pytorch3d/tests/test_ball_query.py
Tim Hatch 34bbb3ad32 apply import merging for fbcode/vision/fair (2 of 2)
Summary:
Applies new import merging and sorting from µsort v1.0.

When merging imports, µsort will make a best-effort to move associated
comments to match merged elements, but there are known limitations due to
the diynamic nature of Python and developer tooling. These changes should
not produce any dangerous runtime changes, but may require touch-ups to
satisfy linters and other tooling.

Note that µsort uses case-insensitive, lexicographical sorting, which
results in a different ordering compared to isort. This provides a more
consistent sorting order, matching the case-insensitive order used when
sorting import statements by module name, and ensures that "frog", "FROG",
and "Frog" always sort next to each other.

For details on µsort's sorting and merging semantics, see the user guide:
https://usort.readthedocs.io/en/stable/guide.html#sorting

Reviewed By: bottler

Differential Revision: D35553814

fbshipit-source-id: be49bdb6a4c25264ff8d4db3a601f18736d17be1
2022-04-13 06:51:33 -07:00

231 lines
8.4 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import unittest
from itertools import product
import torch
from common_testing import get_random_cuda_device, TestCaseMixin
from pytorch3d.ops import sample_points_from_meshes
from pytorch3d.ops.ball_query import ball_query
from pytorch3d.ops.knn import _KNN
from pytorch3d.utils import ico_sphere
class TestBallQuery(TestCaseMixin, unittest.TestCase):
def setUp(self) -> None:
super().setUp()
torch.manual_seed(1)
@staticmethod
def _ball_query_naive(
p1, p2, lengths1, lengths2, K: int, radius: float
) -> torch.Tensor:
"""
Naive PyTorch implementation of ball query.
"""
N, P1, D = p1.shape
_N, P2, _D = p2.shape
assert N == _N and D == _D
if lengths1 is None:
lengths1 = torch.full((N,), P1, dtype=torch.int64, device=p1.device)
if lengths2 is None:
lengths2 = torch.full((N,), P2, dtype=torch.int64, device=p1.device)
radius2 = radius * radius
dists = torch.zeros((N, P1, K), dtype=torch.float32, device=p1.device)
idx = torch.full((N, P1, K), fill_value=-1, dtype=torch.int64, device=p1.device)
# Iterate through the batches
for n in range(N):
num1 = lengths1[n].item()
num2 = lengths2[n].item()
# Iterate through the points in the p1
for i in range(num1):
# Iterate through the points in the p2
count = 0
for j in range(num2):
dist = p2[n, j] - p1[n, i]
dist2 = (dist * dist).sum()
if dist2 < radius2 and count < K:
dists[n, i, count] = dist2
idx[n, i, count] = j
count += 1
return _KNN(dists=dists, idx=idx, knn=None)
def _ball_query_vs_python_square_helper(self, device):
Ns = [1, 4]
Ds = [3, 5, 8]
P1s = [8, 24]
P2s = [8, 16, 32]
Ks = [1, 5]
Rs = [3, 5]
factors = [Ns, Ds, P1s, P2s, Ks, Rs]
for N, D, P1, P2, K, R in product(*factors):
x = torch.randn(N, P1, D, device=device, requires_grad=True)
x_cuda = x.clone().detach()
x_cuda.requires_grad_(True)
y = torch.randn(N, P2, D, device=device, requires_grad=True)
y_cuda = y.clone().detach()
y_cuda.requires_grad_(True)
# forward
out1 = self._ball_query_naive(
x, y, lengths1=None, lengths2=None, K=K, radius=R
)
out2 = ball_query(x_cuda, y_cuda, K=K, radius=R)
# Check dists
self.assertClose(out1.dists, out2.dists)
# Check idx
self.assertTrue(torch.all(out1.idx == out2.idx))
# backward
grad_dist = torch.ones((N, P1, K), dtype=torch.float32, device=device)
loss1 = (out1.dists * grad_dist).sum()
loss1.backward()
loss2 = (out2.dists * grad_dist).sum()
loss2.backward()
self.assertClose(x_cuda.grad, x.grad, atol=5e-6)
self.assertClose(y_cuda.grad, y.grad, atol=5e-6)
def test_ball_query_vs_python_square_cpu(self):
device = torch.device("cpu")
self._ball_query_vs_python_square_helper(device)
def test_ball_query_vs_python_square_cuda(self):
device = get_random_cuda_device()
self._ball_query_vs_python_square_helper(device)
