2020-03-26 11:13:34 -07:00

3075 lines
336 KiB
HTML
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!DOCTYPE html><html lang=""><head><meta charSet="utf-8"/><meta http-equiv="X-UA-Compatible" content="IE=edge"/><title>PyTorch3D · A library for deep learning with 3D data</title><meta name="viewport" content="width=device-width"/><meta name="generator" content="Docusaurus"/><meta name="description" content="A library for deep learning with 3D data"/><meta property="og:title" content="PyTorch3D · A library for deep learning with 3D data"/><meta property="og:type" content="website"/><meta property="og:url" content="https://pytorch3d.org/"/><meta property="og:description" content="A library for deep learning with 3D data"/><meta property="og:image" content="https://pytorch3d.org/img/pytorch3dlogoicon.svg"/><meta name="twitter:card" content="summary"/><meta name="twitter:image" content="https://pytorch3d.org/img/pytorch3dlogoicon.svg"/><link rel="shortcut icon" href="/img/pytorch3dfavicon.png"/><link rel="stylesheet" href="//cdnjs.cloudflare.com/ajax/libs/highlight.js/9.12.0/styles/default.min.css"/><script>
(function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){
(i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o),
m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m)
})(window,document,'script','https://www.google-analytics.com/analytics.js','ga');
ga('create', 'UA-157376881-1', 'auto');
ga('send', 'pageview');
</script><script type="text/javascript" src="https://buttons.github.io/buttons.js"></script><script src="/js/scrollSpy.js"></script><link rel="stylesheet" href="/css/main.css"/><script src="/js/codetabs.js"></script></head><body><div class="fixedHeaderContainer"><div class="headerWrapper wrapper"><header><a href="/"><img class="logo" src="/img/pytorch3dfavicon.png" alt="PyTorch3D"/><h2 class="headerTitleWithLogo">PyTorch3D</h2></a><div class="navigationWrapper navigationSlider"><nav class="slidingNav"><ul class="nav-site nav-site-internal"><li class=""><a href="/docs/why_pytorch3d" target="_self">Docs</a></li><li class=""><a href="/tutorials" target="_self">Tutorials</a></li><li class=""><a href="https://pytorch3d.readthedocs.io/" target="_self">API</a></li><li class=""><a href="https://github.com/facebookresearch/pytorch3d" target="_self">GitHub</a></li></ul></nav></div></header></div></div><div class="navPusher"><div class="docMainWrapper wrapper"><div class="container docsNavContainer" id="docsNav"><nav class="toc"><div class="toggleNav"><section class="navWrapper wrapper"><div class="navBreadcrumb wrapper"><div class="navToggle" id="navToggler"><div class="hamburger-menu"><div class="line1"></div><div class="line2"></div><div class="line3"></div></div></div><h2><i></i><span></span></h2><div class="tocToggler" id="tocToggler"><i class="icon-toc"></i></div></div><div class="navGroups"><div class="navGroup"><h3 class="navGroupCategoryTitle">Tutorials</h3><ul class=""><li class="navListItem"><a class="navItem" href="/tutorials/">Overview</a></li></ul></div><div class="navGroup"><h3 class="navGroupCategoryTitle">3D operators</h3><ul class=""><li class="navListItem"><a class="navItem" href="/tutorials/deform_source_mesh_to_target_mesh">Fit Mesh</a></li><li class="navListItem"><a class="navItem" href="/tutorials/bundle_adjustment">Bundle Adjustment</a></li></ul></div><div class="navGroup"><h3 class="navGroupCategoryTitle">Rendering</h3><ul class=""><li class="navListItem navListItemActive"><a class="navItem" href="/tutorials/render_textured_meshes">Render Textured Meshes</a></li><li class="navListItem"><a class="navItem" href="/tutorials/camera_position_optimization_with_differentiable_rendering">Camera Position Optimization</a></li></ul></div></div></section></div><script>
var coll = document.getElementsByClassName('collapsible');
var checkActiveCategory = true;
for (var i = 0; i < coll.length; i++) {
var links = coll[i].nextElementSibling.getElementsByTagName('*');
if (checkActiveCategory){
for (var j = 0; j < links.length; j++) {
if (links[j].classList.contains('navListItemActive')){
coll[i].nextElementSibling.classList.toggle('hide');
coll[i].childNodes[1].classList.toggle('rotate');
checkActiveCategory = false;
break;
}
}
}
coll[i].addEventListener('click', function() {
var arrow = this.childNodes[1];
arrow.classList.toggle('rotate');
var content = this.nextElementSibling;
content.classList.toggle('hide');
});
}
document.addEventListener('DOMContentLoaded', function() {
createToggler('#navToggler', '#docsNav', 'docsSliderActive');
createToggler('#tocToggler', 'body', 'tocActive');
var headings = document.querySelector('.toc-headings');
headings && headings.addEventListener('click', function(event) {
var el = event.target;
while(el !== headings){
if (el.tagName === 'A') {
document.body.classList.remove('tocActive');
break;
} else{
el = el.parentNode;
}
}
}, false);
function createToggler(togglerSelector, targetSelector, className) {
var toggler = document.querySelector(togglerSelector);
var target = document.querySelector(targetSelector);
if (!toggler) {
return;
}
toggler.onclick = function(event) {
event.preventDefault();
target.classList.toggle(className);
};
}
});
</script></nav></div><div class="container mainContainer"><div class="wrapper"><div class="tutorialButtonsWrapper"><div class="tutorialButtonWrapper buttonWrapper"><a class="tutorialButton button" download="" href="https://colab.research.google.com/github/facebookresearch/pytorch3d/blob/stable/docs/tutorials/render_textured_meshes.ipynb" target="_blank"><img class="colabButton" align="left" src="/img/colab_icon.png"/>Run in Google Colab</a></div><div class="tutorialButtonWrapper buttonWrapper"><a class="tutorialButton button" download="" href="/files/render_textured_meshes.ipynb" target="_blank"><svg aria-hidden="true" focusable="false" data-prefix="fas" data-icon="file-download" class="svg-inline--fa fa-file-download fa-w-12" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 384 512"><path fill="currentColor" d="M224 136V0H24C10.7 0 0 10.7 0 24v464c0 13.3 10.7 24 24 24h336c13.3 0 24-10.7 24-24V160H248c-13.2 0-24-10.8-24-24zm76.45 211.36l-96.42 95.7c-6.65 6.61-17.39 6.61-24.04 0l-96.42-95.7C73.42 337.29 80.54 320 94.82 320H160v-80c0-8.84 7.16-16 16-16h32c8.84 0 16 7.16 16 16v80h65.18c14.28 0 21.4 17.29 11.27 27.36zM377 105L279.1 7c-4.5-4.5-10.6-7-17-7H256v128h128v-6.1c0-6.3-2.5-12.4-7-16.9z"></path></svg>Download Tutorial Jupyter Notebook</a></div><div class="tutorialButtonWrapper buttonWrapper"><a class="tutorialButton button" download="" href="/files/render_textured_meshes.py" target="_blank"><svg aria-hidden="true" focusable="false" data-prefix="fas" data-icon="file-download" class="svg-inline--fa fa-file-download fa-w-12" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 384 512"><path fill="currentColor" d="M224 136V0H24C10.7 0 0 10.7 0 24v464c0 13.3 10.7 24 24 24h336c13.3 0 24-10.7 24-24V160H248c-13.2 0-24-10.8-24-24zm76.45 211.36l-96.42 95.7c-6.65 6.61-17.39 6.61-24.04 0l-96.42-95.7C73.42 337.29 80.54 320 94.82 320H160v-80c0-8.84 7.16-16 16-16h32c8.84 0 16 7.16 16 16v80h65.18c14.28 0 21.4 17.29 11.27 27.36zM377 105L279.1 7c-4.5-4.5-10.6-7-17-7H256v128h128v-6.1c0-6.3-2.5-12.4-7-16.9z"></path></svg>Download Tutorial Source Code</a></div></div><div class="tutorialBody">
<script
src="https://cdnjs.cloudflare.com/ajax/libs/require.js/2.1.10/require.min.js">
</script>
<script
src="https://cdnjs.cloudflare.com/ajax/libs/jquery/2.0.3/jquery.min.js">
</script>
<div class="notebook">
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In [0]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython3"><pre><span></span><span class="c1"># Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.</span>
</pre></div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<h1 id="Render-a-textured-mesh">Render a textured mesh<a class="anchor-link" href="#Render-a-textured-mesh"></a></h1><p>This tutorial shows how to:</p>
<ul>
<li>load a mesh and textures from an <code>.obj</code> file. </li>
<li>set up a renderer </li>
<li>render the mesh </li>
<li>vary the rendering settings such as lighting and camera position</li>
<li>use the batching features of the pytorch3d API to render the mesh from different viewpoints</li>
</ul>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<h2 id="0.-Install-and-Import-modules">0. Install and Import modules<a class="anchor-link" href="#0.-Install-and-Import-modules"></a></h2>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>If <code>torch</code>, <code>torchvision</code> and <code>pytorch3d</code> are not installed, run the following cell:</p>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In [1]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython3"><pre><span></span><span class="o">!</span>pip install torch torchvision
<span class="o">!</span>pip install <span class="s1">'git+https://github.com/facebookresearch/pytorch3d.git@stable'</span>
