
|
device = torch.device("cpu")
|
|
self._simple_alphacomposite(alpha_composite, device)
|
|
self._simple_wsum(weighted_sum, device)
|
|
self._simple_wsumnorm(norm_weighted_sum, device)
|
|
|
|
def test_cuda(self):
|
|
device = get_random_cuda_device()
|
|
self._simple_alphacomposite(alpha_composite, device)
|
|
self._simple_wsum(weighted_sum, device)
|
|
self._simple_wsumnorm(norm_weighted_sum, device)
|
|
|
|
def test_python_vs_cpu_vs_cuda(self):
|
|
self._python_vs_cpu_vs_cuda(
|
|
self.accumulate_alphacomposite_python, alpha_composite
|
|
)
|
|
self._python_vs_cpu_vs_cuda(
|
|
self.accumulate_weightedsumnorm_python, norm_weighted_sum
|
|
)
|
|
self._python_vs_cpu_vs_cuda(self.accumulate_weightedsum_python, weighted_sum)
|
|
|
|
def _python_vs_cpu_vs_cuda(self, accumulate_func_python, accumulate_func):
|
|
torch.manual_seed(231)
|
|
device = torch.device("cpu")
|
|
|
|
W = 8
|
|
C = 3
|
|
P = 32
|
|
|
|
for d in ["cpu", get_random_cuda_device()]:
|
|
# TODO(gkioxari) add torch.float64 to types after double precision
|
|
# support is added to atomicAdd
|
|
for t in [torch.float32]:
|
|
device = torch.device(d)
|
|
|
|
# Create values
|
|
alphas = torch.rand(2, 4, W, W, dtype=t).to(device)
|
|
alphas.requires_grad = True
|
|
alphas_cpu = alphas.detach().cpu()
|
|
alphas_cpu.requires_grad = True
|
|
|
|
features = torch.randn(C, P, dtype=t).to(device)
|
|
features.requires_grad = True
|
|
features_cpu = features.detach().cpu()
|
|
features_cpu.requires_grad = True
|
|
|
|
inds = torch.randint(P + 1, size=(2, 4, W, W)).to(device) - 1
|
|
inds_cpu = inds.detach().cpu()
|
|
|
|
args_cuda = (inds, alphas, features)
|
|
args_cpu = (inds_cpu, alphas_cpu, features_cpu)
|
|
|
|
self._compare_impls(
|
|
accumulate_func_python,
|
|
accumulate_func,
|
|
args_cpu,
|
|
args_cuda,
|
|
(alphas_cpu, features_cpu),
|
|
(alphas, features),
|
|
compare_grads=True,
|
|
)
|
|
|
|
def _compare_impls(
|
|
self, fn1, fn2, args1, args2, grads1, grads2, compare_grads=False
|
|
):
|
|
res1 = fn1(*args1)
|
|
res2 = fn2(*args2)
|
|
|
|
self.assertClose(res1.cpu(), res2.cpu(), atol=1e-6)
|
|
|
|
if not compare_grads:
|
|
return
|
|
|
|
# Compare gradients
|
|
torch.manual_seed(231)
|
|
grad_res = torch.randn_like(res1)
|
|
loss1 = (res1 * grad_res).sum()
|
|
loss1.backward()
|
|
|
|
grads1 = [gradsi.grad.data.clone().cpu() for gradsi in grads1]
