pytorch3d/tests/test_face_areas_normals.py
Georgia Gkioxari 29cd181a83 CPU implem for face areas normals
Summary:
Added cpu implementation for face areas normals. Moved test and bm to separate functions.

```
Benchmark                                   Avg Time(μs)      Peak Time(μs) Iterations
--------------------------------------------------------------------------------
FACE_AREAS_NORMALS_2_100_300_False                196             268           2550
FACE_AREAS_NORMALS_2_100_300_True                 106             179           4733
FACE_AREAS_NORMALS_2_100_3000_False              1447            1630            346
FACE_AREAS_NORMALS_2_100_3000_True                107             178           4674
FACE_AREAS_NORMALS_2_1000_300_False               201             309           2486
FACE_AREAS_NORMALS_2_1000_300_True                107             186           4673
FACE_AREAS_NORMALS_2_1000_3000_False             1451            1636            345
FACE_AREAS_NORMALS_2_1000_3000_True               107             186           4655
FACE_AREAS_NORMALS_10_100_300_False               767             918            653
FACE_AREAS_NORMALS_10_100_300_True                106             167           4712
FACE_AREAS_NORMALS_10_100_3000_False             7036            7754             72
FACE_AREAS_NORMALS_10_100_3000_True               113             164           4445
FACE_AREAS_NORMALS_10_1000_300_False              748             947            669
FACE_AREAS_NORMALS_10_1000_300_True               108             169           4638
FACE_AREAS_NORMALS_10_1000_3000_False            7069            7783             71
FACE_AREAS_NORMALS_10_1000_3000_True              108             172           4646
FACE_AREAS_NORMALS_32_100_300_False              2286            2496            219
FACE_AREAS_NORMALS_32_100_300_True                108             180           4631
FACE_AREAS_NORMALS_32_100_3000_False            23184           24369             22
FACE_AREAS_NORMALS_32_100_3000_True               159             213           3147
FACE_AREAS_NORMALS_32_1000_300_False             2414            2645            208
FACE_AREAS_NORMALS_32_1000_300_True               112             197           4480
FACE_AREAS_NORMALS_32_1000_3000_False           21687           22964             24
FACE_AREAS_NORMALS_32_1000_3000_True              141             211           3540
--------------------------------------------------------------------------------

Benchmark                                         Avg Time(μs)      Peak Time(μs) Iterations
--------------------------------------------------------------------------------
FACE_AREAS_NORMALS_TORCH_2_100_300_False               5465            5782             92
FACE_AREAS_NORMALS_TORCH_2_100_300_True                1198            1351            418
FACE_AREAS_NORMALS_TORCH_2_100_3000_False             48228           48869             11
FACE_AREAS_NORMALS_TORCH_2_100_3000_True               1186            1304            422
FACE_AREAS_NORMALS_TORCH_2_1000_300_False              5556            6097             90
FACE_AREAS_NORMALS_TORCH_2_1000_300_True               1200            1328            417
FACE_AREAS_NORMALS_TORCH_2_1000_3000_False            48683           50016             11
FACE_AREAS_NORMALS_TORCH_2_1000_3000_True              1185            1306            422
FACE_AREAS_NORMALS_TORCH_10_100_300_False             24215           25097             21
FACE_AREAS_NORMALS_TORCH_10_100_300_True               1150            1314            435
FACE_AREAS_NORMALS_TORCH_10_100_3000_False           232605          234952              3
FACE_AREAS_NORMALS_TORCH_10_100_3000_True              1193            1314            420
FACE_AREAS_NORMALS_TORCH_10_1000_300_False            24912           25343             21
FACE_AREAS_NORMALS_TORCH_10_1000_300_True              1216            1330            412
FACE_AREAS_NORMALS_TORCH_10_1000_3000_False          239907          241253              3
FACE_AREAS_NORMALS_TORCH_10_1000_3000_True             1226            1333            408
FACE_AREAS_NORMALS_TORCH_32_100_300_False             73991           75776              7
FACE_AREAS_NORMALS_TORCH_32_100_300_True               1193            1339            420
FACE_AREAS_NORMALS_TORCH_32_100_3000_False           728932          728932              1
FACE_AREAS_NORMALS_TORCH_32_100_3000_True              1186            1359            422
FACE_AREAS_NORMALS_TORCH_32_1000_300_False            76385           79129              7
FACE_AREAS_NORMALS_TORCH_32_1000_300_True              1165            1310            430
FACE_AREAS_NORMALS_TORCH_32_1000_3000_False          753276          753276              1
FACE_AREAS_NORMALS_TORCH_32_1000_3000_True             1205            1340            415
--------------------------------------------------------------------------------
```

