mirror of
https://github.com/facebookresearch/pytorch3d.git
synced 2025-08-02 20:02:49 +08:00
66 lines
1.8 KiB
Python
66 lines
1.8 KiB
Python
#!/usr/bin/env python3
|
|
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
|
|
|
|
|
|
from itertools import product
|
|
import torch
|
|
from fvcore.common.benchmark import benchmark
|
|
|
|
from test_sample_points_from_meshes import TestSamplePoints
|
|
|
|
|
|
def bm_sample_points() -> None:
|
|
if torch.cuda.is_available():
|
|
device = "cuda:0"
|
|
kwargs_list = []
|
|
num_meshes = [2, 10, 32]
|
|
num_verts = [100, 1000]
|
|
num_faces = [300, 3000]
|
|
num_samples = [5000, 10000]
|
|
test_cases = product(num_meshes, num_verts, num_faces, num_samples)
|
|
for case in test_cases:
|
|
n, v, f, s = case
|
|
kwargs_list.append(
|
|
{
|
|
"num_meshes": n,
|
|
"num_verts": v,
|
|
"num_faces": f,
|
|
"num_samples": s,
|
|
"device": device,
|
|
}
|
|
)
|
|
benchmark(
|
|
TestSamplePoints.sample_points_with_init,
|
|
"SAMPLE_MESH",
|
|
kwargs_list,
|
|
warmup_iters=1,
|
|
)
|
|
|
|
kwargs_list = []
|
|
backend_cuda = ["False"]
|
|
if torch.cuda.is_available():
|
|
backend_cuda.append("True")
|
|
|
|
num_meshes = [2, 10, 32]
|
|
num_verts = [100, 1000]
|
|
num_faces = [300, 3000]
|
|
|
|
test_cases = product(num_meshes, num_verts, num_faces, backend_cuda)
|
|
for case in test_cases:
|
|
n, v, f, c = case
|
|
kwargs_list.append(
|
|
{"num_meshes": n, "num_verts": v, "num_faces": f, "cuda": c}
|
|
)
|
|
benchmark(
|
|
TestSamplePoints.face_areas_with_init,
|
|
"FACE_AREAS",
|
|
kwargs_list,
|
|
warmup_iters=1,
|
|
)
|
|
benchmark(
|
|
TestSamplePoints.packed_to_padded_with_init,
|
|
"PACKED_TO_PADDED",
|
|
kwargs_list,
|
|
warmup_iters=1,
|
|
)
|