pytorch3d/tests/implicitron/test_forward_pass.py
Tim Hatch 34bbb3ad32 apply import merging for fbcode/vision/fair (2 of 2)
Summary:
Applies new import merging and sorting from µsort v1.0.

When merging imports, µsort will make a best-effort to move associated
comments to match merged elements, but there are known limitations due to
the diynamic nature of Python and developer tooling. These changes should
not produce any dangerous runtime changes, but may require touch-ups to
satisfy linters and other tooling.

Note that µsort uses case-insensitive, lexicographical sorting, which
results in a different ordering compared to isort. This provides a more
consistent sorting order, matching the case-insensitive order used when
sorting import statements by module name, and ensures that "frog", "FROG",
and "Frog" always sort next to each other.

For details on µsort's sorting and merging semantics, see the user guide:
https://usort.readthedocs.io/en/stable/guide.html#sorting

Reviewed By: bottler

Differential Revision: D35553814

fbshipit-source-id: be49bdb6a4c25264ff8d4db3a601f18736d17be1
2022-04-13 06:51:33 -07:00

68 lines
2.3 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import unittest
import torch
from pytorch3d.implicitron.models.base import GenericModel
from pytorch3d.implicitron.models.renderer.base import EvaluationMode
from pytorch3d.implicitron.tools.config import expand_args_fields
from pytorch3d.renderer.cameras import look_at_view_transform, PerspectiveCameras
class TestGenericModel(unittest.TestCase):
def test_gm(self):
# Simple test of a forward pass of the default GenericModel.
device = torch.device("cuda:1")
expand_args_fields(GenericModel)
model = GenericModel()
model.to(device)
n_train_cameras = 2
R, T = look_at_view_transform(azim=torch.rand(n_train_cameras) * 360)
cameras = PerspectiveCameras(R=R, T=T, device=device)
# TODO: make these default to None?
defaulted_args = {
"fg_probability": None,
"depth_map": None,
"mask_crop": None,
"sequence_name": None,
}
with self.assertWarnsRegex(UserWarning, "No main objective found"):
model(
camera=cameras,
evaluation_mode=EvaluationMode.TRAINING,
**defaulted_args,
image_rgb=None,
)
target_image_rgb = torch.rand(
(n_train_cameras, 3, model.render_image_height, model.render_image_width),
device=device,
)
train_preds = model(
camera=cameras,
evaluation_mode=EvaluationMode.TRAINING,
image_rgb=target_image_rgb,
**defaulted_args,
)
self.assertGreater(train_preds["objective"].item(), 0)
model.eval()
with torch.no_grad():
# TODO: perhaps this warning should be skipped in eval mode?
with self.assertWarnsRegex(UserWarning, "No main objective found"):
eval_preds = model(
camera=cameras[0],
**defaulted_args,
image_rgb=None,
)
self.assertEqual(
eval_preds["images_render"].shape,
(1, 3, model.render_image_height, model.render_image_width),
)