pytorch3d/tests/implicitron/test_voxel_grids.py
Darijan Gudelj 24f5f4a3e7 VoxelGridModule
Summary: Simple wrapper around voxel grids to make them a module

Reviewed By: bottler

Differential Revision: D38829762

fbshipit-source-id: dfee85088fa3c65e396cc7d3bf7ebaaffaadb646
2022-08-25 09:40:43 -07:00

614 lines
21 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import unittest
from typing import Optional, Tuple
import torch
from pytorch3d.implicitron.models.implicit_function.utils import (
interpolate_line,
interpolate_plane,
interpolate_volume,
)
from pytorch3d.implicitron.models.implicit_function.voxel_grid import (
CPFactorizedVoxelGrid,
FullResolutionVoxelGrid,
VMFactorizedVoxelGrid,
VoxelGridModule,
)
from pytorch3d.implicitron.tools.config import expand_args_fields
from tests.common_testing import TestCaseMixin
class TestVoxelGrids(TestCaseMixin, unittest.TestCase):
"""
Tests Voxel grids, tests them by setting all elements to zero (after retrieving
they should also return zero) and by setting all of the elements to one and
getting the result. Also tests the interpolation by 'manually' interpolating
one by one sample and comparing with the batched implementation.
"""
def test_my_code(self):
return
def get_random_normalized_points(
self, n_grids, n_points, dimension=3
) -> torch.Tensor:
# create random query points
return torch.rand(n_grids, n_points, dimension) * 2 - 1
def _test_query_with_constant_init_cp(
self,
n_grids: int,
n_features: int,
n_components: int,
resolution: Tuple[int],
value: float = 1,
n_points: int = 1,
) -> None:
# set everything to 'value' and do query for elementsthe result should
# be of shape (n_grids, n_points, n_features) and be filled with n_components
# * value
grid = CPFactorizedVoxelGrid(
resolution=resolution,
n_components=n_components,
n_features=n_features,
)
shapes = grid.get_shapes()
params = grid.values_type(
**{k: torch.ones(n_grids, *shapes[k]) * value for k in shapes}
)
assert torch.allclose(
grid.evaluate_local(
self.get_random_normalized_points(n_grids, n_points), params
),
torch.ones(n_grids, n_points, n_features) * n_components * value,
)
def _test_query_with_constant_init_vm(
self,
n_grids: int,
n_features: int,
resolution: Tuple[int],
n_components: Optional[int] = None,
distribution: Optional[Tuple[int]] = None,
value: float = 1,
n_points: int = 1,
) -> None:
# set everything to 'value' and do query for elements
grid = VMFactorizedVoxelGrid(
n_features=n_features,
resolution=resolution,
n_components=n_components,
distribution_of_components=distribution,
)
shapes = grid.get_shapes()
params = grid.values_type(
**{k: torch.ones(n_grids, *shapes[k]) * value for k in shapes}
)
expected_element = (
n_components * value if distribution is None else sum(distribution) * value
)
assert torch.allclose(
grid.evaluate_local(
self.get_random_normalized_points(n_grids, n_points), params
),
torch.ones(n_grids, n_points, n_features) * expected_element,
)
def _test_query_with_constant_init_full(
self,
n_grids: int,
n_features: int,
resolution: Tuple[int],
value: int = 1,
n_points: int = 1,
) -> None:
# set everything to 'value' and do query for elements
grid = FullResolutionVoxelGrid(n_features=n_features, resolution=resolution)
shapes = grid.get_shapes()
params = grid.values_type(
**{k: torch.ones(n_grids, *shapes[k]) * value for k in shapes}
)
expected_element = value
assert torch.allclose(
grid.evaluate_local(
self.get_random_normalized_points(n_grids, n_points), params
),
torch.ones(n_grids, n_points, n_features) * expected_element,
)
def test_query_with_constant_init(self):
with self.subTest("Full"):