</pre></div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In [1]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython3"><pre><span></span><span class="kn">import</span> <span class="nn">os</span>
<span class="kn">import</span> <span class="nn">torch</span>
<span class="kn">import</span> <span class="nn">matplotlib.pyplot</span> <span class="k">as</span> <span class="nn">plt</span>
<span class="kn">from</span> <span class="nn">skimage.io</span> <span class="k">import</span> <span class="n">imread</span>
<span class="c1"># Util function for loading meshes</span>
<span class="kn">from</span> <span class="nn">pytorch3d.io</span> <span class="k">import</span> <span class="n">load_objs_as_meshes</span>
<span class="c1"># Data structures and functions for rendering</span>
<span class="kn">from</span> <span class="nn">pytorch3d.structures</span> <span class="k">import</span> <span class="n">Meshes</span><span class="p">,</span> <span class="n">Textures</span>
<span class="kn">from</span> <span class="nn">pytorch3d.renderer</span> <span class="k">import</span> <span class="p">(</span>
<span class="n">look_at_view_transform</span><span class="p">,</span>
<span class="n">OpenGLPerspectiveCameras</span><span class="p">,</span>
<span class="n">PointLights</span><span class="p">,</span>
<span class="n">DirectionalLights</span><span class="p">,</span>
<span class="n">Materials</span><span class="p">,</span>
<span class="n">RasterizationSettings</span><span class="p">,</span>
<span class="n">MeshRenderer</span><span class="p">,</span>
<span class="n">MeshRasterizer</span><span class="p">,</span>
<span class="n">TexturedSoftPhongShader</span>
<span class="p">)</span>
<span class="c1"># add path for demo utils functions </span>
<span class="kn">import</span> <span class="nn">sys</span>
<span class="kn">import</span> <span class="nn">os</span>
<span class="n">sys</span><span class="o">.</span><span class="n">path</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">os</span><span class="o">.</span><span class="n">path</span><span class="o">.</span><span class="n">abspath</span><span class="p">(</span><span class="s1">''</span><span class="p">))</span>
</pre></div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>If using <strong>Google Colab</strong>, fetch the utils file for plotting image grids:</p>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In [2]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython3"><pre><span></span><span class="o">!</span>wget https://raw.githubusercontent.com/facebookresearch/pytorch3d/master/docs/tutorials/utils/plot_image_grid.py
<span class="kn">from</span> <span class="nn">plot_image_grid</span> <span class="k">import</span> <span class="n">image_grid</span>
</pre></div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>OR if running <strong>locally</strong> uncomment and run the following cell:</p>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In [13]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython3"><pre><span></span><span class="c1"># from utils import image_grid</span>
</pre></div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<h3 id="1.-Load-a-mesh-and-texture-file">1. Load a mesh and texture file<a class="anchor-link" href="#1.-Load-a-mesh-and-texture-file"></a></h3><p>Load an <code>.obj</code> file and it's associated <code>.mtl</code> file and create a <strong>Textures</strong> and <strong>Meshes</strong> object.</p>
<p><strong>Meshes</strong> is a unique datastructure provided in PyTorch3D for working with batches of meshes of different sizes.</p>
<p><strong>Textures</strong> is an auxillary datastructure for storing texture information about meshes.</p>
<p><strong>Meshes</strong> has several class methods which are used throughout the rendering pipeline.</p>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>If running this notebook using <strong>Google Colab</strong>, run the following cell to fetch the mesh obj and texture files and save it at the path <code>data/cow_mesh</code>:
If running locally, the data is already available at the correct path.</p>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In [3]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython3"><pre><span></span><span class="o">!</span>mkdir -p data/cow_mesh
<span class="o">!</span>wget -P data/cow_mesh https://dl.fbaipublicfiles.com/pytorch3d/data/cow_mesh/cow.obj
<span class="o">!</span>wget -P data/cow_mesh https://dl.fbaipublicfiles.com/pytorch3d/data/cow_mesh/cow.mtl
<span class="o">!</span>wget -P data/cow_mesh https://dl.fbaipublicfiles.com/pytorch3d/data/cow_mesh/cow_texture.png
</pre></div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In [2]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython3"><pre><span></span><span class="c1"># Setup</span>
<span class="n">device</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">device</span><span class="p">(</span><span class="s2">"cuda:0"</span><span class="p">)</span>
<span class="n">torch</span><span class="o">.</span><span class="n">cuda</span><span class="o">.</span><span class="n">set_device</span><span class="p">(</span><span class="n">device</span><span class="p">)</span>
<span class="c1"># Set paths</span>
<span class="n">DATA_DIR</span> <span class="o">=</span> <span class="s2">"./data"</span>
<span class="n">obj_filename</span> <span class="o">=</span> <span class="n">os</span><span class="o">.</span><span class="n">path</span><span class="o">.</span><span class="n">join</span><span class="p">(</span><span class="n">DATA_DIR</span><span class="p">,</span> <span class="s2">"cow_mesh/cow.obj"</span><span class="p">)</span>
<span class="c1"># Load obj file</span>
<span class="n">mesh</span> <span class="o">=</span> <span class="n">load_objs_as_meshes</span><span class="p">([</span><span class="n">obj_filename</span><span class="p">],</span> <span class="n">device</span><span class="o">=</span><span class="n">device</span><span class="p">)</span>
<span class="n">texture_image</span><span class="o">=</span><span class="n">mesh</span><span class="o">.</span><span class="n">textures</span><span class="o">.</span><span class="n">maps_padded</span><span class="p">()</span>
</pre></div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<h4 id="Let's-visualize-the-texture-map">Let's visualize the texture map<a class="anchor-link" href="#Let's-visualize-the-texture-map"></a></h4>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In [3]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">plt</span><span class="o">.</span><span class="n">figure</span><span class="p">(</span><span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">7</span><span class="p">,</span><span class="mi">7</span><span class="p">))</span>
<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">texture_image</span><span class="o">.</span><span class="n">squeeze</span><span class="p">()</span><span class="o">.</span><span class="n">cpu</span><span class="p">()</span><span class="o">.</span><span class="n">numpy</span><span class="p">())</span>
<span class="n">plt</span><span class="o">.</span><span class="n">grid</span><span class="p">(</span><span class="s2">"off"</span><span class="p">);</span>
<span class="n">plt</span><span class="o">.</span><span class="n">axis</span><span class="p">(</span><span class="s1">'off'</span><span class="p">);</span>
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area">
<div class="prompt"></div>
<div class="output_png output_subarea ">
<img src="
"/>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<h2 id="2.-Create-a-renderer">2. Create a renderer<a class="anchor-link" href="#2.-Create-a-renderer"></a></h2><p>A renderer in PyTorch3D is composed of a <strong>rasterizer</strong> and a <strong>shader</strong> which each have a number of subcomponents such as a <strong>camera</strong> (orthographic/perspective). Here we initialize some of these components and use default values for the rest.</p>
<p>In this example we will first create a <strong>renderer</strong> which uses a <strong>perspective camera</strong>, a <strong>point light</strong> and applies <strong>phong shading</strong>. Then we learn how to vary different components using the modular API.</p>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In [4]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython3"><pre><span></span><span class="c1"># Initialize an OpenGL perspective camera.</span>
<span class="c1"># With world coordinates +Y up, +X left and +Z in, the front of the cow is facing the -Z direction. </span>
<span class="c1"># So we move the camera by 180 in the azimuth direction so it is facing the front of the cow. </span>
<span class="n">R</span><span class="p">,</span> <span class="n">T</span> <span class="o">=</span> <span class="n">look_at_view_transform</span><span class="p">(</span><span class="mf">2.7</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">180</span><span class="p">)</span>
