mirror of
https://github.com/facebookresearch/pytorch3d.git
synced 2025-08-02 03:42:50 +08:00
Summary: Applies new import merging and sorting from µsort v1.0. When merging imports, µsort will make a best-effort to move associated comments to match merged elements, but there are known limitations due to the diynamic nature of Python and developer tooling. These changes should not produce any dangerous runtime changes, but may require touch-ups to satisfy linters and other tooling. Note that µsort uses case-insensitive, lexicographical sorting, which results in a different ordering compared to isort. This provides a more consistent sorting order, matching the case-insensitive order used when sorting import statements by module name, and ensures that "frog", "FROG", and "Frog" always sort next to each other. For details on µsort's sorting and merging semantics, see the user guide: https://usort.readthedocs.io/en/stable/guide.html#sorting Reviewed By: bottler Differential Revision: D35553814 fbshipit-source-id: be49bdb6a4c25264ff8d4db3a601f18736d17be1
235 lines
7.6 KiB
Python
235 lines
7.6 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the BSD-style license found in the
|
|
# LICENSE file in the root directory of this source tree.
|
|
|
|
|
|
import json
|
|
import unittest
|
|
|
|
import numpy as np
|
|
import torch
|
|
from common_testing import get_tests_dir, TestCaseMixin
|
|
from pytorch3d.ops import eyes
|
|
from pytorch3d.renderer.points.pulsar import Renderer as PulsarRenderer
|
|
from pytorch3d.transforms import so3_exp_map, so3_log_map
|
|
from pytorch3d.utils import (
|
|
cameras_from_opencv_projection,
|
|
opencv_from_cameras_projection,
|
|
pulsar_from_opencv_projection,
|
|
)
|
|
|
|
|
|
DATA_DIR = get_tests_dir() / "data"
|
|
|
|
|
|
def cv2_project_points(pts, rvec, tvec, camera_matrix):
|
|
"""
|
|
Reproduces the `cv2.projectPoints` function from OpenCV using PyTorch.
|
|
"""
|
|
R = so3_exp_map(rvec)
|
|
pts_proj_3d = (
|
|
camera_matrix.bmm(R.bmm(pts.permute(0, 2, 1)) + tvec[:, :, None])
|
|
).permute(0, 2, 1)
|
|
depth = pts_proj_3d[..., 2:]
|
|
pts_proj_2d = pts_proj_3d[..., :2] / depth
|
|
return pts_proj_2d
|
|
|
|
|
|
class TestCameraConversions(TestCaseMixin, unittest.TestCase):
|
|
def setUp(self) -> None:
|
|
super().setUp()
|
|
torch.manual_seed(42)
|
|
np.random.seed(42)
|
|
|
|
def test_cv2_project_points(self):
|
|
"""
|
|
Tests that the local implementation of cv2_project_points gives the same
|
|
restults OpenCV's `cv2.projectPoints`. The check is done against a set
|
|
of precomputed results `cv_project_points_precomputed`.
|
|
"""
|
|
with open(DATA_DIR / "cv_project_points_precomputed.json", "r") as f:
|
|
cv_project_points_precomputed = json.load(f)
|
|
|
|
for test_case in cv_project_points_precomputed:
|
|
_pts_proj = cv2_project_points(
|
|
**{
|
|
k: torch.tensor(test_case[k])[None]
|
|
for k in ("pts", "rvec", "tvec", "camera_matrix")
|
|
}
|
|
)
|
|
pts_proj = torch.tensor(test_case["pts_proj"])[None]
|
|
self.assertClose(_pts_proj, pts_proj, atol=1e-4)
|
|
|
|
def test_opencv_conversion(self):
|
|
"""
|
|
Tests that the cameras converted from opencv to pytorch3d convention
|
|
return correct projections of random 3D points. The check is done
|
|
against a set of results precomuted using `cv2.projectPoints` function.
|
|
"""
|
|
device = torch.device("cuda:0")
|
|
image_size = [[480, 640]] * 4
|
|
R = [
|
|
[
|
|
[1.0, 0.0, 0.0],
|
|
[0.0, 1.0, 0.0],
|
|
[0.0, 0.0, 1.0],
|
|
],
|
|
[
|
|
[1.0, 0.0, 0.0],
|
|
[0.0, 0.0, -1.0],
|
|
[0.0, 1.0, 0.0],
|
|
],
|
|
[
|
|
[0.0, 0.0, 1.0],
|
|
[1.0, 0.0, 0.0],
|
|
[0.0, 1.0, 0.0],
|
|
],
|
|
[
|
|
[0.0, 0.0, 1.0],
|
|
[1.0, 0.0, 0.0],
|
|
[0.0, 1.0, 0.0],
|
|
],
|
|
]
|
|
|
|
tvec = [
|
|
[0.0, 0.0, 3.0],
|
|
[0.3, -0.3, 3.0],
|
|
[-0.15, 0.1, 4.0],
|
|
[0.0, 0.0, 4.0],
|
|
]
|
|
focal_length = [
|
|
[100.0, 100.0],
|
|
[115.0, 115.0],
|
|
[105.0, 105.0],
|
|
[120.0, 120.0],
|
|
]