self._test_query_with_constant_init_full(
n_grids=5, n_features=6, resolution=(3, 4, 5), n_points=3
)
with self.subTest("Full with 1 in dimensions"):
self._test_query_with_constant_init_full(
n_grids=5, n_features=1, resolution=(33, 41, 1), n_points=4
)
with self.subTest("CP"):
self._test_query_with_constant_init_cp(
n_grids=5,
n_features=6,
n_components=7,
resolution=(3, 4, 5),
n_points=2,
)
with self.subTest("CP with 1 in dimensions"):
self._test_query_with_constant_init_cp(
n_grids=2,
n_features=1,
n_components=3,
resolution=(3, 1, 1),
n_points=4,
)
with self.subTest("VM with symetric distribution"):
self._test_query_with_constant_init_vm(
n_grids=6,
n_features=9,
resolution=(2, 12, 2),
n_components=12,
n_points=3,
)
with self.subTest("VM with distribution"):
self._test_query_with_constant_init_vm(
n_grids=5,
n_features=1,
resolution=(5, 9, 7),
distribution=(33, 41, 1),
n_points=7,
)
def test_query_with_zero_init(self):
with self.subTest("Query testing with zero init CPFactorizedVoxelGrid"):
self._test_query_with_constant_init_cp(
n_grids=5,
n_features=6,
n_components=7,
resolution=(3, 2, 5),
n_points=3,
value=0,
)
with self.subTest("Query testing with zero init VMFactorizedVoxelGrid"):
self._test_query_with_constant_init_vm(
n_grids=2,
n_features=9,
resolution=(2, 11, 3),
n_components=3,
n_points=3,
value=0,
)
with self.subTest("Query testing with zero init FullResolutionVoxelGrid"):
self._test_query_with_constant_init_full(
n_grids=4, n_features=2, resolution=(3, 3, 5), n_points=3, value=0
)
def setUp(self):
torch.manual_seed(42)
expand_args_fields(FullResolutionVoxelGrid)
expand_args_fields(CPFactorizedVoxelGrid)
expand_args_fields(VMFactorizedVoxelGrid)
expand_args_fields(VoxelGridModule)
def _interpolate_1D(
self, points: torch.Tensor, vectors: torch.Tensor
) -> torch.Tensor:
"""
interpolate vector from points, which are (batch, 1) and individual point is in [-1, 1]
"""
result = []
_, _, width = vectors.shape
# transform from [-1, 1] to [0, width-1]
points = (points + 1) / 2 * (width - 1)
for vector, row in zip(vectors, points):
newrow = []
for x in row:
xf, xc = int(torch.floor(x)), int(torch.ceil(x))
itemf, itemc = vector[:, xf], vector[:, xc]
tmp = itemf * (xc - x) + itemc * (x - xf)
newrow.append(tmp[None, None, :])
result.append(torch.cat(newrow, dim=1))
return torch.cat(result)
def _interpolate_2D(
self, points: torch.Tensor, matrices: torch.Tensor
) -> torch.Tensor:
"""
interpolate matrix from points, which are (batch, 2) and individual point is in [-1, 1]
"""
result = []
n_grids, _, width, height = matrices.shape
points = (points + 1) / 2 * (torch.tensor([[[width, height]]]) - 1)
for matrix, row in zip(matrices, points):
newrow = []
for x, y in row:
xf, xc = int(torch.floor(x)), int(torch.ceil(x))
yf, yc = int(torch.floor(y)), int(torch.ceil(y))
itemff, itemfc = matrix[:, xf, yf], matrix[:, xf, yc]
itemcf, itemcc = matrix[:, xc, yf], matrix[:, xc, yc]
itemf = itemff * (xc - x) + itemcf * (x - xf)
itemc = itemfc * (xc - x) + itemcc * (x - xf)
tmp = itemf * (yc - y) + itemc * (y - yf)
newrow.append(tmp[None, None, :])
result.append(torch.cat(newrow, dim=1))
return torch.cat(result)
def _interpolate_3D(
self, points: torch.Tensor, tensors: torch.Tensor
) -> torch.Tensor:
"""
interpolate tensors from points, which are (batch, 3) and individual point is in [-1, 1]
"""
result = []
_, _, width, height, depth = tensors.shape
batch_normalized_points = (
(points + 1) / 2 * (torch.tensor([[[width, height, depth]]]) - 1)
)
batch_points = points
for tensor, points, normalized_points in zip(
tensors, batch_points, batch_normalized_points