<span class="n">cameras</span> <span class="o">=</span> <span class="n">OpenGLPerspectiveCameras</span><span class="p">(</span><span class="n">device</span><span class="o">=</span><span class="n">device</span><span class="p">,</span> <span class="n">R</span><span class="o">=</span><span class="n">R</span><span class="p">,</span> <span class="n">T</span><span class="o">=</span><span class="n">T</span><span class="p">)</span>
<span class="c1"># Define the settings for rasterization and shading. Here we set the output image to be of size</span>
<span class="c1"># 512x512. As we are rendering images for visualization purposes only we will set faces_per_pixel=1</span>
<span class="c1"># and blur_radius=0.0. We also set bin_size and max_faces_per_bin to None which ensure that </span>
<span class="c1"># the faster coarse-to-fine rasterization method is used. Refer to rasterize_meshes.py for </span>
<span class="c1"># explanations of these parameters. Refer to docs/notes/renderer.md for an explanation of </span>
<span class="c1"># the difference between naive and coarse-to-fine rasterization. </span>
<span class="n">raster_settings</span> <span class="o">=</span> <span class="n">RasterizationSettings</span><span class="p">(</span>
<span class="n">image_size</span><span class="o">=</span><span class="mi">512</span><span class="p">,</span>
<span class="n">blur_radius</span><span class="o">=</span><span class="mf">0.0</span><span class="p">,</span>
<span class="n">faces_per_pixel</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span>
<span class="n">bin_size</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span> <span class="c1"># this setting controls whether naive or coarse-to-fine rasterization is used</span>
<span class="n">max_faces_per_bin</span> <span class="o">=</span> <span class="kc">None</span> <span class="c1"># this setting is for coarse rasterization</span>
<span class="p">)</span>
<span class="c1"># Place a point light in front of the object. As mentioned above, the front of the cow is facing the </span>
<span class="c1"># -z direction. </span>
<span class="n">lights</span> <span class="o">=</span> <span class="n">PointLights</span><span class="p">(</span><span class="n">device</span><span class="o">=</span><span class="n">device</span><span class="p">,</span> <span class="n">location</span><span class="o">=</span><span class="p">[[</span><span class="mf">0.0</span><span class="p">,</span> <span class="mf">0.0</span><span class="p">,</span> <span class="o">-</span><span class="mf">3.0</span><span class="p">]])</span>
<span class="c1"># Create a phong renderer by composing a rasterizer and a shader. The textured phong shader will </span>
<span class="c1"># interpolate the texture uv coordinates for each vertex, sample from a texture image and </span>
<span class="c1"># apply the Phong lighting model</span>
<span class="n">renderer</span> <span class="o">=</span> <span class="n">MeshRenderer</span><span class="p">(</span>
<span class="n">rasterizer</span><span class="o">=</span><span class="n">MeshRasterizer</span><span class="p">(</span>
<span class="n">cameras</span><span class="o">=</span><span class="n">cameras</span><span class="p">,</span>
<span class="n">raster_settings</span><span class="o">=</span><span class="n">raster_settings</span>
<span class="p">),</span>
<span class="n">shader</span><span class="o">=</span><span class="n">TexturedSoftPhongShader</span><span class="p">(</span>
<span class="n">device</span><span class="o">=</span><span class="n">device</span><span class="p">,</span>
<span class="n">cameras</span><span class="o">=</span><span class="n">cameras</span><span class="p">,</span>
<span class="n">lights</span><span class="o">=</span><span class="n">lights</span>
<span class="p">)</span>
<span class="p">)</span>
</pre></div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<h2 id="3.-Render-the-mesh">3. Render the mesh<a class="anchor-link" href="#3.-Render-the-mesh"></a></h2>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>The light is in front of the object so it is bright and the image has specular highlights.</p>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In [5]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">images</span> <span class="o">=</span> <span class="n">renderer</span><span class="p">(</span><span class="n">mesh</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">figure</span><span class="p">(</span><span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">10</span><span class="p">,</span> <span class="mi">10</span><span class="p">))</span>
<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">images</span><span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="o">...</span><span class="p">,</span> <span class="p">:</span><span class="mi">3</span><span class="p">]</span><span class="o">.</span><span class="n">cpu</span><span class="p">()</span><span class="o">.</span><span class="n">numpy</span><span class="p">())</span>
<span class="n">plt</span><span class="o">.</span><span class="n">grid</span><span class="p">(</span><span class="s2">"off"</span><span class="p">);</span>
<span class="n">plt</span><span class="o">.</span><span class="n">axis</span><span class="p">(</span><span class="s2">"off"</span><span class="p">);</span>
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area">
<div class="prompt"></div>
<div class="output_png output_subarea ">
<img src="
"/>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<h2 id="4.-Move-the-light-behind-the-object-and-re-render">4. Move the light behind the object and re-render<a class="anchor-link" href="#4.-Move-the-light-behind-the-object-and-re-render"></a></h2><p>We can pass arbirary keyword arguments to the <code>rasterizer</code>/<code>shader</code> via the call to the <code>renderer</code> so the renderer does not need to be reinitialized if any of the settings change/</p>
<p>In this case, we can simply update the location of the lights and pass them into the call to the renderer.</p>
<p>The image is now dark as there is only ambient lighting, and there are no specular highlights.</p>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In [6]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython3"><pre><span></span><span class="c1"># Now move the light so it is on the +Z axis which will be behind the cow. </span>
<span class="n">lights</span><span class="o">.</span><span class="n">location</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">tensor</span><span class="p">([</span><span class="mf">0.0</span><span class="p">,</span> <span class="mf">0.0</span><span class="p">,</span> <span class="o">+</span><span class="mf">1.0</span><span class="p">],</span> <span class="n">device</span><span class="o">=</span><span class="n">device</span><span class="p">)[</span><span class="kc">None</span><span class="p">]</span>
<span class="n">images</span> <span class="o">=</span> <span class="n">renderer</span><span class="p">(</span><span class="n">mesh</span><span class="p">,</span> <span class="n">lights</span><span class="o">=</span><span class="n">lights</span><span class="p">)</span>
</pre></div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In [7]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">plt</span><span class="o">.</span><span class="n">figure</span><span class="p">(</span><span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">10</span><span class="p">,</span> <span class="mi">10</span><span class="p">))</span>
<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">images</span><span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="o">...</span><span class="p">,</span> <span class="p">:</span><span class="mi">3</span><span class="p">]</span><span class="o">.</span><span class="n">cpu</span><span class="p">()</span><span class="o">.</span><span class="n">numpy</span><span class="p">())</span>
<span class="n">plt</span><span class="o">.</span><span class="n">grid</span><span class="p">(</span><span class="s2">"off"</span><span class="p">);</span>
<span class="n">plt</span><span class="o">.</span><span class="n">axis</span><span class="p">(</span><span class="s2">"off"</span><span class="p">);</span>
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area">
<div class="prompt"></div>
<div class="output_png output_subarea ">
<img src="
"/>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<h2 id="5.-Rotate-the-object,-modify-the-material-properties-or-light-properties">5. Rotate the object, modify the material properties or light properties<a class="anchor-link" href="#5.-Rotate-the-object,-modify-the-material-properties-or-light-properties"></a></h2><p>We can also change many other settings in the rendering pipeline. Here we:</p>
<ul>
<li>change the <strong>viewing angle</strong> of the camera</li>
<li>change the <strong>position</strong> of the point light</li>
<li>change the <strong>material reflectance</strong> properties of the mesh</li>