def _ball_query_vs_python_ragged_helper(self, device):
Ns = [1, 4]
Ds = [3, 5, 8]
P1s = [8, 24]
P2s = [8, 16, 32]
Ks = [2, 3, 10]
Rs = [1.4, 5] # radius
factors = [Ns, Ds, P1s, P2s, Ks, Rs]
for N, D, P1, P2, K, R in product(*factors):
x = torch.rand((N, P1, D), device=device, requires_grad=True)
y = torch.rand((N, P2, D), device=device, requires_grad=True)
lengths1 = torch.randint(low=1, high=P1, size=(N,), device=device)
lengths2 = torch.randint(low=1, high=P2, size=(N,), device=device)
x_csrc = x.clone().detach()
x_csrc.requires_grad_(True)
y_csrc = y.clone().detach()
y_csrc.requires_grad_(True)
# forward
out1 = self._ball_query_naive(
x, y, lengths1=lengths1, lengths2=lengths2, K=K, radius=R
)
out2 = ball_query(
x_csrc,
y_csrc,
lengths1=lengths1,
lengths2=lengths2,
K=K,
radius=R,
)
self.assertClose(out1.idx, out2.idx)
self.assertClose(out1.dists, out2.dists)
# backward
grad_dist = torch.ones((N, P1, K), dtype=torch.float32, device=device)
loss1 = (out1.dists * grad_dist).sum()
loss1.backward()
loss2 = (out2.dists * grad_dist).sum()
loss2.backward()
self.assertClose(x_csrc.grad, x.grad, atol=5e-6)
self.assertClose(y_csrc.grad, y.grad, atol=5e-6)
def test_ball_query_vs_python_ragged_cpu(self):
device = torch.device("cpu")
self._ball_query_vs_python_ragged_helper(device)
def test_ball_query_vs_python_ragged_cuda(self):
device = get_random_cuda_device()
self._ball_query_vs_python_ragged_helper(device)
def test_ball_query_output_simple(self):
device = get_random_cuda_device()
N, P1, P2, K = 5, 8, 16, 4
sphere = ico_sphere(level=2, device=device).extend(N)
points_1 = sample_points_from_meshes(sphere, P1)
points_2 = sample_points_from_meshes(sphere, P2) * 5.0
radius = 6.0
naive_out = self._ball_query_naive(
points_1, points_2, lengths1=None, lengths2=None, K=K, radius=radius
)
cuda_out = ball_query(points_1, points_2, K=K, radius=radius)
# All points should have N sample neighbors as radius is large
# Zero is a valid index but can only be present once (i.e. no zero padding)
naive_out_zeros = (naive_out.idx == 0).sum(dim=-1).max()
cuda_out_zeros = (cuda_out.idx == 0).sum(dim=-1).max()
self.assertTrue(naive_out_zeros == 0 or naive_out_zeros == 1)
self.assertTrue(cuda_out_zeros == 0 or cuda_out_zeros == 1)
# All points should now have zero sample neighbors as radius is small
radius = 0.5
naive_out = self._ball_query_naive(
points_1, points_2, lengths1=None, lengths2=None, K=K, radius=radius
)
cuda_out = ball_query(points_1, points_2, K=K, radius=radius)
naive_out_allzeros = (naive_out.idx == -1).all()
cuda_out_allzeros = (cuda_out.idx == -1).sum()
self.assertTrue(naive_out_allzeros)
self.assertTrue(cuda_out_allzeros)
@staticmethod
def ball_query_square(
N: int, P1: int, P2: int, D: int, K: int, radius: float, device: str
):
device = torch.device(device)
pts1 = torch.randn(N, P1, D, device=device, requires_grad=True)
pts2 = torch.randn(N, P2, D, device=device, requires_grad=True)
grad_dists = torch.randn(N, P1, K, device=device)
torch.cuda.synchronize()
def output():
out = ball_query(pts1, pts2, K=K, radius=radius)
loss = (out.dists * grad_dists).sum()
loss.backward()
torch.cuda.synchronize()
return output
@staticmethod
def ball_query_ragged(
N: int, P1: int, P2: int, D: int, K: int, radius: float, device: str
):
device = torch.device(device)
pts1 = torch.rand((N, P1, D), device=device, requires_grad=True)
pts2 = torch.rand((N, P2, D), device=device, requires_grad=True)
lengths1 = torch.randint(low=1, high=P1, size=(N,), device=device)
lengths2 = torch.randint(low=1, high=P2, size=(N,), device=device)
grad_dists = torch.randn(N, P1, K, device=device)
torch.cuda.synchronize()
def output():
out = ball_query(
pts1, pts2, lengths1=lengths1, lengths2=lengths2, K=K, radius=radius
)
loss = (out.dists * grad_dists).sum()
loss.backward()
torch.cuda.synchronize()
return output