):
newrow = []
for (x, y, z), (_, _, nz) in zip(points, normalized_points):
zf, zc = int(torch.floor(nz)), int(torch.ceil(nz))
itemf = self._interpolate_2D(
points=torch.tensor([[[x, y]]]), matrices=tensor[None, :, :, :, zf]
)
itemc = self._interpolate_2D(
points=torch.tensor([[[x, y]]]), matrices=tensor[None, :, :, :, zc]
)
tmp = self._interpolate_1D(
points=torch.tensor([[[z]]]),
vectors=torch.cat((itemf, itemc), dim=1).permute(0, 2, 1),
)
newrow.append(tmp)
result.append(torch.cat(newrow, dim=1))
return torch.cat(result)
def test_interpolation(self):
with self.subTest("1D interpolation"):
points = self.get_random_normalized_points(
n_grids=4, n_points=5, dimension=1
)
vector = torch.randn(size=(4, 3, 2))
assert torch.allclose(
self._interpolate_1D(points, vector),
interpolate_line(
points,
vector,
align_corners=True,
padding_mode="zeros",
mode="bilinear",
),
)
with self.subTest("2D interpolation"):
points = self.get_random_normalized_points(
n_grids=4, n_points=5, dimension=2
)
matrix = torch.randn(size=(4, 2, 3, 5))
assert torch.allclose(
self._interpolate_2D(points, matrix),
interpolate_plane(
points,
matrix,
align_corners=True,
padding_mode="zeros",
mode="bilinear",
),
)
with self.subTest("3D interpolation"):
points = self.get_random_normalized_points(
n_grids=4, n_points=5, dimension=3
)
tensor = torch.randn(size=(4, 5, 2, 7, 2))
assert torch.allclose(
self._interpolate_3D(points, tensor),
interpolate_volume(
points,
tensor,
align_corners=True,
padding_mode="zeros",
mode="bilinear",
),
)
def test_floating_point_query(self):
"""
test querying the voxel grids on some float positions
"""
with self.subTest("FullResolution"):
grid = FullResolutionVoxelGrid(n_features=1, resolution=(1, 1, 1))
params = grid.values_type(**grid.get_shapes())
params.voxel_grid = torch.tensor(
[
[
[[[1, 3], [5, 7]], [[9, 11], [13, 15]]],
[[[2, 4], [6, 8]], [[10, 12], [14, 16]]],
],
[
[[[17, 18], [19, 20]], [[21, 22], [23, 24]]],
[[[25, 26], [27, 28]], [[29, 30], [31, 32]]],
],
],
dtype=torch.float,
)
points = (
torch.tensor(
[
[
[1, 0, 1],
[0.5, 1, 1],
[1 / 3, 1 / 3, 2 / 3],
],
[
[0, 1, 1],
[0, 0.5, 1],
[1 / 4, 1 / 4, 3 / 4],
],
]
)
/ torch.tensor([[1.0, 1, 1]])
* 2
- 1
)
expected_result = torch.tensor(
[
[[11, 12], [11, 12], [6.333333, 7.3333333]],
[[20, 28], [19, 27], [19.25, 27.25]],
]
)
assert torch.allclose(
grid.evaluate_local(points, params),
expected_result,
rtol=0.00001,
), grid.evaluate_local(points, params)
with self.subTest("CP"):
grid = CPFactorizedVoxelGrid(
n_features=1, resolution=(1, 1, 1), n_components=3
)
params = grid.values_type(**grid.get_shapes())
params.vector_components_x = torch.tensor(
[
[[1, 2], [10.5, 20.5]],
[[10, 20], [2, 4]],
]
)
params.vector_components_y = torch.tensor(
[
[[3, 4, 5], [30.5, 40.5, 50.5]],
[[30, 40, 50], [1, 3, 5]],
]
)
params.vector_components_z = torch.tensor(
[
[[6, 7, 8, 9], [60.5, 70.5, 80.5, 90.5]],
[[60, 70, 80, 90], [6, 7, 8, 9]],
]
)
params.basis_matrix = torch.tensor(
[
[[2.0], [2.0]],
[[1.0], [2.0]],
]
)
points = (
torch.tensor(
[
[
[0, 2, 2],
[1, 2, 0.25],
[0.5, 0.5, 1],
[1 / 3, 2 / 3, 2 + 1 / 3],
],
[
[1, 0, 1],
[0.5, 2, 2],
[1, 0.5, 0.5],
[1 / 4, 3 / 4, 2 + 1 / 4],
],
]
)
/ torch.tensor([[[1.0, 2, 3]]])
* 2
- 1
)
expected_result_matrix = torch.tensor(
[
[[85450.25], [130566.5], [77658.75], [86285.422]],
[[42056], [60240], [45604], [38775]],
]
)
expected_result_sum = torch.tensor(
[
[[42725.125], [65283.25], [38829.375], [43142.711]],
[[42028], [60120], [45552], [38723.4375]],
]
)
with self.subTest("CP with basis_matrix reduction"):
assert torch.allclose(
grid.evaluate_local(points, params),