</ul>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In [8]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython3"><pre><span></span><span class="c1"># Rotate the object by increasing the elevation and azimuth angles</span>
<span class="n">R</span><span class="p">,</span> <span class="n">T</span> <span class="o">=</span> <span class="n">look_at_view_transform</span><span class="p">(</span><span class="n">dist</span><span class="o">=</span><span class="mf">2.7</span><span class="p">,</span> <span class="n">elev</span><span class="o">=</span><span class="mi">10</span><span class="p">,</span> <span class="n">azim</span><span class="o">=-</span><span class="mi">150</span><span class="p">)</span>
<span class="n">cameras</span> <span class="o">=</span> <span class="n">OpenGLPerspectiveCameras</span><span class="p">(</span><span class="n">device</span><span class="o">=</span><span class="n">device</span><span class="p">,</span> <span class="n">R</span><span class="o">=</span><span class="n">R</span><span class="p">,</span> <span class="n">T</span><span class="o">=</span><span class="n">T</span><span class="p">)</span>
<span class="c1"># Move the light location so the light is shining on the cow's face. </span>
<span class="n">lights</span><span class="o">.</span><span class="n">location</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">tensor</span><span class="p">([[</span><span class="mf">2.0</span><span class="p">,</span> <span class="mf">2.0</span><span class="p">,</span> <span class="o">-</span><span class="mf">2.0</span><span class="p">]],</span> <span class="n">device</span><span class="o">=</span><span class="n">device</span><span class="p">)</span>
<span class="c1"># Change specular color to green and change material shininess </span>
<span class="n">materials</span> <span class="o">=</span> <span class="n">Materials</span><span class="p">(</span>
<span class="n">device</span><span class="o">=</span><span class="n">device</span><span class="p">,</span>
<span class="n">specular_color</span><span class="o">=</span><span class="p">[[</span><span class="mf">0.0</span><span class="p">,</span> <span class="mf">1.0</span><span class="p">,</span> <span class="mf">0.0</span><span class="p">]],</span>
<span class="n">shininess</span><span class="o">=</span><span class="mf">10.0</span>
<span class="p">)</span>
<span class="c1"># Re render the mesh, passing in keyword arguments for the modified components.</span>
<span class="n">images</span> <span class="o">=</span> <span class="n">renderer</span><span class="p">(</span><span class="n">mesh</span><span class="p">,</span> <span class="n">lights</span><span class="o">=</span><span class="n">lights</span><span class="p">,</span> <span class="n">materials</span><span class="o">=</span><span class="n">materials</span><span class="p">,</span> <span class="n">cameras</span><span class="o">=</span><span class="n">cameras</span><span class="p">)</span>
</pre></div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In [9]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">plt</span><span class="o">.</span><span class="n">figure</span><span class="p">(</span><span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">10</span><span class="p">,</span> <span class="mi">10</span><span class="p">))</span>
<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">images</span><span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="o">...</span><span class="p">,</span> <span class="p">:</span><span class="mi">3</span><span class="p">]</span><span class="o">.</span><span class="n">cpu</span><span class="p">()</span><span class="o">.</span><span class="n">numpy</span><span class="p">())</span>
<span class="n">plt</span><span class="o">.</span><span class="n">grid</span><span class="p">(</span><span class="s2">"off"</span><span class="p">);</span>
<span class="n">plt</span><span class="o">.</span><span class="n">axis</span><span class="p">(</span><span class="s2">"off"</span><span class="p">);</span>
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area">
<div class="prompt"></div>
<div class="output_png output_subarea ">
<img src="
AAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0
dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOy9ebhlV1nu+44551q7qV27KtUkISEh
IZiEBIIQwQaBI0GIiAaJgF6vgByux+Y+dgclKnjrKp0c8B6vz71HzoGIHjyCoBwU6QRsrkhIIgE0
pCOVVEIqlaYq1exurTXn+O4fY8w5xxhzzLXW3rV3Za9d749nsdea7ZirUjXe/X3v9w0lIiCEEEII
2ewkj/cACCGEEELGgaKFEEIIIRMBRQshhBBCJgKKFkIIIYRMBBQthBBCCJkIKFoIIYQQMhFkI/az
HpoQQgghpxoV28hICyGEEEImAooWQgghhEwEFC2EEEIImQgoWgghhBAyEVC0EEIIIWQioGghhBBC
yERA0UIIIYSQiYCihRBCCCETAUULIYQQQiYCihZCCCGETAQULYQQQgiZCChaCCGEEDIRULQQQggh
ZCKgaCGEEELIREDRQgghhJCJgKKFEEIIIRMBRQshhBBCJgKKFkIIIYRMBBQthBBCCJkIKFoIIYQQ
MhFQtBBCCCFkIqBoIYQQQshEQNFCCCGEkImAooUQQgghEwFFCyGEEEImAooWQgghhEwEFC2EEEII
mQgoWgghhBAyEVC0EEIIIWQioGghhBBCyERA0UIIIYSQiYCihRBCCCETAUULIYQQQiYCihZCCCGE
TAQULYQQQgiZCChaCCGEEDIRULQQQgghZCKgaCGEEELIREDRQgghhJCJgKKFEEIIIRMBRQshhBBC
JgKKFkIIIYRMBBQthBBCCJkIKFoIIYQQMhFQtBBCCCFkIqBoIYQQQshEQNFCCCGEkImAooUQQggh
EwFFCyGEEEImAooWQgghhEwEFC2EEEIImQgoWgghhBAyEVC0EEIIIWQioGghhBBCyERA0UIIIYSQ
iYCihRBCCCETAUULIYQQQiYCihZCCCGETAQULYQQQgiZCChaCCGEEDIRULQQQgghZCKgaCGEEELI
REDRQgghhJCJgKKFEEIIIRMBRQshhBBCJgKKFkIIIYRMBBQthBBCCJkIKFoIIYQQMhFQtBBCCCFk
IqBoIYQQQshEQNFCCCGEkImAooUQQgghEwFFCyGEEEImAooWQgghhEwEFC2EEEIImQgoWgghhBAy
EVC0EEIIIWQioGghhBBCyERA0UIIIYSQiYCihRBCCCETAUULIYQQQiYCihZCCCGETAQULYQQQgiZ
CLLHewCEkK3Pzz3vKegXGv1co5drfPgr9z3eQyKETCBKRIbtH7qTEEKG8SsvvASDQmNQCAaFdoRL
Uf3j8vGvP/A4j5IQsglRsY1MDxFCNoRfvepSaBGIACLivVyuueLcx22MhJDJgqKFELLuXPf9T4WU
sRT7+5IA0GJeYQj3mqdTuBBCRkPRQghZV37zJZdBIBAFSAKIEmgItJhXUUZaxHkpRlwIIaOhaCGE
rBtvvvoykwJSgKSAJAItQKGBQgu0NsIFsBEY1Za5JoSQJhQthJB1QwTQCpAMkI5AJ7VYKTTqKIt3
0uMxUkLIJMKSZ0LIuvCWqy8z2Z4MkCkTbdF9K1ikTA/V6aAKRloIIWNC0ULIBvOL/+5i5FqQFxoA
zHutkWtBoQX9XOMvv/atx3uYJ42I8a9IR6CngaIvKAaCojDPWXpahomUa644lyXQhJBWKFoI2SDe
9KKnYlBoFFaclKkRM4HbSV4ApYAfueKJ0JCJnbDfcvXlVZRFTwOSCfSCQOe1YCl0kAcqPzLSQggZ
E3paCCGEEDIRULQQsgH8xoufilw0cphyX6marMGUA9sma2XzNQ3TvGRS+5UIBJKI8bLMCAoAugcU
eZ0W0qEJ160cohmXEDIGFC2ErDNvufoyDGAqZ4xAgTdxi5MaAkx6yLyZzH4lZWpIZ4CeAXQX0D1B
0ZOqmVysoZwHxQshZAwoWghZZ3IYM6qktoIGvofF7alWEto6JiXi8ltXX27iLAqQKUBmBVoJ9IpA
F6ZyqNG6f5gwob+FEDIEihZC1pHfuvpyY0btAjqVWrC4DWAjk7YKZ+sJmryNAVeMYJkGZCDQPUAX
tm+LfY003jLKQggZAUULIetIAYGeFugpMU3WgKBffRhjsajm5klIEwlgoixdQGZgoyyAHghED/Gz
xJggoUYIeXxgyTMh64goQOYAPbC/EgyZiMeZozdr3xKTFnIMuNMCPWMiLMWCQPfrUmdxIywscyaE
nAQULYSsI5IKZMpMzmaxwFVM0O5xYdfYTYY4P6UD6G2ATgR6UaCXBEVu+tKUr+p5wmfE5n5OQsjm
gukhQtaJ33zJZZVIUV0AiQAqlhZR1Y/W+dqpptmcaSKT5pLENJPT2wS6D+gTgmKl7oJbRluiD8rF
Egkhq4SihZD1pJyEu+0TcrhZhTbcYWVFm4DfKrvfWgOu3i7QqaBYFBQLtnW/rl8NC48XpnkcHoAQ
MrFQtBCyToiY0l8kAqRD5mQ3wqK8za2T+GaKtlTmWwWIG2U5KiiWpVpTqdBiHqep0uqfwb7N6N8h
hGweKFoIWSfe/tnbqpSJwPztUmlpyFWNWVqVpc4TtOJx3ZfFvqbElHgvCIoTgjyv11nSMqSjHCMs
hJA1QNFCyDoiGoAGVAaoKQWkCkopKIXqBTQjLKpNuDiT+2aJtpQLI0oG6ClTQaSXTcWQdnws0ShL
iXLSQxQwhJAxoWghZB1RAwDLVohMA6oDIK1TQt5L+TN6+NlsDDwgjzMSiBaZAnQO6CXTTM6IFdNQ
r/UCJWHwaRM8HyFkc0PRQsh6UiioJQWVK6iujbik0ewQ4M3bY+SFHufUkTHg2vRX1746AukLpGei
LPVyBS1t+4c9wyZPjRFCHn8oWghZZ9SyfaUK6PjCxUsRIZImil6wfnvNFec+7mkiSU0zOZkWSAro
ZbOic73OkKNTxomeMMJCCBkTNpcjZB0REaAPqEUgmQJUV1XpIXd2NmXO5TLPjmDZxBN4lRrqmLQQ
yo64ywKd11EWr2X/KqInrBwihIyCkRZCCCGETAQULYSsI+/63O1QOYAlmIhLx0ZSyhIhpbwy59DP
EjXjboLoi+dnmUKVHtJ9QC8Auig9LcHiiOOMnV4WQsiYMD1EyDojtopI9U07f+UIlOpNdKFnkzJS
MGkWrwlbQLmQ4kc/8N8gVU8UU7lTGmHLlxaBaO28t2tPi0ahNf7DL//aWM8E2wFXpgW6Yz4XhwXF
kmnbbwRL8GjjCpJNIMwIIZsfJcOXjOc/JYSskl+96lJIR1DsAortGoNHBcVRQdEzf52004Ct9IBo
KzTc9+5fvtdf9zYjSuxGqQSK3VaKFEe0wF7DFTDlueVPLQJdFCi0htYaeV4gL3L84nVvqe79O6/4
TuSDAbKZaSzr4xjszTGY0QCA/n0avQc1ev0Cg0LQL7QfaRlGsGAiPS2EEIforzyMtBCyzggA5Aqq
L1CioDpSp4hQp4sSUdAQKCgkSqBttCWB4PW/8U5zLTFmVwQiprpRWIkkJlojykZrSq+vAkQUwl9S
EgAqTaGSBFprJCpBmqb4f9/9DhRFAQFw3lU/jj27d2F2dgaYUsh35Lj9Xz4PAPjGbX9noyyou+C2
jS82XkIIWQWMtBCyAbzxqkuh5wTFHkHe08gfEegy0jIwHpCqc6yNtrzmunfUF7BipSohdiIpZr84
ggZelAWxKEyQNgKGpJC0oNAFtNYobBRGtGBmZho75ucxPTsFnZhIy8piDw/esx83f+qj6A1ys0Ai
xhQkTqSFURZCSAAjLYScUnLjbUlmFJIZQAqzWRUCJSbS8hNveod/TilW4JtDqiiNqOqHggCiIMoc
qEQBysga8368YZrjpbqJSoDUevRtlgkFCiwsLuHEwgIgwPS0qXnO0gyzO/fgO675Sdz0iQ9heXmp
vigi/+yM8OoQQsgwKFoI2RAESR9AX0G2A8l2gazYXYXCq3/5HU77+tp70sQIkYYIcD+LSSuJPa5+
r6CsiCnf+xcxF1LwFz9KABSlgCkb4iUKiSgUGii0xsLikh26uWa328XTXvQK3P+Nr+DIwQPoLy/G
vxYKFULIScD0ECEbxK9edSn0vECfLSgSwQ9//9sAt3ioTO+g3Thrjqvf+2ba0pgrXuv8Ki3kpohG
pIe8VJHWlTG3KAoUhTbpIvuzKMx2AND2OHds/eUl3H3z36N34jgiTpwoTA8RQgKYHiLkVKP6Cj90
9Vu9bWU6RsLSZxVJq5RBlrIOWrmH2hNsWsgtla7fW2OuF2lpjDL46HWOMZEWxNNNEppvAXRnZnHp
916N+75+I0488iCKIq/8MmFXYFgjMCGEjANFCyEbxEt/yURW4ERMSqT8f0eMGJEh7gH152FUYkfV
KqcUN6Wm8W/vnAhEA6pWuJgskSNc7D2qaI13Un1jpRI86Rnfhf7SAh65904sHj0MXeTI+z3oIgeU
wszcTgDAOZdeMfoZCSGEooWQ9ecfPvGXQD29263u9G5FCupAiUi9raoRUo4OkEgkJtxW7lJlaXPb
QVasOJEb2MiHiHhRFjjCpQ621Ef46eVmKKY7O4dzn/pM5IMeFg4/DCiFvN9DkmaYmTeiZWb7zrG/
W0LI6Q1FCyHryD/+zcca2yrZotzP9v+V1JGWMoKhnOgM3EhN7KItr5hk8ZRQ7fEtxUbDf6IQCJdw
nyPMJDjI68mikHWnsfMJ59tnVRDRUIqriBBCVgeNuISsA1/89MehtWugdYy0Vg6IqpVGFV1B02Dr
