mirror of
https://github.com/facebookresearch/pytorch3d.git
synced 2025-08-01 03:12:49 +08:00
73 lines
12 KiB
HTML
73 lines
12 KiB
HTML
<!DOCTYPE html><html lang="en"><head><meta charSet="utf-8"/><meta http-equiv="X-UA-Compatible" content="IE=edge"/><title>datasets · PyTorch3D</title><meta name="viewport" content="width=device-width, initial-scale=1.0"/><meta name="generator" content="Docusaurus"/><meta name="description" content="# Data loaders for common 3D Datasets"/><meta name="docsearch:language" content="en"/><meta property="og:title" content="datasets · PyTorch3D"/><meta property="og:type" content="website"/><meta property="og:url" content="https://pytorch3d.org/"/><meta property="og:description" content="# Data loaders for common 3D Datasets"/><meta property="og:image" content="https://pytorch3d.org/img/pytorch3dlogoicon.svg"/><meta name="twitter:card" content="summary"/><meta name="twitter:image" content="https://pytorch3d.org/img/pytorch3dlogoicon.svg"/><link rel="shortcut icon" href="/img/pytorch3dfavicon.png"/><link rel="stylesheet" href="//cdnjs.cloudflare.com/ajax/libs/highlight.js/9.12.0/styles/default.min.css"/><script>
|
||
(function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){
|
||
(i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o),
|
||
m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m)
|
||
})(window,document,'script','https://www.google-analytics.com/analytics.js','ga');
|
||
|
||
ga('create', 'UA-157376881-1', 'auto');
|
||
ga('send', 'pageview');
|
||
</script><script type="text/javascript" src="https://buttons.github.io/buttons.js"></script><script src="/js/scrollSpy.js"></script><link rel="stylesheet" href="/css/main.css"/><script src="/js/codetabs.js"></script></head><body class="sideNavVisible separateOnPageNav"><div class="fixedHeaderContainer"><div class="headerWrapper wrapper"><header><a href="/"><img class="logo" src="/img/pytorch3dfavicon.png" alt="PyTorch3D"/><h2 class="headerTitleWithLogo">PyTorch3D</h2></a><div class="navigationWrapper navigationSlider"><nav class="slidingNav"><ul class="nav-site nav-site-internal"><li class="siteNavGroupActive"><a href="/docs/why_pytorch3d" target="_self">Docs</a></li><li class=""><a href="/tutorials" target="_self">Tutorials</a></li><li class=""><a href="https://pytorch3d.readthedocs.io/" target="_self">API</a></li><li class=""><a href="https://github.com/facebookresearch/pytorch3d" target="_self">GitHub</a></li></ul></nav></div></header></div></div><div class="navPusher"><div class="docMainWrapper wrapper"><div class="docsNavContainer" id="docsNav"><nav class="toc"><div class="toggleNav"><section class="navWrapper wrapper"><div class="navBreadcrumb wrapper"><div class="navToggle" id="navToggler"><div class="hamburger-menu"><div class="line1"></div><div class="line2"></div><div class="line3"></div></div></div><h2><i>›</i><span>Data</span></h2><div class="tocToggler" id="tocToggler"><i class="icon-toc"></i></div></div><div class="navGroups"><div class="navGroup"><h3 class="navGroupCategoryTitle">Introduction</h3><ul class=""><li class="navListItem"><a class="navItem" href="/docs/why_pytorch3d">Why PyTorch3D</a></li></ul></div><div class="navGroup"><h3 class="navGroupCategoryTitle">Data</h3><ul class=""><li class="navListItem"><a class="navItem" href="/docs/io">File IO</a></li><li class="navListItem"><a class="navItem" href="/docs/meshes_io">Loading from file</a></li><li class="navListItem navListItemActive"><a class="navItem" href="/docs/datasets">Data loaders</a></li><li class="navListItem"><a class="navItem" href="/docs/batching">Batching</a></li></ul></div><div class="navGroup"><h3 class="navGroupCategoryTitle">Ops</h3><ul class=""><li class="navListItem"><a class="navItem" href="/docs/cubify">Cubify</a></li><li class="navListItem"><a class="navItem" href="/docs/iou3d">IoU3D</a></li></ul></div><div class="navGroup"><h3 class="navGroupCategoryTitle">Visualization</h3><ul class=""><li class="navListItem"><a class="navItem" href="/docs/visualization">Plotly Visualization</a></li></ul></div><div class="navGroup"><h3 class="navGroupCategoryTitle">Renderer</h3><ul class=""><li class="navListItem"><a class="navItem" href="/docs/renderer">Overview</a></li><li class="navListItem"><a class="navItem" href="/docs/renderer_getting_started">Getting Started</a></li><li class="navListItem"><a class="navItem" href="/docs/cameras">Cameras</a></li></ul></div></div></section></div><script>