expected_result_matrix,
rtol=0.00001,
)
del params.basis_matrix
with self.subTest("CP with sum reduction"):
assert torch.allclose(
grid.evaluate_local(points, params),
expected_result_sum,
rtol=0.00001,
)
with self.subTest("VM"):
grid = VMFactorizedVoxelGrid(
n_features=1, resolution=(1, 1, 1), n_components=3
)
params = VMFactorizedVoxelGrid.values_type(**grid.get_shapes())
params.matrix_components_xy = torch.tensor(
[
[[[1, 2], [3, 4]], [[19, 20], [21, 22.0]]],
[[[35, 36], [37, 38]], [[39, 40], [41, 42]]],
]
)
params.matrix_components_xz = torch.tensor(
[
[[[7, 8], [9, 10]], [[25, 26], [27, 28.0]]],
[[[43, 44], [45, 46]], [[47, 48], [49, 50]]],
]
)
params.matrix_components_yz = torch.tensor(
[
[[[13, 14], [15, 16]], [[31, 32], [33, 34.0]]],
[[[51, 52], [53, 54]], [[55, 56], [57, 58.0]]],
]
)
params.vector_components_z = torch.tensor(
[
[[5, 6], [23, 24.0]],
[[59, 60], [61, 62]],
]
)
params.vector_components_y = torch.tensor(
[
[[11, 12], [29, 30.0]],
[[63, 64], [65, 66]],
]
)
params.vector_components_x = torch.tensor(
[
[[17, 18], [35, 36.0]],
[[67, 68], [69, 70.0]],
]
)
params.basis_matrix = torch.tensor(
[
[2, 2, 2, 2, 2, 2.0],
[1, 2, 1, 2, 1, 2.0],
]
)[:, :, None]
points = (
torch.tensor(
[
[
[1, 0, 1],
[0.5, 1, 1],
[1 / 3, 1 / 3, 2 / 3],
],
[
[0, 1, 0],
[0, 0, 0],
[0, 1, 0],
],
]
)
/ torch.tensor([[[1.0, 1, 1]]])
* 2
- 1
)
expected_result_matrix = torch.tensor(
[
[[5696], [5854], [5484.888]],
[[27377], [26649], [27377]],
]
)
expected_result_sum = torch.tensor(
[
[[2848], [2927], [2742.444]],
[[17902], [17420], [17902]],
]
)
with self.subTest("VM with basis_matrix reduction"):
assert torch.allclose(
grid.evaluate_local(points, params),
expected_result_matrix,
rtol=0.00001,
)
del params.basis_matrix
with self.subTest("VM with sum reduction"):
assert torch.allclose(
grid.evaluate_local(points, params),
expected_result_sum,
rtol=0.0001,
), grid.evaluate_local(points, params)
def test_forward_with_small_init_std(self):
"""
Test does the grid return small values if it is initialized with small
mean and small standard deviation.
"""
def test(cls, **kwargs):
with self.subTest(cls.__name__):
n_grids = 3
grid = cls(**kwargs)
shapes = grid.get_shapes()
params = cls.values_type(
**{
k: torch.normal(mean=torch.zeros(n_grids, *shape), std=0.0001)
for k, shape in shapes.items()
}
)
points = self.get_random_normalized_points(n_grids=n_grids, n_points=3)
max_expected_result = torch.zeros((len(points), 10)) + 1e-2
assert torch.all(
grid.evaluate_local(points, params) < max_expected_result
)
test(
FullResolutionVoxelGrid,
resolution=(4, 6, 9),
n_features=10,
)
test(
CPFactorizedVoxelGrid,
resolution=(4, 6, 9),
n_features=10,
n_components=3,
)
test(
VMFactorizedVoxelGrid,
resolution=(4, 6, 9),
n_features=10,
n_components=3,
)
def test_voxel_grid_module_location(self, n_times=10):
"""
This checks the module uses locator correctly etc..
If we know that voxel grids work for (x, y, z) in local coordinates
to test if the VoxelGridModule does not have permuted dimensions we
create local coordinates, pass them through verified voxelgrids and
compare the result with the result that we get when we convert
coordinates to world and pass them through the VoxelGridModule
"""
for _ in range(n_times):
extents = tuple(torch.randint(1, 50, size=(3,)).tolist())
grid = VoxelGridModule(extents=extents)
local_point = torch.rand(1, 3) * 2 - 1
world_point = local_point * torch.tensor(extents) / 2
grid_values = grid.voxel_grid.values_type(**grid.params)
assert torch.allclose(
grid(world_point)[0, 0],
grid.voxel_grid.evaluate_local(local_point[None], grid_values)[0, 0, 0],
rtol=0.0001,
)