vS+PF/en03DOihRj5HV+QhrbRdd9W+p7oWHCNYZbXZlsjSHXmG/zPEde5MhzY8TNiyJe9eSUUMcJ
O80B+9757pP7Q1gF7/+D3zOjcL7v/+0X33jK7k8IGUn0HxCKFkJOki9++q9MBY0nVhzBoaxgUXWM
pRIVzk9XcFQiBX5zOLheEq+Ff4t4cUWL094f5YSt46KlEiuOcMlL0ZI7oiXPx/tHovp3JlyICbWA
EWDf765NuPz59e+tIkOx1jBhw72wYgpAtaRB+NzuZ9GCX3nzvjWNkRCyKihaCFlv/vkzf4Wi0HXH
2fJ/SmrBAqmavgGo37tlzK5YcTrfemXProfEESTjipdSoMQiLbCdcM1LR195bkTLwAoXhKIltNEg
iLjY1FeiEiRJ4q1o3e120O12IVrQ6XTw87/669W+D1//XiilnFdTmjRswRKKFec5A8FSaNPdt1qD
qSzxLsVK0RRwuuoerPFb7/hP6/LfEiHEg6KFkPXknz/z19C6qMSKhkCUttYR8X6KUwXkJ42afVUa
0RZ3/SHHyyIQQMcFCkLxousoA3S7aJGGaBFnMcUyNWSECwDkgzEjLQ5ZmiLLUqSpsdQpBWRZhqlu
F91OB1mWIcsypGmKJEmQlGIlUZXQidY9lXouXNIguvq1SXmVYgQAiiLoRWOFS5guK9/7N67/fT2V
aS5CtjBR0UInHCGEEEImAkZaCFkDX/rsJ+wqyDbCUrpYlEkNNaItqo6sIIy2BAZar5stnLQP3EiL
kwrSbT4We5wuf0aMuE6kRouGFDbSIrqRKnJTQ6WnZZDn5v6qaaz1zbilb8Wkf0w0xTSVy1LzvpN1
kHVMlKVjIzGJjbAkKnFKrhH9Jcz1FFUpsYiPpTYXm3RQ2d3X7f5bR12aaTJxn2cIjLgQclIw0kLI
evClz34CWhfQVq6gNNkmAknsX7WkfkkCIBFnm0T2A5JKtV8i+6vebt5L2veVBAsUivvbSHj8yLWB
wov7pdH+9sggbA8Zs6aR61NJqveJUnVDu0Cw1FXdEnxyFpl0vUURwVLowpiKK2NxUb+KWpTVAs28
iqqr76gvyhyz7zpWIxGy3rBPCyGr4IbPfsL8xg2nt0oZSVGozLdVdEU5jeSc6iF4jdlcD0rdVKWM
rvhm2/LcMspiP8c654aaIQwOBP1cqk1BLzq/qX/zFqsNx5bRpKqNf2mudZYPqDvxKk9s+ddx3rul
4hDHu+IbbnXhr6eUF0UQaSms16U8xhUqsYY1MbgqJCEbBdNDhIzBDX/7CQBmhWMtuhYrsAIlqcVL
u3CJpIfCRQ7DlFDkJzzREppvld0m9b4yLaSddFDkHqZKRiCOCbeskjE9WuLVQ/7aQ4KGyggyRGmS
oNPpoNvtAAA6nQ461nxrTLqZNeqmyNK0XkzJw2+41xQqQSl3JVbqlFBeiRQ/PeSmjtqpy7ShIg/r
fA1MExGyJpgeImQt3PC3f1OVA4tIJUJMGsgKliqlI5AUQFr/RGpTPynq9wkgid3npI0k+hNeuqh6
lamhVOHYygpu238PvnzLLbjjwL3oFQWQJs3UTyx9NIS6WkdV5w0/1e+4GwoWjyq7U/pQ3FWuYX02
Ye+bugdO6SfSMGXM/sup9smdpnhFEXhzcq/3jBEzeVOwlKKwqqUO+80EX6rzdt+bmCYiZL1geogQ
yyf//IN1SsbOU3t376omTMCPmpjoihEUpZfFjbB4kRZEIi1eLxEAGl6qyJ3Uq8ndmUslUdACfOJT
f4vPfeEfcOTwY8jzAgrAVS94Pn7s1a/ETJLUawyJrymG1g3Drg7tCBZ3fq6yJEqZEmpPkIRKpTbh
uukVbR+m0BqJ1tAiSByRoiFmNWxvTKi+/yrC5KSHdGU4rsu3i6JAkZsoihtdMdEUsx1A5Xep121y
H0n5YqWNWCdgZosIWTcoWshpyec//hGTPnG6zmZZ5nkj4KYdHNFSeVhKU20nQQ6NYwsnMDs7haks
A6DbU0OxrrZlSsmt+nGFSylWkmpg0FB46zveja9+7daG0PnkZz8HrTV+4sdejalhZttKV8Q8MaoW
PNWp/sV8D26YMnFu6HwuhUQVxVGFbTinkSQaohMjCG3EJLxeJVysSAHgCRXR5jyx0bHSm1IKFvMz
99JBsOLJ/4IC8eJ+fw1xIv4xhJANgaKFnFaULffTJDFpl6r5mGPmtNUn89u3Q8QkIHRiJrTKt5KY
iqEF3ce73/V/49Y778Ts3Ax+4MVX4Udf+XLIoN8QLL5wQW22dVMPDeoVn929fa3x1ne8B//6b7e1
TpT/8MV/xote8Dyc/8TzACmaZtxI5EUpBVFS6xXl6pm2GTk2uUeiFfaCYv0jtWhRSJICqU6gdVKV
XCeiUGgb5XEvp1T13UnZzVa7gqX05ZifpYfFf9XrKemYYBtV0uwtDjlqnSVCyHpBTws5bbjx859E
kpj/5JMkMeW0SVJ1XU2S+rVzfr6KsGhV+1aMh0QgqeCBo4fxyte9Hv9445dx+PhjuP/Bg/jYpz+J
R48dgWTWv+KWN4elyqg/i/fT8cyU2OMLpVAohT/9sz/Hv37jtlafSpqlWF5ZwWe+8PcYFHnjOtW9
0Ty3imiUFTzB99icnmMhnEjJj5cakoiIqI2ypSm46kjrvvIC+aBAPsjtT5v+sWXLRVXGnAfRFd98
m7cKlvhTVkjwhoKFkFMGIy1ky3PzFz5dvVeluVQBSkxUwUutKIX5bXPIi7xuHFf2TwEq8fLQ8aN4
zc/+rBElWT3xH1s4jm/efTee86xneGPw/SzujvikWcVmypQRAKQJbv232wAAn/js56L1xjOzM7jq
qquQ93N8+YYv44GDD0KlKZDraBwHzqO735G4IRblOHDLt35tcnC1MaIuTjpG6QJJkSBP6n4t5bkq
uH45zipC5i1JoCuzdFX9JNpEWwI/S14Utiley5cyjCpSpYY+HyFk/aFoIVuam7/waU8wQAEqMW/q
0l9VzT1KUP0GLtBOZZCdHFPBkhR4zc/8XB1FqSqJgP5ggIWF40CqqtRFE8fT0vjUOKyKjiz3enjv
9X8MWF9I+TzlsXPb53Ddm67DJRdfgn6vj7ltc/jUJz+Fhw8dwhPOPBvQxVjfWWw8qtGN1vGXQJwJ
vIywuCmTME3kb87zIqjMqUuW64UVXR+QX84M14hrDb3iiBbtGnJLwRKak9dCdb5qPBMhZGNgeohs
aeqeHY51pEzX2BJkZVM5KlWYm9lmfSwCnQh0piE2HSSpQLoZfvaXfgWDYlALlgQ4Y/cZeOnLXopt
27fhjv37gaSOTEiQCqrfO2kgt/KoHLs7AaYp/u4f/z8cPHQIBw8daha3pAqve93rcOmllwK298kl
l16ClZUV3HXPAXhlR+X1h35x3pdYLykQJayDHubxiKS+YIRivz9AfzBAvz/AYNDHYDBAv99Hvz8w
HWoHuUkJ5ebnIPKqe8kUfjdba7ytBEuY4hmLmFk58mc7znmEkDXBSAvZ0lTVJ2UlkDK9T7xVl22K
aBtmMRjkJiWUWLHittQHcNNXb8H9Bw8awWMFy7lPPBe//we/j6npKdx73702UqAb5tmGEbfcH6aI
yrCPUzWzvLyMD//lxyPHmUPPOeccPPd7n1ttV0rhwgsvRHeqi5WlRSBLAZ1H5k+JfIptc/NIkVRX
zLsSjWK0hyIKrSH9fu0l0lKt7Fyu9Az4UZY60gLvvMKKk9LUK3a16vL4KqvjPegQseXuGxpFih3H
8Ash6wVFC9nSlD04gDrqUaZ1xF23Ryvonm1VVpU0SxURkekuAODNv/02r8HbzLYZvOvd78L2+e2A
Ai686EIMBitAqoACgfhwcX7bV7VY8DSBLa2VToabvvgVHD9xwq/8cZ7rBS94ATqdTl0aDWB+fh47
duzA8RMLZU6sPRXljqt85/VBcfZ574eU+q5hrtYi6FvhojNdrUuUOOsUCWylkBUosOLUiBRBnhfQ
WpvFHMX4Wcq+LibdVN8vSZLKapympqdNaUCuH1b5YiZWEV39mcUempEWQtYLihaypcnzvKoYqu0W
diJWUnWbnVuZQb8YVL1V/C63Ch/7+F+Z6+nCRFms2HnVj70Ke87cU5U2Ly0v4ezdO8q4TnVfcUSK
l/bxhIBFOas52xLhT3/+7/wHcyZLpRSe+axn2o/1hY48dgQAcPDQQ0CRD588o7tqv0jlMym70Vaa
xTmxiiyMMIqEiw5GLC/9wQBa62BRxTraUoqSvCh7rJQLHpqf/UHZhyWv0oIKZgHG8nZJkiBLU3Q7
5XICKbpZhjRNq7WQms8h8XErd7+/c98739P+XRBCVgVFC9nSDPIcncz+Z27nET2waYXETqCprWRR
dkoOoix5ovDeD/yJOdmJsmyb24ZXXPsKz8/Q6/fQmZ7ymrJVgYngt3LPiKsiURYY0fLQAwdx9733
RquFoIAd8zuwc8fO+jx7r4cffhjHjx+HUgp5USCNfD+t6atoVMZdvNERNJUiUP6x7qwu/jMNxV47
z3N7uzLaYYREUWj0BgPjY7FrIPWt10VrjYHtgFuacstn84q3FZAohTRJkWXmm5me6mJmqouprvmZ
KFMW749t1DoGzh+SUlx3iJB1hkZcQgghhEwEjLSQLc1V17wSX/j4RwAAKkmgytWMi7rp2450HrkM
6oiHmxpSwBe/dAMG+cBc0EkNXfnsKzE9M115ZfqDPm76l5twzdUvNOeW/hIbdamzIkG4JEgNuduk
k+Hz//hP6Pft/cNgBoAnnvdEdKe6jWd/+OGHsbS0hO3bZqGyDBjkjduVF2qYhMvOwFV5cR19KZc2
qK7V8HgMqRwaVWccdCfWWkzqxzafy20pc68/MNVF9pm01iisfwWV52U0ShVQAzOWXn+AlV4P22am
UWiNmakuOipzHmnkapHlVQER7PtdpoUIWW8oWsiWJ7cphCRNgQLQ0FUaCAqQbbqejJXTxVYJpJvi
v/33D9YxSSc9dM3LrzGeGHutXr+HJE2ATmZKjO36OPU8XQsSz3gbChXUJtzji0v4ytf/tTU1BABP
eMITjGhR7jUEd999NwCgO9U1zz7IgwtEpnVxxtWaGgq8LMF4qlMbno+WihvU19VOabaIIC8K9Gwp
dG8wwMCmffK8sEbb0ogr8TGNwK1A6perQttuvKX5N0vTOrVU/TnaLzuaLqJgIWSjoGghW57yt/FM
BEqpqgwWAM7as7fqflt6WapVmxPgttvvwMGHDqEyhNjtZ551Jp52xdO8efj2O25HUeT4tkufUgsT
Z26LeDSbQgXucQp33XEHvnXwYH1eZF5O0gSdrFNP2goY9Af48pe/bC+jnMvG4iz1G2kRJ9VaSQh7
trRFTSITuzfhO0eKs2ZQuTilHcsgz9EfDLDS76NvPSx5ntfHrnNhTlEU6NmmdlmaIk0SZJWROxRd
LZEXGSscQwhZAxQtZMvzsh/7SQDAX//ZnyBNk7prapmCKOMsZTl0alrjSifDb77t7XV0BXVq6Oxz
zq4WRISdzv/oA3+E3bt3YQp+rxVR8I25bjTDi7I45cP2vFu+9vU6NYSIsAHwrW99C2Ey5Lbbbquq
h3qDQetyAS7lEEITrlc9VC0q6ZRCVU1Pwv4k4k/sLamjsvV+eZ/yamWflbwoKvFSFGXH2/HSP6tF
bNSm1x9gKe2h2+mg2+kgS+OVTjH2/S7Nt4RsFDTiktOGwWBgu6Xm6PcHOPfss207/DotVDWeU8CB
B+7HsYUTXkqofD37Oc+uq4YU8LV//Rr237MfU9NdiO0lAjjiRbVV5DhRFrcZnRU6/3LL17zqJLj7
LYcPH8ZDDz1UfV5aXsIHP/jB6mLbt28HIksKuBGWKrqCpp+lOkycsudSZFTjcFvZK+ehwpuFIxCk
aeKUGLvN44yAMG347WetN0ywuM+ZFwX6g0HdQTc69uazEEI2FooWctrwitf8eyyv9HDs+AIOPXIY
AkFRxllsp1zYxRElU/jUZz7bFCxWQMzOzVbvB8UAf/jePwQU8NIXXwWVJn65c4TWOdyhPxhgaWlp
5HOtrKzgm9/8JvI8x+LSIj70oQ/hwIEDZqcC9uzZbTw2EtzCie5UMqA0wiIUK3VqCOJ7QaIPo+rr
leOIHFTtSNO0iswopzg5FDKnkkJrr4tu4Jj2DzYNfljiTMgGw/QQOa3QWuPeg4fwshc+364yLHWa
p6waUgBmp/GRv/5EXS0UpIcqDwwEn/nMZ4xIUMDlT70kSPN4iZZgNEMm4STBrbfdjsXl5ZHPdPTo
UXzmM5/BwQcO4sC9B/CVmzIy5EAAACAASURBVL9SrX48PzeHvWfuBcrOwG4aKhiKNzeHURbntMY6
RF76R+CHhtqqhZrbEqWgI9cvozBKnbp4hpcGC6NJEV8OIeTUQNFCTit+/A0/i99806/ZFvCF9Uxa
sZKWZdCCG264wVsQMayE+dKXvoQXv+TFuP3O2/H+97+/muBn57ZVqZjVTa7+0RrALV//NxR5Edvd
4I477sCBew9geXG5EiwAsH37HPbuPbPdhOuJk2bVULU/Gm2I4aaEHOdxOM+7n60HJklTSFEgSRSU
GJ2VJonXar/Fi7xBKCSJWULA2RT18dDHQsipgaKFnHacuWtH5YsQlNVCTpQlSXDDDabyxvWtVJ8B
3PLVW/Drv/7ruOOuO6qS6vPPOxc7d+1qTqtDZlq/cqf+0Fvp4e57D7Q/hPjvtdZYWlzyQxEC7Jyf
x549uyGLdZppaJalsU+qSwrC/JJfJNQw5LoLJyIoD/aEQP0+TROzVpAASontWpsY30uuGobjjSRN
bLlzo4OvH01iSoiQUwc9LeS043ue/SxTgVKmeFTdSA4AMN3FF2+8KW6Ahdmmtcat37gVedn7RAHP
+57vxPT01Mj7j552FTppgkcPH1ntozV40nnnAUURz6tILUK8JYTc/5cq3OI0mHMOdozGzgbvSihb
/I/KqFjzrlI2wpEkSLMUWVq/lDp1/2RlWYapqY5ZuyoUWfbRKFgIObUw0kJOPwSQsvkbaj+LmVwF
Bx88hCOPHTV+lpZIS4X9nKYJrr7q+4A892+0Fj+L9XcMBoNxDh162Sdf8CQjWiJ2Fq96qIqi+CXH
gNsPRZzjXNq6247ZQTawwSQqgYZGAoVUJciyFN1uhkJr5IVGfzDYcFNulqaYm53BVKcTfQSmgwh5
fKBoIacdXrrDKXUGzMR5/733+GJl1MSrgG63i7ntc4Buc48MG5B/tAB49Mhj7YMf9jnY/sRzzwnK
nR3REagYV5d4ptuqzHmsdi9NL2513xYRExGCiVIQDSC1okV3bKdaXa3wvFEopTAzPYW52Rlb1VQP
kJEVQh5fKFrIacWNn/9UmfOoU0OlGVcBSFP80w03NiddN9ISETPfeeUz0el2o/1Q2pDYe7ui8YOP
PII8L04qyrJr107s2b0bYqukopaUwF9bSi5xIix+l9whpcdlZU1sFWdRo6tuvN0KKlFQWqOTpkAX
lWApigJaBIWNIK03nSzFjrltmJ2eMgZgOyYKFkIefyhayGmFApBLvdZQWS1U9VVRwN9/8Z/Hj7TY
fdf80Euh3Mk8Yr6NTvWxjUmCEycWcGJhYfixUdVT84zLn4bZmRkT/fHKmYPITtVvxYkSlb1YILVY
aa1BsltjYqUk7IbrCZR2MaOUQpqmEABTnU7dM0YBy8umO+560slS7Nw+h907542XBeDih4RsIiha
yGlFlQIpO9AqNzUk0EUOlYSt5x0iQuaCJ52HSy57KmRlJbzTmvwsUGbdmzUjQLfTwbd/+9ORRDrx
+l6WyIjcdX0a6aG2HFHYbC2mQ6Sl10mkRb7dbfy7pooHHfdeCqIFy72+HfLJi5csTbFj+xzOOXNP
pb8YXSFkc0HRQk4vSnNp2VTO8bIAwKGjR7G4tFSbcDEk2mK3vfD5z4XkeatEaR8LGspB7BinOh1k
aYpcry0F8oSzz8JTLnpyHWUJvCreDd3t3kKJvmCpvrfGc0hzMcHWDrhD+s1V13IjM0ZAJgA6WWYq
itLU3E6hirSsWPGyFkqBeMb8HJ549pnVV0OzLSGbD5Y8E0IIIWQiYKSFnDZ8+XOf9FvE28ohqHLF
ZeDA/ntGR1gckjTB85773UBR92sZJ9TS7IvivNMFFldWkGUZ8kFLR9xhfhYFPP2yS7Fzfh6S69a0
kARRF28VZ9Tvy5RQtQiz09+l6sESRk6qz20hlZYvNmxIV362bfwzlSBJOkjTBJ0sQ2p9J2JXZl4t
nSzFrh3zAIBzztwDMCVEyKaGooWcNqjSfIvSyyK+QEkUvvXAA3EDbqx6yPpZ9u7ZPbwWOLpQYfOY
+l4KWgQrK73VP6QA27dtw3Oe/R1IBY7QaDHhBurHX8W5rhxyV3Y2As9VLUHKJ0wXtfpsg2u4m4dU
GiVKoWsFS5naSZMEj51YwPKY31kny7Bj+zacs3e3LWumWCFkEqBoIacdVUO5srGpqrbitrvuMgeN
E21RwL9/3U8iCVufxGyvEcHQilI4Z+9eG2kJ+pGMEXG5/NJLcN6Tzg/WQPIrg9xzKoHiipSqcghO
c7ng4ds2hVVErgDxdEo0NOPva2iX2iSdJgmmp7rmfZqg28lw9MQiji8uQUdKz5NEYWZqCjvn57Bj
bg7v+L3fbz4DIWRTQ9FCThtqQ2lLpCXLsLyyMrzU2dl22SUX4xlPfxqkyFfXT8UZUXST1piancGO
+e04fPixVV272+3iu57zHZjJMmBQ1KkccfWTI6Sq+5ZpIASVQ9KMsrQ+yxB156qV0IgrpdCJ5Jga
Ash9rypTXtcal6emutg2M43Dx47bdJFAqQSz01PYvXMeO+a24Xf+0/81zldJCNmEULSQ04cqzOBW
qNimcgoQXeCRw4fjqaHgc5om+Jmffj2SovCjEBL8HEqLAUYEeVGsSQdd8m0X4YpvfwZgFx0Mh9WW