Reviewed By: bottler, jcjohnson

Differential Revision: D19864385

fbshipit-source-id: 3a87ae41a8e3ab5560febcb94961798f2e09dfb8
2020-02-13 11:42:48 -08:00

119 lines
3.8 KiB
Python

#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
import unittest
import torch
from pytorch3d import _C
from pytorch3d.structures.meshes import Meshes
from common_testing import TestCaseMixin
class TestFaceAreasNormals(TestCaseMixin, unittest.TestCase):
def setUp(self) -> None:
super().setUp()
torch.manual_seed(1)
@staticmethod
def init_meshes(
num_meshes: int = 10,
num_verts: int = 1000,
num_faces: int = 3000,
device: str = "cpu",
):
device = torch.device(device)
verts_list = []
faces_list = []
for _ in range(num_meshes):
verts = torch.rand(
(num_verts, 3), dtype=torch.float32, device=device
)
faces = torch.randint(
num_verts, size=(num_faces, 3), dtype=torch.int64, device=device
)
verts_list.append(verts)
faces_list.append(faces)
meshes = Meshes(verts_list, faces_list)
return meshes
@staticmethod
def face_areas_normals(verts, faces):
"""
Pytorch implementation for face areas & normals.
"""
vertices_faces = verts[faces] # (F, 3, 3)
# vector pointing from v0 to v1
v01 = vertices_faces[:, 1] - vertices_faces[:, 0]
# vector pointing from v0 to v2
v02 = vertices_faces[:, 2] - vertices_faces[:, 0]
normals = torch.cross(v01, v02, dim=1) # (F, 3)
face_areas = normals.norm(dim=-1) / 2
face_normals = torch.nn.functional.normalize(
normals, p=2, dim=1, eps=1e-6
)
return face_areas, face_normals
def _test_face_areas_normals_helper(self, device):
"""
Check the results from face_areas cuda/cpp and PyTorch implementation are
the same.
"""
meshes = self.init_meshes(10, 1000, 3000, device=device)
verts = meshes.verts_packed()
faces = meshes.faces_packed()
areas_torch, normals_torch = self.face_areas_normals(verts, faces)
areas, normals = _C.face_areas_normals(verts, faces)
self.assertClose(areas_torch, areas, atol=1e-7)
# normals get normalized by area thus sensitivity increases as areas
# in our tests can be arbitrarily small. Thus we compare normals after
# multiplying with areas
unnormals = normals * areas.view(-1, 1)
unnormals_torch = normals_torch * areas_torch.view(-1, 1)
self.assertClose(unnormals_torch, unnormals, atol=1e-7)
def test_face_areas_normals_cpu(self):
self._test_face_areas_normals_helper("cpu")
def test_face_areas_normals_cuda(self):
self._test_face_areas_normals_helper("cuda:0")
@staticmethod
def face_areas_normals_with_init(
num_meshes: int, num_verts: int, num_faces: int, cuda: bool = True
):
device = "cuda:0" if cuda else "cpu"
meshes = TestFaceAreasNormals.init_meshes(
num_meshes, num_verts, num_faces, device
)
verts = meshes.verts_packed()
faces = meshes.faces_packed()
torch.cuda.synchronize()
def face_areas_normals():
_C.face_areas_normals(verts, faces)
torch.cuda.synchronize()
return face_areas_normals
@staticmethod
def face_areas_normals_with_init_torch(
num_meshes: int, num_verts: int, num_faces: int, cuda: bool = True
):
device = "cuda:0" if cuda else "cpu"
meshes = TestFaceAreasNormals.init_meshes(
num_meshes, num_verts, num_faces, device
)
verts = meshes.verts_packed()
faces = meshes.faces_packed()
torch.cuda.synchronize()
def face_areas_normals():
TestFaceAreasNormals.face_areas_normals(verts, faces)
torch.cuda.synchronize()
return face_areas_normals