|
|
grad_res = grad_res.to(res2)
|
|
|
|
loss2 = (res2 * grad_res).sum()
|
|
loss2.backward()
|
|
grads2 = [gradsi.grad.data.clone().cpu() for gradsi in grads2]
|
|
|
|
for i in range(0, len(grads1)):
|
|
self.assertClose(grads1[i].cpu(), grads2[i].cpu(), atol=1e-6)
|
|
|
|
def _simple_wsum(self, accum_func, device):
|
|
# Initialise variables
|
|
features = torch.Tensor([[0.1, 0.4, 0.6, 0.9], [0.1, 0.4, 0.6, 0.9]]).to(device)
|
|
|
|
alphas = torch.Tensor(
|
|
[
|
|
[
|
|
[
|
|
[0.5, 0.5, 0.5, 0.5],
|
|
[0.5, 1.0, 1.0, 0.5],
|
|
[0.5, 1.0, 1.0, 0.5],
|
|
[0.5, 0.5, 0.5, 0.5],
|
|
],
|
|
[
|
|
[0.5, 0.5, 0.5, 0.5],
|
|
[0.5, 1.0, 1.0, 0.5],
|
|
[0.5, 1.0, 1.0, 0.5],
|
|
[0.5, 0.5, 0.5, 0.5],
|
|
],
|
|
]
|
|
]
|
|
).to(device)
|
|
|
|
points_idx = (
|
|
torch.Tensor(
|
|
[
|
|
[
|
|
# fmt: off
|
|
[
|
|
[0, 0, 0, 0], # noqa: E241, E201
|
|
[0, -1, -1, -1], # noqa: E241, E201
|
|
[0, 1, 1, 0], # noqa: E241, E201
|
|
[0, 0, 0, 0], # noqa: E241, E201
|
|
],
|
|
[
|
|
[2, 2, 2, 2], # noqa: E241, E201
|
|
[2, 3, 3, 2], # noqa: E241, E201
|
|
[2, 3, 3, 2], # noqa: E241, E201
|
|
[2, 2, -1, 2], # noqa: E241, E201
|
|
],
|
|
# fmt: on
|
|
]
|
|
]
|
|
)
|
|
.long()
|
|
.to(device)
|
|
)
|
|
|
|
result = accum_func(points_idx, alphas, features)
|
|
|
|
self.assertTrue(result.shape == (1, 2, 4, 4))
|
|
|
|
true_result = torch.Tensor(
|
|
[
|
|
[
|
|
[
|
|
[0.35, 0.35, 0.35, 0.35],
|
|
[0.35, 0.90, 0.90, 0.30],
|
|
[0.35, 1.30, 1.30, 0.35],
|
|
[0.35, 0.35, 0.05, 0.35],
|
|
],
|
|
[
|
|
[0.35, 0.35, 0.35, 0.35],
|
|
[0.35, 0.90, 0.90, 0.30],
|
|
[0.35, 1.30, 1.30, 0.35],
|
|
[0.35, 0.35, 0.05, 0.35],
|
|
],
|
|
]
|
|
]
|
|
).to(device)
|
|
|
|
self.assertClose(result.cpu(), true_result.cpu(), rtol=1e-3)
|
|
|
|
def _simple_wsumnorm(self, accum_func, device):
|
|
# Initialise variables
|
|
features = torch.Tensor([[0.1, 0.4, 0.6, 0.9], [0.1, 0.4, 0.6, 0.9]]).to(device)
|
|
|
|
alphas = torch.Tensor(
|
|
[
|
|
[
|
|
[
|
|
[0.5, 0.5, 0.5, 0.5],
|
|
[0.5, 1.0, 1.0, 0.5],
|
|
[0.5, 1.0, 1.0, 0.5],
|
|
[0.5, 0.5, 0.5, 0.5],
|
|
],
|
|
[
|
|
[0.5, 0.5, 0.5, 0.5],
|
|
[0.5, 1.0, 1.0, 0.5],
|
|
[0.5, 1.0, 1.0, 0.5],
|
|
[0.5, 0.5, 0.5, 0.5],
|
|
],
|
|
]
|
|
]
|
|
).to(device)
|
|
|
|
# fmt: off
|
|
points_idx = (
|
|
torch.Tensor(
|
|
[
|
|
[
|
|
[
|
|
[0, 0, 0, 0], # noqa: E241, E201