mvJESlkp5DaWsyeq1lG3RE3C/ZVItB1yvVND4RKmjcSLtJhDVHVkmiSYnZrCTHcKO7fPIdcF0iRB
17biZ68VQiYfihay5bnxc58EXFtHZcD150XV6eB42NCtJXjw4hf+OzzlKRcBvV67QpGIn2UsFPac
cQZmp6exmiUTZ2dncPWLXoht3SlIf0ib+0h6CHBTQM5aQ55wKYenhqS6hkVcXCLHSFuDOqdpS+uD
qCpao5RCt9tB1zZ2oVeFkK0DS57JlqfOjNQmXO+/fOttKQYDdLKsvbGcZc/uXfiZn3490A96g3gT
fbh9NQMWbJvfjksvfsqqTvvuZ1+JZz3rmXUlU+P+gQnXqxSCFSt131vfiBuOse251PhKTYlj6I14
YdxrhhGsMuoSDYvV16RgIWRrQdFCTgNc2SLVHOiacKGAAoJjJ44PvVKapXjDa/9XI26C/EtTqNQp
lfHTRYaiP8A555yDJBkStXCueeH55+Hl1/wQkkbL/sj78DJVaqjeEBcsUp8Q9fwEvhVE7ul9LvNy
0hxr7GQvc1QadWMdeo1woWAhZOtB0UK2NDd+/pPV+8qEm9g3QUQl63ahkuF/JV70gufh+c/7HsCu
MhyNQMTeo8xLNb0eXrDB/sySBN/57CvxhDPPar+e5QlnnYUfe+W1OGvPnnrBxmGLGjZetcHWjbSE
Kix6yYYICR/PETptKOWLIM/j4lwnaoxWjol3xFgIIRMPRQvZ2niVM+Ks6mxxJ0qd4/xzz4le5umX
PxVPv/yp+A9v+CmoPGit30hdRPbFxjQMrXHGGWfge77r2eh04tYzpYCzzzoTr7r25XjmM64A8pZG
dOVtneZx/sv1tgQipvz/tvG2RlvKj8qvAhrWr2VoDmqECAnOZZSFkK0Jjbhky+NNwMFv7HWKCFAi
uOypF+POe/d7TdeueNpl+LU3/iIAYKbbCdJCQyIaQ/wdZQ+2YeJlqpPhRVd9H/bvP4Bv3HYniryA
2EDKzNQ0zjvnXHz/Vd+H5z772dZ4K03B1PZyvxhnRaEq0lKmh4IU0egsV6xkOWa6DSIq1WcJlKQE
x9vBNEqh2/q6EEK2EhQtZMty4+c/Zd/VU24jO1MhgBa87KVX4+Ejh3H7XXdhbvs2PO+534mXvORF
2G1bvUPr2JKBo2f1VZtxgUQEe3bvxs+94afwhX/4Ir75zf3opOav7PnnnYcrv/2ZOO/cc4HeoBm9
cYMXle9Dosc1Iy3+gP2hB08fEwnDhEPbvjAlVB0XK4sewpBOuoSQyYeihWxpxPWyKFs5FMPOc+ec
cw5+/g0/hcOPHcH09m0468w96HZSSKTDqneTcbaPbcaVKhSjigJn7N6Na3/kh9FbWISyqivrTgGF
QAbN9XbCvjHivsKoSqVl6m2eMHGDSrGokXIPjAiMsIw5EkSJRlBC8REGYMLxjStqCCETDUUL2eLU
oYW2fq5u9CXVGrt378Ku3WdAJfYcHTeBBgGJ1XlaAsI5XMr0kggwMJGUbnfKjAWA5DlQRPwxYepq
ZHrIb9cfjlPiHyJ47W2bm0cSVBwN64QL97hxr08I2QrQiEu2JDd9/lOeH8P1rqB1rjNHKi1QYsWK
mzIZFjlZzT5EBMQoRExlkC7H1XI9+150bbx1wix+5AWR1FBDjNnIy9jprUgn3EboxznUO9zvvjsy
ghUVMmbnvuveOO6ACSETBEUL2bpU86OdeG1qqO2X9jEvOfwEu31UUU1j32oEzDDca2nHxuIuguiq
l2BwvmZoiodVD7HR5Vb5YaVqzFLvG1ppBL8hXTiyaPkzIWSrQNFCCCGEkImAnhayxRlWMeQQpina
Lzd6W8zbMuKyrfca5kfxtrn+lWZKqHHN6rM0sjfem7DcebVrDsXWC5LSv+JGR1zTbRidCa89tPyI
RhdCtjCMtJAtx01fMKXO9ZwurSbcBhL5EJ/Vmx/bTLmhj7chOIJJNpIuGjn6sEpInJSQ00ROQm3j
XqLKDbm9WoIbtN5/vOUG/FWaW3q4NISO07J/FG2CkRCyJWCkhWxh7ESbNLY251j3l/lwwmuxSVSb
3WhH+NmLjvgekcb540RUhm0Pq4Uax4VelnpbWeoce3yERlwv8CGBEHG2VceFkZKWqMwoKr+KI2La
FllksIWQLQkjLWRLUs7ROjRtVpNoGQJxZvgwdWK3iYat3CmrdzRQFGY15TwHigGQD6By8xP5wG7z
90dfRW5f2rlHRIA0Uj9t4iSyL/xinA+VlokcF5MwzcBQGAVxREXVVyVsQdwyqGGVWuH9wutGdu+7
7j+2XYQQMqEw0kK2FGVqyKyfo9tDJGFmwu2pX2hAaVs3XAAoUPXPF+3UE2t7iq76p5hjgutqR2y4
AygjBZKYhROhIDDvoctj7PtyeNoOWqNF1LgRlZYojUuwzV9aQOptQ+Iw5pHcTrYjIisSRmaUc41Y
5GatMNxCyFaDooVsMRREBNqW94pn+PTTGiIaogsjTEQDqnw/AHQOSF7vE7MYoSrFkCtCKvFSXdoe
6/ZJcXaUYqQ6R9mgZ7kKdC1kgMS+TwFJrKgxE7/Y40SUGZ4OxAzce0eICZbyuwkES3VC9RxtaRnl
K5/KZOt8bo2iBCZdUSfXln/85jKEkAmBooVsGW7+wqcrf4agXiOo8q/YKIkUA0jeB9QAwMARKQMn
slKECqC8iP/ZTYu4GRK4wsFmotxTGmmdMIKinO2OcClFi0rrz5IaESMJRCsjYkSZ91USqI3aqIvw
aC945IqfUev/hNGUQHi0nu70cFHl+ZFW/uX3Gqadwn1tfhdCyMRC0UK2FHUTNTvR6sJETACI7kOK
ZUCvAOgbwYLCeYlJCykTJqnEjgpFS03dcl/83a5ggSNOqveBf6NK/zgppeq9I2CqQVkho+zP6lUK
m8zsQ9pa2dPqZwmG7n4YFiTxqoIaLfklMOcOuUhrUznnZ/hMyj2XYoWQrQpFC9kS3PyFT5ukhti0
T7ECFD3IYAXIl81BxbKJpqgCSAogqQUKEgkiA64/wyVSShTTNKVjNWYudbMnzirLVSpHO58r4SLw
LDpuREZbr4t200opoDLzSjITmVGpnyPzDSz1sL1Qyxgt/MVRb61rBo3ochvbWX7/lfBxdrSVRRNC
tjQULWTLICKQIoesHIf0jhuxkvcgZaRFFSYIkdiW/uVs3Nb5XTkCQzU3m4sGp4T2ldZIS/BeRplr
w/PKaIwVNA1PS+mTSYxYSTIg7Vghk9ZPIsrr41LrtaanZah2CSMqzZ2Rc8ortpRMe9ET71tuGYME
huBhAyaETCKqsbKrD51sZNNz8xc+bcy3/WXIiUdRrByFFH2IFDbNYyfgBJBEzCstxUs5d0vtj3Xe
Nxwh7jYvZVJ/8PZJ0+siblTFDXhoKxxsgRJE7E9AbKSl+utqj5XCHmN/ihZnsUTXL5xAVApJUujE
/K6ikUGrFFol0KKM5tGCQgRaa+hCo9AaWtufRQEd9JppFQahaIgdP+oanlFFxSM5I28M7Hvnu0ec
QwjZhET/sjPSQiYf0ZClo8CxRyC9BQhylM5XQcSb0tJErk2hD4usNMfi/3QDOn50JUgdlYLETQ0N
jbREtnnjcFZK1LBVUHlQQuVEYWz6qK5OCj0tYUgpeOYwUuKZZMeJgIhv3nUXUPTMLKNgeIWQrQxF
C5l45NhDwPGHIfkAGkXl9wx7sRitUCU+nPlfnN4tTYPKWOHGNl9L7H14Xri9IXIilUmx+zSuH+aq
bOM6rZ3zFEQl9pUBSepUJqnm2kQx2tI3VSRlzMoh72MkxRSrJnJPrwQRc0OEbFUoWshEc/NH3gtZ
OAIpCmPALSctN8riRljKCmKnd1slckohoxxPR+OO0tQN69QPpIroNDw2yjHLxBkrEiTwVmESEdun
xrmxFS/iiheVBLmtwGcSSwWpMXRDIzqDpigJjbxDz19NRIYQMolQtJCJRk48arvfSiBAnF/4q59i
i2scz4qSuIBpzHstIiZMMY2hX9p8vzLWUeMQ+E7CXaHCEbM0QWXGRd8ouyS10ZfMqTwSf2ixXilD
PSpoOSCSPvLKpsObEEJORyhayMRy8/Vvr+wW9TpDpSApoyZOKXPii5Rqn2O+NTQFSrvIaBEWa9Eb
4Tkx3RL6cca9T+hRQS1gxDUWi12SoDy+LJV2vS9JGi85HqklxhAbrRGcFkVUVYBRyBByOsAFEwkh
hBAyETDSQiYWCf4HN/BQRlBsmTNg30dKnF3zbWnKleBOmw3PX7uK4z1PS/m8brqoPKZsaAfreVG2
+27SMf1e0o45JbGel6pCyFYBYYyKodBI6x7YiLK0wQgLIacTFC1kIrn5+rcDcHqRKHG8KiYFJEn5
05xTCRVE+rA4XpZQsIz2n6Aay5oZNS+3VRh5m4a7cCuB0jJ4aYghsf1gpFowEhgYwZJ1zcfMCpgk
tUIj0vm2refcOE3jGuXSwYVUQ/nAOZiLJhKyxaBoIROJ2PbybpzFj7JYj0oiXvVQaNb1l7BpKoOh
U17bhOhM+quNiIzkJK/l+3Dr7y3md3G3i+havEhhFpgEAN0F0sKImDRzMs5hCbNzeRUIilhEpoq8
hNcYqXz87QzEELKloGghE8fN17/NSWO0RFmikRbffFtNiq1RlpNkFSbZsc5rqWhqljA1D/PWN3JT
aa6q8vy5bTZkU2kEPTAfdQGkuRExWde8wqhL2zO0rlPkbGgTHbHITSwSQ9VCyJaCooVMHOWkKuJH
WbyqoKT0tDhVQUqaURblTeHeXdq0w7jpoqEPsBaCsM1qxyFtkR9x9se0SuOiTgxGi604KupXNuVH
XdayuKGE0ZngfWvVtHNg6a0hhGwZKFrIRHHT9W/z19VxoiywfViqNYZSAVJUaw/56aHA1xKkiaLz
NAKBU/pOoyMdkVqCc25QxhwXUWtFqgURS61Rp3xqIeOLlZYoS3RI9g+iGNi0kX11poC0CyRJHXVp
M+RWO5wDXGNuI3DSciFvszlv3zvfM9a3RAiZDChayATi1Ay5ptsEkFTqV1k5VC+n02wm5wmWFtNt
WyWLOJ4Yb96V+hz3Z3moshctG81qewG3n4wOBI0K/TfO2KRdW4SrNIu3sVk5hOblxkSMWJGeibxI
AWTapovsPzOtvVQCwVJ9Z7H0kOOHUU7YTDUvQwjZelC0kInBj7IMESwZ6s9uKsEVLHBSRW4VkUM1
t6tgjxshcSfNYYLFLWSRIJaS2FWdk1LABGLFTQlFMi1D00QRP4sfaUFgyK2Vi4wTLWrcWAN536aM
tBN16bSni9xy6SqyEq7o7H7RQ67hRa2YGiJkq0HRQiaHUqxAoJVAJ2LTQFa4ZPZ9KpWQMesMOekc
uKXP9YWjCRFXrLipm5hYKSM2EcEiatQkKs7Y/M9+9CA2YqeM272H1NVVdWQqVvDkSaKo36W+bCSc
05buKfLa6yIF0Jm26aK0eXhjzaBYuMSJwsAx3KqWgUQrjQghkw5FC5kIbrr+bdXUq0Uc30odYSlF
DBJAUkewRARBKT7CWIIXAwmFCoLJOhQrLg2/S+w+qEVDMG/XAijW7C64Rktap/SxiHhFQ2Z7KWUk
vFj7eL0tw/RFOW5d2JvbqEtXA9l0LVxc/8mwvI67q6oOCoVOy3mEkC0FRQuZCBppISfCUiiNvBig
0AUAhSRJkCQJkCjfC2J/K68WUGxIijZhER3RyDmxjsq0X7cKYJTpo3I1Z+Vsc+4XxoSChE+d1hEE
gkWciit/IFUV1tCFpFv2tFbxlKdpoHBUk6CuLvIEoKq/q3HWEYpqHH/jvt999+jrEEImCooWsqm5
6fq3AXZi1aX3Qgm0TQH1ih4WFhew1F9CoQpk013Mzs9iujONNEm9X8pj/hUZISqajClWQgESuW4Z
8fAEixNlaaaxImOU4DP8NJpY1VKmhryIiyti3MyPe7w7zjVjoy6DFWcAU/VSAK5QiQkXzwSt/G1h
uogQsqWhaCGbGi+V4XhZdKKxuLKIQ48ewqNHHsHSYBkqU9i2Yxt26T04Iz0DM9kMklK4IBAskf4s
4cTvTpa1KTey3/WtVJNu8BzBh9IIDPgRlvI4LRq60CgGBXSuIYUAWkHZMJGSpHrv3qPyrYgjOqpU
kY3LlN+p41epBIxIfbHyIlEvTPx78KMsgeDQBZD3avWkrDG3TBd5LftLQRfUO4f3UI03hJAtDEUL
2bTcdP3boKtJsy5x1qlgsbeI/Qf24/6DB7DcX4FONdKpDCuyAjWdIJ1OkU6lmMqmoBIzocXESnQu
lqBvS8tk7KZ2okKl2uee6JdJh2PRWiMf5Oiv9NBb6aG/3EfeLyCFQCFBJzHRiU7WRTfrIksyKCRu
WKQSH1WURcTd7QynjML4qaEwXVQbeiNEBUTLZ9gOutK3+61o6UzZsmg3itISYopFXSLseydTQ4Rs
RShayKbkxve/FXB+4XbTQiv5CvbfezfuufceLPYXoZWGZECCAXSq0TnexczcLOZ2zKGDLhI4osWK
i/q6kZkx2lfF3d80f7Q3X20ppa5DHFUkpCg0eisrWFpYxOKJRSwtLqG31MOgl0MKQYIE3WwKADA7
PYtts9swO70N3awLZQWAG2XxPC2OGHFLrsX5jiuB40VhHC/KMPOtu70t4lL9tBEXN4rSUU5l0bCo
iQ1rjeN7IYRsOShayCZFQWtdpSu00jY1pHHf/ffh3gMHcGLpBLTSQGbmVl0AeqWHxYVFLC0tIe/n
kBmpSp7dCIPr46i9Lg4No0f7LtcHW4kUqV8SqoNym7bvtUAXBVaWVnD06FEcPfIYjh89jqWFZfRX
+igGBVAIEqToZCbSMju9DTvmd0LvEGzfth2dTjcaaREnJeToJPs1NPfXIsf3wniio00vDNveEDIa
GPT847ozTi+XeK+bqo/LuIZdQsiWIhnjGEIIIYSQxx1GWsimpKwW0jYuoGEMuCcWF3DPPftx7NjR
quzZjWjoQqO33EN/pQ9dCKRwAhzKiXSUb0oi3oyo+dSLsDTLh/3oinM/7R9TrQWkzZiXFpdx5NHD
ePSRR3H0sWNYWVzGoD9AMTAmXCkEShR6MNGJ3lLfpI1yE4GZ25YY07HU9/HWaPL8K87Tu4ZdJ6fk
bquectzAxqgy6Oo7K8zPvGcOSNJ6lehygFUTufB6EQOR3UY/CyFbF4oWsum44X2/U4sWZfraayUo
pMC9B+7B4cNHoLXUDdy00yhOAMkB5IAMBJLbhnOB9dYz0WLIT4m4XiKpoYZPxUkPQSQiWuz2QtBb
6eHYkWN45NCjOHL4CJYXl5APcls1ZNJH0EbgFGK+j6KvgRxIkWGqM41u1sVUd9p/NvvJqxZqLDfk
Vw3VFUdOJZH7rBuRkdEFkK8A/cS24ndSRPHOdc1rOCLmfb//nsq7IwL89C//6gYMmhDyeEDRQjYd
IoDWpWipIy2Li0u4/777MegPTIv+KiJiZ9pyhedckOgUGTpArhqelsZkrAKvxpBmq/6pzsrJoUgZ
5WnR5nM+KLB0fAmPPfIYjjxyBIsnFpAPcoi2Qse+6vfmGoUUWClWkKgTmJmawbbZOWRpF4lSZr3C
YOUgcaNLQUfcOuLiNKBzIzTu94QNEi9amz4uSQqo1DSfGxqyaR/Ef/6v1yMvisqn854/fJ85Uylk
aYqf/skfxy9c9+Z1fgBCyKmAooVsOrTWNjWkq5JnrTUePfwojh49BhtsMJOyrsUKlHmfSoapdBqJ
TiH9SPWO8/+eQAmFS0y8uObdNpGiHZESChpHZIkWDJYHOHF0AY89+hgWjy1i0DeCpUwdVWIlTDFp
W220vILFhUUsLy1jZmoWSNNm9ZAz+EY1kX3pap9j4m0rdF4PwdLQHHa9ov6yKX+uWv2rluPjg/gf
f/lX0VvBPm+vKPAH7/9j/MH7/xgigumpKfzbrbeuwwMRQk4FFC1kU/HF9/6fRrBoWy1UelpEsLK0
YibywogVV6iU7fpVAqhcIS1SqFzZliDutO2IByV1BqJcITgmXBr2CbdrWxBJcT+XYsOJyKAMuFjR
sbLYw8JjC1g6toR8xZQ2N6uLyuv5awWJjdSUHp48L5CopBYrrkfFESylFPF8K41+LlI/54gK5PWL
ughQDIxwSTPT7t+7h8QbzIV/NqPu4hyz0uvhoosu8vbt37//5B+FELIhULSQTYURLIKibNtfelpE
I881oJXxrKhyQcRaWAgEKlVQeYKkSIxoqV23kbWGnPMh1XXUsKiLu+pxJJIyTNC4ggMi0AON/lIf
ywsr6C31oQfaidK4wkUi0Rp7jVxj0M+NaTcvoNMMCspP8aAem2fElSAVBF+8VM8+jLYmfKsRM955
2hhzB5064qJKoeI2IxJzYAAAIABJREFUnwvvIfjTv/ir6tmU43FpEzLh9vLzhRdeiDN27sBXbvnq
mA9ACDlVULSQTYWUURbRVdt+ACi0qaJJJDFRFtgJXdVVQabBm0KGjvGzDJSpvKmvXv+/tEdVBM0o
i5ul8EVJxNcSMeO64qncpwcauq9R9HIjWAYj0k6OaCl/am2+r6Iwbf+1FjPHV4JK6vtXQqW+RNPH
UqeGhv9BOd8bQgGxSrETHluuU5RNRVaEDs6rxqHQyTL0+v3hw24RKuHnx44ew4UXXoh77rlnxIMQ
Qk4l7NNCNhVaCwqt7WQs0IV5iQYSlWK6O4NEUlNVU9jqoLysGFJIJcN0No2pdBoyAPRATBXRQKAH
At0XSL9+r/t2f7/l1bPHl8eGn/v15/I+0of32YwB9f7ylcM+B6r3KASwJc5S1L6W0tvilzGb70xZ
daW1tgZeV4C0/fSFCoIGcyMJ02YR38/aESDv2wUW9XjjEMGZe3Y3Gus1G+0NuWtk/4UXXoh9173x