|
|
# These values are in y, x format, but they should be in x, y format.
|
|
# The tests work like this because they only test for consistency,
|
|
# but this format is misleading.
|
|
principal_point = [
|
|
[240, 320],
|
|
[240.5, 320.3],
|
|
[241, 318],
|
|
[242, 322],
|
|
]
|
|
|
|
principal_point, focal_length, R, tvec, image_size = [
|
|
torch.tensor(x, device=device)
|
|
for x in (principal_point, focal_length, R, tvec, image_size)
|
|
]
|
|
camera_matrix = eyes(dim=3, N=4, device=device)
|
|
camera_matrix[:, 0, 0], camera_matrix[:, 1, 1] = (
|
|
focal_length[:, 0],
|
|
focal_length[:, 1],
|
|
)
|
|
camera_matrix[:, :2, 2] = principal_point
|
|
|
|
pts = torch.nn.functional.normalize(
|
|
torch.randn(4, 1000, 3, device=device), dim=-1
|
|
)
|
|
|
|
# project the 3D points with the opencv projection function
|
|
rvec = so3_log_map(R)
|
|
pts_proj_opencv = cv2_project_points(pts, rvec, tvec, camera_matrix)
|
|
|
|
# make the pytorch3d cameras
|
|
cameras_opencv_to_pytorch3d = cameras_from_opencv_projection(
|
|
R, tvec, camera_matrix, image_size
|
|
)
|
|
self.assertEqual(cameras_opencv_to_pytorch3d.device, device)
|
|
|
|
# project the 3D points with converted cameras to screen space.
|
|
pts_proj_pytorch3d_screen = cameras_opencv_to_pytorch3d.transform_points_screen(
|
|
pts
|
|
)[..., :2]
|
|
|
|
# compare to the cached projected points
|
|
self.assertClose(pts_proj_opencv, pts_proj_pytorch3d_screen, atol=1e-5)
|
|
|
|
# Check the inverse.
|
|
R_i, tvec_i, camera_matrix_i = opencv_from_cameras_projection(
|
|
cameras_opencv_to_pytorch3d, image_size
|
|
)
|
|
self.assertClose(R, R_i)
|
|
self.assertClose(tvec, tvec_i)
|
|
self.assertClose(camera_matrix, camera_matrix_i)
|
|
|
|
def test_pulsar_conversion(self):
|
|
"""
|
|
Tests that the cameras converted from opencv to pulsar convention
|
|
return correct projections of random 3D points. The check is done
|
|
against a set of results precomputed using `cv2.projectPoints` function.
|
|
"""
|
|
image_size = [[480, 640]]
|
|
R = [
|
|
[
|
|
[1.0, 0.0, 0.0],
|
|
[0.0, 1.0, 0.0],
|
|
[0.0, 0.0, 1.0],
|
|
],
|
|
[
|
|
[0.1968, -0.6663, -0.7192],
|
|
[0.7138, -0.4055, 0.5710],
|
|
[-0.6721, -0.6258, 0.3959],
|
|
],
|
|
]
|
|
tvec = [
|
|
[10.0, 10.0, 3.0],
|
|
[-0.0, -0.0, 20.0],
|
|
]
|
|
focal_length = [
|
|
[100.0, 100.0],
|
|
[10.0, 10.0],
|
|
]
|
|
principal_point = [
|
|
[320, 240],
|
|
[320, 240],
|
|
]
|
|
|
|
principal_point, focal_length, R, tvec, image_size = [
|
|
torch.FloatTensor(x)
|
|
for x in (principal_point, focal_length, R, tvec, image_size)
|
|
]
|
|
camera_matrix = eyes(dim=3, N=2)
|
|
camera_matrix[:, 0, 0] = focal_length[:, 0]
|
|
camera_matrix[:, 1, 1] = focal_length[:, 1]
|
|
camera_matrix[:, :2, 2] = principal_point
|
|
rvec = so3_log_map(R)
|
|
pts = torch.tensor(
|
|
[[[0.0, 0.0, 120.0]], [[0.0, 0.0, 120.0]]], dtype=torch.float32
|
|
)
|
|
radii = torch.tensor([[1e-5], [1e-5]], dtype=torch.float32)
|
|
col = torch.zeros((2, 1, 1), dtype=torch.float32)
|
|
|
|
# project the 3D points with the opencv projection function
|
|
pts_proj_opencv = cv2_project_points(pts, rvec, tvec, camera_matrix)
|
|
pulsar_cam = pulsar_from_opencv_projection(
|
|
R, tvec, camera_matrix, image_size, znear=100.0
|
|
)
|
|
pulsar_rend = PulsarRenderer(
|
|
640, 480, 1, right_handed_system=False, n_channels=1
|
|
)
|
|
rendered = torch.flip(
|
|
pulsar_rend(
|
|
pts,
|
|
col,
|
|
radii,
|
|
pulsar_cam,
|
|
1e-5,
|
|
max_depth=150.0,
|
|
min_depth=100.0,
|
|
),
|
|
dims=(1,),
|
|
)
|
|
for batch_id in range(2):
|
|
point_pos = torch.where(rendered[batch_id] == rendered[batch_id].min())
|
|
point_pos = point_pos[1][0], point_pos[0][0]
|
|
self.assertLess(
|
|
torch.abs(point_pos[0] - pts_proj_opencv[batch_id, 0, 0]), 2
|
|
)
|
|
self.assertLess(
|
|
torch.abs(point_pos[1] - pts_proj_opencv[batch_id, 0, 1]), 2
|
|
)
|