|
|
[0, -1, -1, -1], # noqa: E241, E201
|
|
[0, 1, 1, 0], # noqa: E241, E201
|
|
[0, 0, 0, 0], # noqa: E241, E201
|
|
],
|
|
[
|
|
[2, 2, 2, 2], # noqa: E241, E201
|
|
[2, 3, 3, 2], # noqa: E241, E201
|
|
[2, 3, 3, 2], # noqa: E241, E201
|
|
[2, 2, -1, 2], # noqa: E241, E201
|
|
],
|
|
]
|
|
]
|
|
)
|
|
.long()
|
|
.to(device)
|
|
)
|
|
# fmt: on
|
|
|
|
result = accum_func(points_idx, alphas, features)
|
|
|
|
self.assertTrue(result.shape == (1, 2, 4, 4))
|
|
|
|
true_result = torch.Tensor(
|
|
[
|
|
[
|
|
[
|
|
[0.35, 0.35, 0.35, 0.35],
|
|
[0.35, 0.90, 0.90, 0.60],
|
|
[0.35, 0.65, 0.65, 0.35],
|
|
[0.35, 0.35, 0.10, 0.35],
|
|
],
|
|
[
|
|
[0.35, 0.35, 0.35, 0.35],
|
|
[0.35, 0.90, 0.90, 0.60],
|
|
[0.35, 0.65, 0.65, 0.35],
|
|
[0.35, 0.35, 0.10, 0.35],
|
|
],
|
|
]
|
|
]
|
|
).to(device)
|
|
|
|
self.assertClose(result.cpu(), true_result.cpu(), rtol=1e-3)
|
|
|
|
def _simple_alphacomposite(self, accum_func, device):
|
|
# Initialise variables
|
|
features = torch.Tensor([[0.1, 0.4, 0.6, 0.9], [0.1, 0.4, 0.6, 0.9]]).to(device)
|
|
|
|
alphas = torch.Tensor(
|
|
[
|
|
[
|
|
[
|
|
[0.5, 0.5, 0.5, 0.5],
|
|
[0.5, 1.0, 1.0, 0.5],
|
|
[0.5, 1.0, 1.0, 0.5],
|
|
[0.5, 0.5, 0.5, 0.5],
|
|
],
|
|
[
|
|
[0.5, 0.5, 0.5, 0.5],
|
|
[0.5, 1.0, 1.0, 0.5],
|
|
[0.5, 1.0, 1.0, 0.5],
|
|
[0.5, 0.5, 0.5, 0.5],
|
|
],
|
|
]
|
|
]
|
|
).to(device)
|
|
|
|
# fmt: off
|
|
points_idx = (
|
|
torch.Tensor(
|
|
[
|
|
[
|
|
[
|
|
[0, 0, 0, 0], # noqa: E241, E201
|
|
[0, -1, -1, -1], # noqa: E241, E201
|
|
[0, 1, 1, 0], # noqa: E241, E201
|
|
[0, 0, 0, 0], # noqa: E241, E201
|
|
],
|
|
[
|
|
[2, 2, 2, 2], # noqa: E241, E201
|
|
[2, 3, 3, 2], # noqa: E241, E201
|
|
[2, 3, 3, 2], # noqa: E241, E201
|
|
[2, 2, -1, 2], # noqa: E241, E201
|
|
],
|
|
]
|
|
]
|
|
)
|
|
.long()
|
|
.to(device)
|
|
)
|
|
# fmt: on
|
|
|
|
result = accum_func(points_idx, alphas, features)
|
|
|
|
self.assertTrue(result.shape == (1, 2, 4, 4))
|
|
|
|
true_result = torch.Tensor(
|
|
[
|
|
[
|
|
[
|
|
[0.20, 0.20, 0.20, 0.20],
|
|
[0.20, 0.90, 0.90, 0.30],
|
|
[0.20, 0.40, 0.40, 0.20],
|
|
[0.20, 0.20, 0.05, 0.20],
|
|
],
|
|
[
|
|
[0.20, 0.20, 0.20, 0.20],
|
|
[0.20, 0.90, 0.90, 0.30],
|
|
[0.20, 0.40, 0.40, 0.20],
|
|
[0.20, 0.20, 0.05, 0.20],
|
|
],
|
|
]
|
|
]
|
|
).to(device)
|
|
|
|
self.assertTrue((result == true_result).all().item())
|