ZB+IELJOULSQTYUWQVFWDmnnVWhMdacwM7MNaZpB6WDCzwGlFaayacxv24FO2jUTfylWKqEgnpCR
Urw4oka7IiYiaLT32RFGznXEllzr3AqrgUDnsC8jSlAAKVJ0kg5S2AhS4QgUHby3vhbjbRGb0VLI
sgxJUrbxtxN0+R2WaTbnZ/W/0Ouy2ihL2+dRURYvTdayX9s0UZEHKqplbErhGZc/FUmSVNG6UWJl
3NWr//jDf4GnPOUpYx1LCNlYmB4imwqt6wlWi9PGX4Dp6VnMb5/HiePHUQwKSFFUE2yaJJiemsGu
nbswP7cDqcqMcPBrZ/zqHzh9y4JKIQk+e2kQOOka1KEJz7PiToquD6YcifWrpEmGqe40OtkUFHoQ
XfhmYSfl5F/DvE2SFJ3OFLKsA6USe4zUHhUt0JFoS3ltv1poFVEWNz20WqPukJJyb3sxMMIl6zrX
izSas2RZiiRRKIrIMIY82DjipSgKposI2QRQtJBNhRZdRwRstKXcnqUZts/vwBlLy1AqxcrKMrTW
gFLodruY37ETu3btwezMNigk0IU789u3kXtKS5pDtUyuw8QJ4AqUekFEf3/tecmSDDPT2zAzPYul
xSX0c103tCvFijTvrZRCmqaYnp7B9Mw0Oh0jWiCld9f5Dl3B4ozX7dOix42yRL6nkcetxpTrorVJ
E+nC9m0ZghjhmqUZBoPcbBLxDLnR08aMtpRcdNGTcffdrC4i5PGCooVsKqpIi5PegC0qybIO5ud3
QBcF0jTD4uIC8ryAShRmZ2dxxhm7sHPHTnSyrjXrBpNwGGUpCYpSqmgLhky2EoiTMErhmF894eIc
KGJ8OjPTM5if34GVlRWIXsBgMIBoR7w4gykn4TRNMDU1jdnZWczMzCLrdKCUqoSJDrwcnnBpVA+5
3hbnfuMIDRlDmLQ1tQ3NvLGLF31r9knj7fyde3Q6HXQ6GZZXxhj3GtFa8L3f/V34X669Bj/3xl/f
uBsRQqJQtJBNhda6ai5XejNgIy2AwlR3Cmfs2o1udxpLS0sY5AMkSYKp6WnMzsyi25myptQ6HBLr
Rl/OnJ5/NJLGiM2RjTRNowLFObIt0uJ87nS62L59Hr1eD6JhnmswMFGkoCNtYqtpOp0uZrdtw9z2
7ZiZnTWrPyvlR6mkLeJSj7O1kdxqIinjHl+KlXHPEQBFAeQDIO2OPD7LMsxv347jJxbqSzjRltVG
Vdp44NBDePjRw/gv73mnqQITU7kFgJ12Cdlg1Ii/yOvzt5yQMfnEu3/NlDc70RZYMeP2EimKAoPB
wLZrB9I0tYbUelYU5//Lt63/QYfRlmC7RyRyItH9EQ9NeLyd9Hq9Ho4fP46jjx3F8ePHsLy8jMEg
N2JNTDooSRN0OsbfMTMzg7m57di+fTtmZ2fR6XaNCdWLoMA34AaRlsqoq+vOw62MjIqsglWlixQw
Mw/M7mxZJNE5TgS33XU3brzla+swyNG88ed+uhLFbkl5Kbx/5Tf3nZJxELJFif4rQdFCNhUff9cb
fTOuE2nxTaTGqFtHVIKGYtWbuEuj9oa0DKRNxMQiLe4FQ09L2/FeFMZ0x+33+1haWsLiwgKWlpbQ
6/eR53kVLUjTFJ2uES3T0yY1ND09g263W0Vg3IogHUn/iJtyc75jr49MWzrHfe9+qRstZKbngLnd
zs3aDhYcPXYcn/r8P6A/GKzDoEaTZRn+99e/pu7jU/Xksd9tofHG3/rtUzIWQrYYFC1kMviLd/yK
U7JrO+Jqx4vhmkkr02oz2gE3FVNuHvZf9BDLhDcr+bfwq3u8e2O8aEv1G7qgKHL0en30eivoW9Fi
GsYppGmCrNMBbHqo2+0iTU10qRRGOtYoLhAsbqTFFTHVINetLf86XW96O7Bt1xCFWd9Li8bf/dOX
8K0HD53kTcfj2558AfYfuL/6/LOv+wkkKqk7D5fpIy140763npIxEbJFiP6FZ58WQgghhEwEjLSQ
TcdH3/7L1s+infSQX/UCLxTv/gxpRkDct+2RlXC/3/LVTfkMj6ggEu8pAzbN9FHZW6UoChS6qL08
YhZ3VLaJnFIJVKLMOkPlmZXnJ14ZFEZW3P4sq2acVFLbeW05t7bzZuZNpGWs6wi+9eAh/P0/fxl5
no8seV4PXvvqa/Ghj/01AGCQ5zj7zL14+Q+82CaypPqzLpdc+I3feceGj4mQLUD0Ly+rh8imo0wF
uRNsOXkDcaHSqOBBPBfUSOFE/looBIKkcUxEoMTEiXiyJCKeWsQPgCQxosRL70RGKq4RNCpaEFQU
SSS1toYUzmqOd6/fahIack7Sad8XblMKO7Zvx9y2WRw7fmIVg1wdblXSf//Ix/CTr/wRM9Qkwf/8
5GfxyOHD2LVzpz1GPJH6tjdfB6013vL2d23Y+AjZqjDSQjYlf/bbv2CqhLTvaYkJFXEFQygIIsT+
k/e64sb2eZ+Gi5PmPeLdbN0DY8Zhz6sTLLrYFCuBz6e15FnilULr7WVZC6HhF/bzjrOBzvTo+Jg9
v8gLfPmWr+Kb9xxYtzLnUbz21dd6n9MkMcLTChuziGX951VWbH3gQx9ll11C4jDSQiaHWFRAN9JD
vgnX64/iXSt6B/vTKY92jnOzCkPiNeOLk5b0kTuputGhUMRUwqwRbfJXcnbLwmMG3NbS5nEFyzji
ZtgxQ6MkLeNJssjG4EJV+bMpDb/gvCfioYcfxfGFE6dEjf3xh/8CcMRLoTUKrZEo0xCwfIUi6rWv
vpbLAxCyCihayKakThGZz266wxUHrmfAFS2heKj3hO/qyc+bEoNf6t1i6pg2qqRGRJggECf+PeK+
Fv9yflSlPKZcl2hYiihMDbUybqQlFglpO2bY+aOu4Z6QplaUOK2KG16VemBKKZy5Zzee/KTzcNtd
d6PX7w+7QSvjLAMwCm27+Slbkq9UWelV/1m89tWvoHAhZEwoWsimxPRlQaOnSNiYLRQtXpyiRUCg
ISKknkwCVHmNSHSgcXzEdyIIFEmbQAkiRd4xkbLuNjOy+12MLViwysjIWo5ZzT3da6adZi16q1Cq
B5KlKZ58wfk4sbiIA/c/gDy2iuKo4a1BsPzN334BP/j9L2xsryNi0mhzAyi89lVGuJRQwBASh54W
smn5ozf/TN1TRIfpovq4aK+WtqZyaIoIHxWJrgynVZggLk4QCJTG84QRm2ChQ4wQK9EKojGfJfpw
Q7Iy60bbdfc8yb5Z200PH3kMX//G7bj/4IMn7W8ZN/IS+luG58RqVlbMokkf/vjfABQuhLBPC5ks
RKxYcQRL+bnq5tpiNNWBn6M61kk76WBf2cxOa22a22l/4UbduIcdixaIXZ3avY97rmeIDaqjGs+j
m88Tjjl8Zt94u06CBZF/NsZdYwhj/Mojo9JMScTsMuqmzukAdp+xE5df+m04+8y9domHtTNu5KXX
C9NR4+XQpqenMT09jed917MBwIu8EEIMFC1k0/L6t/1hNa9VAiYUD+7iipHW9d7nFrETe2nR9uWI
FytQYqIkFFWxVZbjgiPuPWlrwR/rvxIz3NbbI1+sjCEoxiWaUwt+DjtumA7YdZ5/gbaqp6aBqHqb
JAn27t6Np116MXbtPANJsvH/5N14y1dbcpKtHzyefP55uPB88+wULoT4MD1EJoL3vukNps191a8l
noqpF65r7I2s9tzY0KRKFbXPrt66Pa1/adqbz7X5Wqr/jzTPa6+gcky547KalM96pIdGGXBLo22V
Ggrv2zYIf3tVtQMgLwrc962D+Nqtt+Ho8eMbWgqdZRl+4tprWvZGxl6ajIPv5cP/8xNY6fUAporI
6QnTQ2RyqXq0WJNuWyomTL+0pVSqKEeZ3tEtkRFddzKtXrFUUlsEJ5JmikVUhu2rngPNMTZTQ7I6
wYJ1FCGrue2oCqNSsJTiQoUHxO7nh3bcQE6Wpjj/3HNwyVMuxLbZmVUMtBzG+A+X5znE9hdqEvG2
VGknP2z06pe/rHrPiAshBooWMhH8zLve76U7YqmYUsy0T/zBRB/xq7Sljrz9lYBp97n4Y9PRa4Xe
FfGu15byqX0q3s/yuPILi5YxrRJXjAz1ngzZF2PUcd1Z59iwxnrIdWTYTiDrpLjgvPNwwXlPRLfT
aewfxmoriQ4/dnS8A92ytEi6zDX1UrgQQtFCJoiff/f1dUfRhlDQcfNrQ0AMEQItAmbky/G7SGiy
DaJCcYESH5MWjI4alc8V1mCPY6CVEe9dMdKs09045vfWRqZqQGOIhjZBpZQVPwrbZmdw0QVPwp7d
uzZ0XSJ35ecmzhfZiCA1x/SaV72iivRQuJDTHYoWMlH8wu99wBcuWryUjQRCQjtRjrDiZ5wIS2Xg
bXmtJlrTEBot4mR0qsj57IqVUFiMEhmqJYLSFsFYrzl+mEl1zwV12bmKhHAa58ZdxbWfRVVSoLzK
GTvm8eTzz8P01NS6PE6MBw4dao6zGuqQZQgij6OUwqt++Ac3aqiETBQULWTi+KX//CdelU+7IBlV
htysDoq+hkRZhkdr4tcfW5xoaawfVKbIKgMuhgiOYUbX1QiRoWmYEQyrLgq37blg9Mlt2SKpH8rt
PhsjTVM84awzsXedoi0xv8vi0nLga1Gjv8dQXTnHzc7O4MorngYw2kJOcyhayETyH//gg366xBMY
2giSiPiovC/WkxKWQa8+LdSW/tFeumiY4BlWIt34jDUYbdtY62VGdbId91j3nIZgablmI6pkZ3mb
/mkIlpb7z87O4Owz96KTnXxT8Jjw0VpjkOfN8UdF5ZA/iGpNJeBpl16CuW3G70PhQk5XKFoIIYQQ
MhFQtJCJ5df+nz813pZGFKXZZbZh2I1EPUamiRqlz7q6pldR1HL9aBopki5y/SrirkN0MgGW8Lf9
cRvNrvb6J7sGUcyzsor0V72iMmpPS7DSMpRClqbYs+sMzK6h/HkctBYs27b8Y0emqj/j0Khbl31f
+7IfqHYx2kJORyhayERz3X/5M/zGH34IhdYogjLkpp9kiGFXl6XJ8ZfXIXfoS3vm32GpJ9GBMBnG
asTAuD6SYcevlphfo+264XY3NeRO0qssW/LEyZAHLvdMT01hqjtVFxetI0oBjzx6pGVvSw6tEpKh
Q9ofXHNtI0JOHyhayJbgLf/1z6uOudoKmEK7YqPFewI3qlFX2rqFHGttcTLy3FFt7ocdvx7Hjftg
a20e1zaOcvueC6xgCW8QqdceJoDEN9+6fhY38hKOKU0TZFm6AWEnw133HvAHKpHni5ait5R4O9/B
a1/1CoDRFnIaQtFCtgz/x/s+Aow7tw6roFmvDrGrOW6jIyExViuC1vK9tI3dM962iBK3KmeYAFJo
pICa0RaFugDasLC0jF6vX0XE1pujR4/Z65bpnZgQcfaXbxtRq6ArsJhrvej5zwUoXMhpBkUL2VLs
e99Hse99H43vjPk6Toa2eW5IE9focaOuvXE90Pzrj9tF92Tb9cdKm5XU4qUSk/bk5qJR3uXrKEtL
59rIpuWVFTx65AiWlpdX8TCroz8YYGFx0Y456DUTPiPc/yZLEReIFfc4AOeefRbmt89t2PgJ2YxQ
tJAtSVS4jCsmxqWtmdt6NGNr6+kRyzmtx/PEfsMfld5ZC9HSZkdBVn9GzgOHQkS5u1oiKwpRMy6s
mHjk8BEcPPQQev3+STzMaO7af2+8R0vDuxPuF0fotHzhSuFHXvpiKKUYbSGnDVzlmWx59r3hRx/v
IayeUZ3rx+xsf8rGM86xlWAJD7ATtAq2SyA0I9olSczvXUmS1N6VloEKgMGgjwcfegR33n0PDj70
MHp2FeWNYnpqCq+65gfjESARP5pUHRJ+ByO+fBH82cf+Gnfceef6Dp6Qx5fof/QULeS0YqiAOdVC
YLW0jW+120cds97fgwDYawWLRCInq72xPSxRqiFaQlxNsLKyggcOPYS7D9yHBw89jP5gsCFelpCX
fN/zcfbevZFHK593DIUqkWgN/O/zzrv343985C/Xc+iEPJ5E/1IwPUROK1o9L6uNJKx2rluPlI5q
uffJpHFiKbP1Fm57nQqh6KrN9qHG/U6sYFFVdMVv2a+c1BCgIAIsLi1h/33347a7vokHHnwI/cFg
/Z5vBDf8yy0t4mhY9CQ4rvXPuN5x8UVPXvMYCZkUGGkhpzVjp47G9amcTJRireeGaRScgojROPfZ
fcF4EaBo9KWsqGlO2GVayI2uJEncWa21xvETC7j3/m/h7gP34djx48jzwrn1qfkn7vnf/RxceP55
ww9a9Z+dY14O/vz3/e671zpUQjYL0b8JJ7/wBiETjBt12feGH43aLVZVabTWNA2CiWc14siv7B1N
ODkOu1/bvth35B4bM9xW9w0uGk0XxQekAC/CYsRK/HitNY4eO45v3nMABx54AMdPLKAoCv96Sp0S
4fLlf/kqzt67BzMzYQde57tYq9CsTL1DIjKEbBEYaSGkhWgUZj2iIetx3MmwlmiMe84oH0zr4ofO
QWvw25SlzWWExY20+LpHQUTj8JGjuOPue3Dv/d/C0vJyaz+WYf8GishYK0GX1xh27Nln7sVVz/se
ZNUijeOqxbWFz/a9k9EWMtHQiEvIWmkImLaIzDjEBEDbvLQKr+aqoyWrHWs4nnC8u5/UjJpUqZ+w
MmiYIbdJXdZcpoYUlIqbb7XWeOzYMdx+19245777sbzSq0TFRomWcbn8kovxrCsurwzE60fzD4ai
hUw4FC2ErBdDRcxGRUtGmWU3QriMc15rZMW9xtoGoBDvdhtWC7mVzktLK/jGnXfhzv33YmFx0RMl
qxUt641SClc+42m47OJvGy6GvK/LGZ/r8RnlDRJ6W8hEQ08LIetFrAKpEjIbld4Zdd1h+0/KLxEw
SqQ0rtESLopFa8qJV5zmcK2v5q16vT7uO3gQdx+4ryFYNgMigq98/VYoKFx28VNafCjiq7AwRxZ7
j4g3iP4WsgWhaCFknWhbPiBq8F0Np7I6qLUx3JP8+481EMfFLG2G2/BQ61FJ4HWyjb0alxCTFrrv
gYNYWFyKCpZTZbwdRlEU+Mq/3opCF7j8kouRKJsqqoZVCpn2CqoGq0y3ETKpsE8LIYQQQiYCRloI
2WBaF3AMj2vrGbPakuaQcc28AdlZF0FEoLX2ggCNgbRetyWtEdvmeF7CFFC4flBZ5uxlUARYXF7B
fQ88iEMPPYI8z8d/0FOMUgpFUeBrt96OPC9wxVMvRZqlwXc0qhQ6UjbOaAs5DaARl5BNzpVXXgkA
eN2rr8VznvXtZqMItAg+8+cfaJ6wisqmMy+9Ev9/e3fWK0t2nnf+WZHDHs9QLA5FmrIl0ZQoWbIk
ikUURbB1RQv0RdsGjL5oA7Y/gy3AcgMN1yUNyF/AN33RMOAB8uzWhcQm1SpRA2nZtFqUKImSOFYV
T5065+w5h4jli5jetWJFZu4zZcau/6+wa+cQGZGZh6x4zrvetaIoCuVFoSKvfhe5iqJQUfgmtBQ9
04U3OkinqTSdoMoQEoUV58rVb81FEV3WTXHLfKlvf/cNfeX3/0Dfe+st5XnR/06jz3Hd4aKnOaPI
OaePfPhD+skf+1FNJxN7lCcbAzSztl797D97Gm8VeN5oxAWGpg4skvTTP/Hjzd8jfHXy/PTf/rvy
vtBymSvPc+VFoTzPtVwuleeF8qJ6PC+C51X1VtQnd+/LwWKv8ob3UpZ5Fb5QpkzyXr4KL2lm/ZVO
I2liO/NcE1bMb2f+Ce5VS/PHe1suc7319tt6dHKqomhDxdPuX3naU6C99/rq1/5Es9lcr/x0GUgn
k4npA3rMSpnrfs/ATUBoAQbg7p3bGo1GVbpQHVskednzsl2AzfsyhJSLqqktnHrzu3q8jkK+TC7y
WdnYqiKTz7xUFPJZJq0MLvGYjX2sfts+CCj2PSv6HTTdphpwnVQU5Xt58PCR3njznq42uGrzkzTj
Ps3A0u5T+tNvfFNXV1eSpE+98rL29/e7+a6zBI7vXTBvlGUMFeFGIrQAA/A3P/PpstpR3fdVZmny
h7qzc9rw0oYW7xUstFYHm3qndbbxknwhKfNleFHWnhyrqkstnFC0uq+iCSA2ALiyltL87lmbpbkS
ohm1ns3nkqTvvXVfj07Ptj4zqPY4FZnvvvk9SdIXv/y7+l9e+bhZObfeaRtciqLQ9966r/PzCxW+
0NnZuWaLRTPE9MEPvKT3vvvdT+nTALuD0ALsqI9+9KPNCfujP/5jVSaIAkal7Y+1J30v58srIvvM
NcM+YWjxzSRCW8TxTdWlkC+yILzEx67fl3dt4Gl3VIcRhWHFBJS28rI6tNQr4taf1nuvi8tLSdL9
Bw8026DKsomnMQT0JK//1nde1+/+j/9fL//UT0T7aVPL5dWV/tvv/b5Ozs4kr85Vq//0G9/S3/rr
f62szgE3CFOegR1Vn7C+//s+qNEoa4ZxfFBrMNe9Se/F/EQLtmXVyrLVFZOz6n5zBeXMKXP18+Wy
+VlWNcZWr7ONslm9T9s029dQ67LO45mrrym0YjE58+MlnZ2f6+z8XA8fnWgZXQzxSb/3p+06VaA/
qC5BEDBVpovLK927/7aurma6vJopz4uqebr8Obu40Fe/9sdMpcCNQ2gBdtynXnlZqltQmupI3c+S
WEDNntmDWbPxbB1T1WhO1lXQUBgWbBNsGTCkLApAcRhxVbjJ7PNZKsD0h5TgJ/pnuVjo4aNTPXx0
2ruY3C65bhj67f/637VYLMLxN1/uYzoem4s0phfD/cpX/1By0qu/8PNP5f0Du4DQAuygetbQ3Tt3
9CMf/lDVw2KvoRPcDQUn+ni5D2fqLqYPJjHVuLsibf+wTVMl6VRP4udNhSVrqyr91RXb02KqLN7r
/PJKj05P9ej09KlVWa5j1UUYn4b5YqHf/t2vmLVo2hC6v7+39vX5Fr4T4FkjtAA76M7tW7p1fKSf