|
||
var coll = document.getElementsByClassName('collapsible');
|
||
var checkActiveCategory = true;
|
||
for (var i = 0; i < coll.length; i++) {
|
||
var links = coll[i].nextElementSibling.getElementsByTagName('*');
|
||
if (checkActiveCategory){
|
||
for (var j = 0; j < links.length; j++) {
|
||
if (links[j].classList.contains('navListItemActive')){
|
||
coll[i].nextElementSibling.classList.toggle('hide');
|
||
coll[i].childNodes[1].classList.toggle('rotate');
|
||
checkActiveCategory = false;
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
coll[i].addEventListener('click', function() {
|
||
var arrow = this.childNodes[1];
|
||
arrow.classList.toggle('rotate');
|
||
var content = this.nextElementSibling;
|
||
content.classList.toggle('hide');
|
||
});
|
||
}
|
||
|
||
document.addEventListener('DOMContentLoaded', function() {
|
||
createToggler('#navToggler', '#docsNav', 'docsSliderActive');
|
||
createToggler('#tocToggler', 'body', 'tocActive');
|
||
|
||
var headings = document.querySelector('.toc-headings');
|
||
headings && headings.addEventListener('click', function(event) {
|
||
var el = event.target;
|
||
while(el !== headings){
|
||
if (el.tagName === 'A') {
|
||
document.body.classList.remove('tocActive');
|
||
break;
|
||
} else{
|
||
el = el.parentNode;
|
||
}
|
||
}
|
||
}, false);
|
||
|
||
function createToggler(togglerSelector, targetSelector, className) {
|
||
var toggler = document.querySelector(togglerSelector);
|
||
var target = document.querySelector(targetSelector);
|
||
|
||
if (!toggler) {
|
||
return;
|
||
}
|
||
|
||
toggler.onclick = function(event) {
|
||
event.preventDefault();
|
||
|
||
target.classList.toggle(className);
|
||
};
|
||
}
|
||
});
|
||
</script></nav></div><div class="container mainContainer docsContainer"><div class="wrapper"><div class="post"><header class="postHeader"></header><article><div><span><h1><a class="anchor" aria-hidden="true" id="data-loaders-for-common-3d-datasets"></a><a href="#data-loaders-for-common-3d-datasets" aria-hidden="true" class="hash-link"><svg class="hash-link-icon" aria-hidden="true" height="16" version="1.1" viewBox="0 0 16 16" width="16"><path fill-rule="evenodd" d="M4 9h1v1H4c-1.5 0-3-1.69-3-3.5S2.55 3 4 3h4c1.45 0 3 1.69 3 3.5 0 1.41-.91 2.72-2 3.25V8.59c.58-.45 1-1.27 1-2.09C10 5.22 8.98 4 8 4H4c-.98 0-2 1.22-2 2.5S3 9 4 9zm9-3h-1v1h1c1 0 2 1.22 2 2.5S13.98 12 13 12H9c-.98 0-2-1.22-2-2.5 0-.83.42-1.64 1-2.09V6.25c-1.09.53-2 1.84-2 3.25C6 11.31 7.55 13 9 13h4c1.45 0 3-1.69 3-3.5S14.5 6 13 6z"></path></svg></a>Data loaders for common 3D Datasets</h1>
|
||
<h3><a class="anchor" aria-hidden="true" id="shapetnetcore"></a><a href="#shapetnetcore" aria-hidden="true" class="hash-link"><svg class="hash-link-icon" aria-hidden="true" height="16" version="1.1" viewBox="0 0 16 16" width="16"><path fill-rule="evenodd" d="M4 9h1v1H4c-1.5 0-3-1.69-3-3.5S2.55 3 4 3h4c1.45 0 3 1.69 3 3.5 0 1.41-.91 2.72-2 3.25V8.59c.58-.45 1-1.27 1-2.09C10 5.22 8.98 4 8 4H4c-.98 0-2 1.22-2 2.5S3 9 4 9zm9-3h-1v1h1c1 0 2 1.22 2 2.5S13.98 12 13 12H9c-.98 0-2-1.22-2-2.5 0-.83.42-1.64 1-2.09V6.25c-1.09.53-2 1.84-2 3.25C6 11.31 7.55 13 9 13h4c1.45 0 3-1.69 3-3.5S14.5 6 13 6z"></path></svg></a>ShapetNetCore</h3>
|
||
<p>ShapeNet is a dataset of 3D CAD models. ShapeNetCore is a subset of the ShapeNet dataset and can be downloaded from <a href="https://www.shapenet.org/">https://www.shapenet.org/</a>. There are two versions ShapeNetCore: v1 (55 categories) and v2 (57 categories).</p>
|
||
<p>The PyTorch3D <a href="https://github.com/facebookresearch/pytorch3d/blob/main/pytorch3d/datasets/shapenet/shapenet_core.py">ShapeNetCore data loader</a> inherits from <code>torch.utils.data.Dataset</code>. It takes the path where the ShapeNetCore dataset is stored locally and loads models in the dataset. The ShapeNetCore class loads and returns models with their <code>categories</code>, <code>model_ids</code>, <code>vertices</code> and <code>faces</code>. The <code>ShapeNetCore</code> data loader also has a customized <code>render</code> function that renders models by the specified <code>model_ids (List[int])</code>, <code>categories (List[str])</code> or <code>indices (List[int])</code> with PyTorch3D's differentiable renderer.</p>
|
||
<p>The loaded dataset can be passed to <code>torch.utils.data.DataLoader</code> with PyTorch3D's customized collate_fn: <code>collate_batched_meshes</code> from the <code>pytorch3d.dataset.utils</code> module. The <code>vertices</code> and <code>faces</code> of the models are used to construct a <a href="https://github.com/facebookresearch/pytorch3d/blob/main/pytorch3d/structures/meshes.py">Meshes</a> object representing the batched meshes. This <code>Meshes</code> representation can be easily used with other ops and rendering in PyTorch3D.</p>
|
||
<h3><a class="anchor" aria-hidden="true" id="r2n2"></a><a href="#r2n2" aria-hidden="true" class="hash-link"><svg class="hash-link-icon" aria-hidden="true" height="16" version="1.1" viewBox="0 0 16 16" width="16"><path fill-rule="evenodd" d="M4 9h1v1H4c-1.5 0-3-1.69-3-3.5S2.55 3 4 3h4c1.45 0 3 1.69 3 3.5 0 1.41-.91 2.72-2 3.25V8.59c.58-.45 1-1.27 1-2.09C10 5.22 8.98 4 8 4H4c-.98 0-2 1.22-2 2.5S3 9 4 9zm9-3h-1v1h1c1 0 2 1.22 2 2.5S13.98 12 13 12H9c-.98 0-2-1.22-2-2.5 0-.83.42-1.64 1-2.09V6.25c-1.09.53-2 1.84-2 3.25C6 11.31 7.55 13 9 13h4c1.45 0 3-1.69 3-3.5S14.5 6 13 6z"></path></svg></a>R2N2</h3>
|
||
<p>The R2N2 dataset contains 13 categories that are a subset of the ShapeNetCore v.1 dataset. The R2N2 dataset also contains its own 24 renderings of each object and voxelized models. The R2N2 Dataset can be downloaded following the instructions <a href="http://3d-r2n2.stanford.edu/">here</a>.</p>
|
||
<p>The PyTorch3D <a href="https://github.com/facebookresearch/pytorch3d/blob/main/pytorch3d/datasets/r2n2/r2n2.py">R2N2 data loader</a> is initialized with the paths to the ShapeNet dataset, the R2N2 dataset and the splits file for R2N2. Just like <code>ShapeNetCore</code>, it can be passed to <code>torch.utils.data.DataLoader</code> with a customized collate_fn: <code>collate_batched_R2N2</code> from the <code>pytorch3d.dataset.r2n2.utils</code> module. It returns all the data that <code>ShapeNetCore</code> returns, and in addition, it returns the R2N2 renderings (24 views for each model) along with the camera calibration matrices and a voxel representation for each model. Similar to <code>ShapeNetCore</code>, it has a customized <code>render</code> function that supports rendering specified models with the PyTorch3D differentiable renderer. In addition, it supports rendering models with the same orientations as R2N2's original renderings.</p>
|
||
</span></div></article></div><div class="docs-prevnext"><a class="docs-prev button" href="/docs/meshes_io"><span class="arrow-prev">← </span><span>Loading from file</span></a><a class="docs-next button" href="/docs/batching"><span>Batching</span><span class="arrow-next"> →</span></a></div></div></div><nav class="onPageNav"></nav></div><footer class="nav-footer" id="footer"><section class="sitemap"><div class="footerSection"><div class="social"><a class="github-button" href="https://github.com/facebookresearch/pytorch3d" data-count-href="https://github.com/facebookresearch/pytorch3d/stargazers" data-show-count="true" data-count-aria-label="# stargazers on GitHub" aria-label="Star PyTorch3D on GitHub">pytorch3d</a></div></div></section><a href="https://opensource.facebook.com/" target="_blank" rel="noreferrer noopener" class="fbOpenSource"><img src="/img/oss_logo.png" alt="Facebook Open Source" width="170" height="45"/></a><section class="copyright">Copyright © 2024 Meta Platforms, Inc<br/>Legal:<a href="https://opensource.facebook.com/legal/privacy/" target="_blank" rel="noreferrer noopener">Privacy</a><a href="https://opensource.facebook.com/legal/terms/" target="_blank" rel="noreferrer noopener">Terms</a></section></footer></div></body></html> |