+dhP6fjoqB0aMpWW1OyR3knG8dImLrzZ/NhqS917kqyArA8Z9UUN3QaBJBwqysIhpsQ/hS90fnGh
8/Pypyj612VZZV3gWPW8M/1DT+t4sa//+TfahfLMQnrhmi5rj3qtYwK7jEZcYAd99Mf/ig4ODvTK
T/9ks9ipjyotVtiUa2spYUKxw0Th9GEXVFtUN/JWzSO+GSJSTzQKdxVMw+5MZ1YTjJp37KLfzfs1
VRbzYZfLXGcXF7qopgk/q2rH0+5veZz9fe3rf6q/8sM/1DbiOsm5TOPRaLMKE5kFNwihBdhBL//k
X9XtW7d05/ZxMDQUz/xp2x3MbdMDUi6Pb2bqRJopyN4H1RYnJ+9cs7q+q5JL2QuavjKxK7eK9q9E
GOmu02KnPSdDS3Akr8ViqfPzi2bGUF9ocYk1WXa99yX21a/9SRVawu/h/e97r7713dfX74D1WnCD
EFqAHfP5//hL+sBL71OWVdNVfTs01GHDi1lnRapO+vEqqj1Nm806L3YIyJc78GoDhVuzDovdYxxU
lAgxSoSWNrykw5b3XrP5XGcXF5rPF81jN9XF5WU5DVthAPmxH/nhJrSsmqb96md/8Xm9VeCZI7QA
O2YyGSurpre2a6ckKi22rmEXngsXS4nWQLHTn03FJBrTqdd5aWKDl1QPF7kwGKUkh37MmwlHmVwi
uDQPmM9Y/lrmuU7PznVycqpF1e+RqqhowGEmDiHzxUJ702n9rCSn97z4LmVZpqIokoHlWU3dBraJ
RlxgB7VrsbSVlM4J2KeGiepf9Wq3Cqov8WnMyaxQKzOtuFkyv11vRdWwkTqNs4lGXTvzKHp9cDsZ
WNrp2s7WWqq1WRaLhR6dnurs4qJZl2Tj7zXoC3p6gaZvOf3HFQeObwfDQK5aeNjpxRfu9u7j1vER
/Sy4cQgtwA5qZwa198PHE524zdr+5kFvg0z6HBZMf3ZRBaQeTgqmQLezh8L+GRfc1qqwEk5Z6g4N
2RVzzS3vC13N5jo5PdXV1eoVcJ9nlaUNec/G1//8m+0dM+T3A3/x+3pf85G//KF1PdPA4BBaAADA
IBBagB3WDv+Y3zJVFzuM1K6TG13F0Mv31lkqyZ4IJYaIutWQpkpih3jqakz0Ohe9LrXf+ohx1Ucq
r+p8eXWls/OLYPG061ZVhtbr8vbDh+0d1773D77/pd7X/OBf6q/CAENFaAF2yK//P/8+WDhO9QnW
t79l12yplsaNT8H2kWjCb/Bjtwv6WkyIaYZyFA7juDapJPpQugElXncl6HlJNODafpdanuc6v7jQ
xeWlCn+9BeWGFlTs+10slvWjbXOPpOPjI02n6YXmysbdYX1mYB1CC7BjbB9L8BOtzxJWWmxfS7uf
pgk3NVs6dfBgITcbY5SutPT1s5gemCagdAKPuvuRCyo2wUwjX4aWi6srzeeL/ssY7JjHDUs2OHb2
4dptPvC+93Zeuzed2rQJ3BiEFmAHxde18aai0qzJUldjmgsRReu0RFOfoyLL2r+E24sVygwTxVWS
9NBQOEOoE1xZ9Jv6AAAgAElEQVSiIaKmYtNOJepOka4qDrPZXHmRrwwDj/vcdWyyn1Xrpzzesbr7
+vAP/kDnsU987KfqVz7xsYFdwjotwA6Jp+TW/SnB4nH2tvedDOKTSSV1r8sOD3WuaeTq5VpMBcD5
5r693b7IRA4X3g43Cx9wVWnFVQvwVv/SMl9qsVioKMJQt86zGBraJIw8rcDS7KeZOVQPE/lgvZba
X/zgX6jfwRMfH9glhBZgx7RBxYdL+Cu83fS6JC6e6L0NMXH3Suqg0Wp0XskTXrkirllbzq6aWy3v
76sl/SUbXBRWUOJ9B+vI1QvYmeBSfYaiKD/jqn6W59278jSqKav2EV4jyt4oVycej8c62N/X+cWF
3vPiu8xrPKEFNw6hBdgR/99/+XfljXrROHUrKnGAaR5rfuqTtqnQNK53Mk+dQ30dOdrUUkYUr3DJ
/7iCEoeVzuWLuhWY5pimx8dlrh0S29CzWlCu9jiBJQ4p6/bRrbQo+IY/8L736tuvv65XftoMCyWv
EQUMG6EF2CG2wTa+rpBM7Oj0vNjpzsHQUpxcNjtpp5fFry+J2F6IMQwszs7G3Tyo9L49s7hes0Ke
V5ZlGo/GkrqLyw1lhtB1g06zffJlTh/6/r+kF198Qe+6e9c+DNw4hBZgl8SBJbgIYqqnpTs81Kyk
6+ul/L1NNddSV03K0aL6r/nV3+Kr4aK658TVfS3VM2Yn8SP1h1BnI/Nc0KNTLVufZZn29qYajUfK
Mqc8X/2BnnWV5XlprzsUK4eI3vPiC3r3u14gqODGI7QAO6IOH4oDSLNB1GKbWNq/HTkJA4tdli44
efsgCoUxwrnmORc82VNp8ZudM9PzYMIAY4Oa3WQ6nWp/b0+T8Vjj0Vh5Pu98HzfRu5LXGGrHirLR
6Lm/J2AbmPIM7Iq6IGLChw0khQ0nRbjgXHu+9unA0syKjmcntcd9YvFKcOs/bk8BqF1gxlaT5KTR
aKTDgwPdvXNb0+lEWZYpy7Jkm/G2Qsy66k48xLeJ7/vA+zsBznRMh4/f3OwGUGkBdsGv/ed/G63F
4tuwYcJHI76fGCKSmTJt13EJKy3x2i7rhCfKxGlz8+ASjQ7F+4mrLU5OoyzT3Vu3dPf2bZ2cnmm5
LJfyv7y6Wjc/amNPOhtoVYOtM1fU9i7sJ67/XFLHfv/73pMccmv/BKIxON8pjwE3ApUWYId0hoeS
/SpR1SUxPNROlw4DULrSYlt4V6m6VZqKigueu87QUPIJbzdqyz+22jIajTSZTvTC3Tt64c4dTSbj
5mezd7DeY80GSnw255xGo5HG45H29/Z0dHioo8MD3T4+1u1bt3R8dKT9/T1lWfif4bgCM51OdXx4
uOod9z/knV79hZ+/9ucBdhWVFmCHtMNDicZaM5vGniKDHpZgQbqoz8WnKy3N3lYOV6RrKp2n7N/0
7VtNVFJ6v4BEE25bbZH298qT+N07t3V5dSVJunf/vnwhLZaLTY7y1NUfu14peDweaTKeaDIZNz04
0+lEe9O9MmA5p3yZ62o+09nZuU7OznVVfZbcLBLnnNMH3/9S27PiNy9kBW8MuCEILcCOaGYN1b83
CC3BzKJoJlEzhBRUUrr9FkGBY4VmqRDfE07idelW7XBFySXoY4mqLXJSlo10fHykFxd3tVyWFxIs
fKG37j+QnDcXF3w+sizTqAoV49FIe3tTHezv6/jwUIeHB9rfm2o6nWpvOtV4NNJ4PNYoG2lZlJck
mM3nOjk50xv37kmSHp6carlYKMsy3bp1rB/60A+0YYUQgnc4QguwA2w/SzNVORla4gqLwhO997L/
2EbcoEG3eaXMtYv6qy0u6r9oM0u5dktbB/Hrg8u1A4sPHssyp+lkrBfu3CkbkqttnJzeevuBnMu0
WCza7/UZyDKnUTbSZDLWdDLVwcG+JOlgf19Hhwe6dXyko8ND7U2n2tubKnOZRqM23DSfuPCaLxe6
fXysw8MDSdLrb35P5xcXmk4m+gsfeEnvqacyX7fKUh6BpIMbhZ4WAAAwCFRagB1hh4e84mqLgkpL
qsqSGiKKqyxBg6upsIRDU+veaaKEEj204vJF8ScOjtmufGvuxzOofDn1eW861Qt37zQHHI/KvpEH
Dx/pajbT5dVMRVGoKIonrriUvceuaq7NNBlPdHCwr6ODAx0fHenW8ZEk6fDgQMdHh5pOJppOJxpl
o3Kqdpa1NQ9bthpJ48lYe9OpJpNJtY99XV5eaW9vr7wYYl2dCS6UGH23FFTwDkFoAbbsC//535Y3
oiX7w2nMpsnWbBOf8NuG23Y9l7gnJu6R7U7aucYJvpNf7MCR2a/6g0kYvDYJLqqCS9asFPvi3bua
TiY6PjrU7eNjPXh0orPzc11cXmqxWGixzOWLopl1FS/Ul1LP6smyTKOqbyXLMu3v7+n48FC3bx3r
+OhIt4+PNK3ex/7eXhlqqgDSTLSqVvRtpnSZNW2c9xqPx03w2d+bKs8LjcdjTSfjbiLpBBafvlBU
8OcB3Axuzd9Ans2AMIDGF/7TLzXTmIu8UOGLqkLgqypBEQQXJXo1UhUJ31wR2UyVNlWH5vGiMJWZ
eoftTKPOyrsKe1+6TcLaLIi0mwafId7emxtNB4tXEDyKolCe57q8utLVbK6HJyc6PTvXyempLi6v
NJvNNJvPtVzmyvPyp/4ObADMMicn1zTXTiZjjcdjTcbjqn9loqPDQ925fUtHBwc6PDzUZFw216qa
7ZM1ASJ1wUKTOHqqI3Wocs6ZMLL+denDtBu/+tlfXPMiYKck/1dOpQXYFXYxuPKBpmJig0f1VKci
EpzI16znIrNNXW2JA0uftt1Wib/XJK6VtGFw8eGNZFgJDmmqPFmWyTnp6OhQ0+lURwcHOjs+1+UL
d3V2fqHZbKaLyyvN5/MqvCy1zPMgxNXf23Q61WRcDtnUQzfTyUR704nG43HZYLtXzgaqV+Rtvpu6
mtIbKlILxEVbBGFl1et8UNkqh418vZN245WVGGBYCC3ADgiHaaJVbb0JGGa2TLdYEQ0D9S5AF1VO
4jAjE4pM/4u3t5vtwhlPGweV4FDpqorUvR8LTtnOKZPT3nSifDTSdDrRbD7X3Tu3NZvNtFgsNZvP
tVgsNJvNtcxzLZfLdjJ4UV1Belz3mJQVltF4rL3qkgHjaohoPB43q9uWb6QnVPi+q0X29KYEzydf
WD0dB5H6OKmF5ggsuDkILcAuCFbCVfgThRDVwxrJSkV3aGdVaInXgwnfkw1QMj02auNE0CsTXW4g
GWI6dzqPJasqG6qrQKPRSN57HezvqygKHeztNZWV5XKpoii0WC7lC98s5lYv3z8ej6opyqNqmKjt
bXFNJcQeMfEufHVV7GRVxLzOyVRmEs/blwa7SHTh1sc038Tmq/oBw0BoAbbMR7/rukt3Cf82EHRD
RthTkqqmxENMnSDT7N9FoUQmmNS3wyGV8Hd/f4psSElUiqIv4ok556qho/J34b0mk4mKotB+1Zgb
V32cJFcN+TTVlCYDmBX2VlUw+kJIMKJT7SO5Hx8GG9mA48LbQcWmJxgBNwShBdi2nlVw21lA0ZBR
FDjMjsLgsmKYSG1xp8wPpmLiXFxNsZUUc1kAM0yVnOHT048ShrPw15OdX11ZaTBtHWG2cMokFVXV
xDsnF4SWRFpKDfv46PF4GKg5qAmAvnpvyWGkBO+SxZTw9XFfEekENx+hBdiiz/+nXwqrFBVfVznM
EE7bN5KokvRVMJJDRd19hEM/9fOKhn5stceGkL7g0t9E240Hditn/v00hCf3eL/NN99MSXZtZaUO
IHFlJcgJUcBwdeUjnkVkX2/2l0pr8XDQyi/DdbfvYIwINwOhBdgms2ZIb5VlwyZa29MSHsLu315z
yPwTDEGFIxiKA0unKTcdUuxidkFwad5Y8qacvGnFuH6AcSaeOBd9ILOn5Gk8roQ0FZT48TVvKjFT
OThoMB3Zdysr8Ta9x0sMI618Q8CwsYw/sAs6QSOsSvQN8xTmxxfh+i7NT70+S70eS7Jfpq9hN+qn
MbeD6xt1trFDSX0Nxm33TudeM3Rl+nvMVg0XFzrKO3ZIqOn7iE7c3Ueab3/VH1T74uQaV9FMJxdt
4+rHzNFdaj0X+4JVx1sTRsxrXv1HP796W2AAqLQAWxScruOwEJyq221kty2KxGvteTdskq0bbutn
Oo2+camlDhBxYInWi1k1RGTPtXEXRt+3Uo+meDP7pa7A1BONvX2TzjeFifrxusrSaUFpXl9+uO57
SjWTJJ5zqQqICz9k0NuS2v/q7yHY2eNMXbaHp9iCG4DQAmxTUFYIH67ziq04BNtEQ0PxTKB2X23Q
CX+rp5piT5f18IWC57vBx+5Lid/mc3VChMJjBmHFV9u6NrBU951sAKsrEt704tav8fI+DiL16I/r
r5jYkk3fbKG6ahIM+9g/QBc92NPXstYm2/nuF9wMO60bzwKGgdACbJUZ9rAzc3z4rA9CRjzk0q2W
hP0lCkNE85DphYmCh7wzbRbhfoOG3WYfcSNvN7wE/SS2+mKaVOtNXVVZqJ9zJrA0waV6j6qrMHWV
Jai6qA04UV6QDS7xm7J9JL3hItFPEuSUuBITNd4mqzCJfQeP2QpOvFnbzWM/BnCTEFqAHdBOXba9
Hbbxo1tpqbf39jpCwQyhcEl9NedlU2kJhnPC2UHOO3lnQ1IYUuzj4fTrsFG3+e28XOIsWk+zLsNJ
2+dhA0tcaXGqQ1V9IHPfV4/a8OLCRdbaad19fyB25o7rPt5beUncD7aNZyP1pIpUY6533WGiTljq
G9pKBBpggAgtwLZFfSje5AwTX6KZP+ndrAsuPjhOT/+JmV3UBISgohKFkcTjzXP2tlcVgsLo4qKT
t22iXVVpKQNJVaGxgSUeEqqGjBSMBLVrunR6WuIv14aOekcutQJt8g93xXL7K4ZsUg+7nid6d5NK
UMCwMXsIAAAMApUWYEv+3//wb9o7dVWlHR1q+1lseaTZPrUuS1vtqIeLuhUWH1QUOhdFtNUXlSWM
eiglXkOmPnRnrRhbYYnuN4WHxDTf9gKEzjzdPzwkKeppCYeI1Mweqm+7YFioHmJqOl/qr6JToOib
PVT/a8WwS2qYp7tRWAZa1ZxrqyqdIk/8ZE9PDDBghBZgi2wHS6qfpe0NWf367hPlFaE71wCKmnPb
++khIslXjaqJqdEm6Nh+F6XCSj0MZE7ITUSJMoEzN1y4ZTSDyJ6vXWKIyH7O6jM0Iai6Z1OKM0Na
1+mPjR/wZhn/VaveNm/SDhmtkcpPTXhx4e2VLwaGidACbFMijYSFlXSPSPzauAnWm8ebfpJ6f2EL
TRBewmnL7XFc1OyraP+25yVIUc6Zc2u9/kq31yJcDC4RXFw9KSeeQVTtu2m6dd3bwSyj9pO7qAoS
Bq2m4zZRXVnDLt+/6nXNF/OYa7AE+0msqmsrMSvaZ4AhIbQAWxIM75iVYoPKyMY76d5um2Ntw2y0
YWpadGI7b5tx48sJdF7XPXc6Re8vUa1YHVxsdcXOIDIBpA4v0W1vGnHL9xxWeHwTYurzu08Hj/DT
rNA3NBOnh3g4aF1Tr9lXZ9ip7zIABBbcLIQWYItWDg/1bN/3iOk0MU+1aahzjSL7SptjokXo7HHs
5QOqB5oKRby1U1tFsKdsJc+hvtPL0gkuzsnV4aa6HXyGKrzYIGMrLc1liFz3Ne296nhB0rJhIxnH
1jwWfWI73dnb9WN6kkWnEtPXJxOnQr9iW2CYCC3AtkQr1zYPX3s/4e12rRVTcTH/FEXfEcqTXLyA
XbhFYspz+HKzZRU5bHDpnbLt2n9ndZ9utW5LEFjaKosLhp7qAkRPpaWqFjlzZO9dW1mpD+7iIBG+
v85jnYyyLiFEK9SmhoW8FJSGHmfV3Cad9QxzAQNFaAG2yizqFg0PBduseqRnAktTeTH7jod2uq9P
9KtEfSphtcaeXO399oReV2Jc38m3DiXOyWVOzmVtIIkCi62y2JV0ww8RVl2cWa+lWdelySdtQHG+
DDU+fnPxF+/iBxLbxcNAqeGclTlizdhOvGBdvE2neuOS/xsBhobQAmyJHRCyt9a/ao0ohHgbQOJ+
FBNc7HBLM+QTTGWOKgDNwaKDd4ZW1ByvDi51SJGkrAopWRVYsiq8SDIzjOLA4lL9vDa3tIHFVXWf
5nY7dOVcango+rrjjxvPDkr16gQhJdEgG480qSf/1F98/GE7ASjuj0mg0IIbgNACbFMqq/RUTprt
ezdOvbB9LFi/pZ4NVBRm07a60QwT2bVXVi07LxNqzFL8VlYFlSxrQ4qqQNI8VwWWrD5WvF6LqbKk
KjedopFL9LrUTzu1S+Mnd5AKXyaoNJ+z53vwPSEiGNMyx0hu2/d9R1WW1BUoSSm4gQgtwFYlpglv
oDm3xudc186CCU9ZZupzMPPHblK/l7oDxOx6k/NfMFwTSgUW57LqPUfDQq6+rSi4qAkv9dL/8WV4
vL1Vt6dEvS5qB5ASgaVviCgqj6xqEzHve/33lbwT9qL0LVDXjnElvns7NHWdvhhgtxFagB2wMrMk
hx+6m3XrLPUj8aq39T58dOYNT5C+qRj0NIz2vdfohO7qakrWHQaS1ASWtspiw0v7WYKAEoUWF1xX
qMoM5tpN7fotrhPM2ssKpQJL31hOT2C5VoFjk41XhB+nKJCk9udW/m8GGBpCC7AFv/rv/lU5BJN6
cuXJZfMzkDeBxbaohhddrBNKXaZp0kp7McC+k3P8nD1nusSmfX0rQWBxZrt2Z6vDS/pb8vG9+oKN
phLVDhGZd1onoKaSYT+PCXapReH68kOygdetfy6+m+yxWVHlMr0ur/7TX0x+V8CQEFqALfA2sjRd
rua36dJ9or8gR6vjVl253e2CE2EieaT6OuKHV7RV1M3AUhYMB6keOjIVljqwtENESgwFXWf9kfCN
NIvSOddcj0j1MJVzcvUVspOfyxx306bXZEHFJW72/EmvKqTEgWpVpQW4AQgtwJbY6od6ssS1AosL
M08bWMLqyub77Dtzbzh9Njhxt300qkKHHR5KBZa6UVeJkNIJLU11qP680Rtw7Rsug0kZVpxzzQq5
bQnGBduv/FpS91d9Dz3bj0cj5VVTtC+KsJKz6TL/PZkFuEkILcA2JPpApTZk6LqBpXqBXevFDg+1
2/Qko+TJLXrQnjxXnQxTfS1ZVoaTLCt/RuVvVQGkHRrKTHAJD9K9UGJ87aD2szpFwcOEGF91KrfB
pXpNHWbWffNx5WNFD22yCmK2v318rLwolOe5siq05HleBpjU0FPQdBuFGRd8Gd33CtwAhBZgK3pS
S1MNiR+Pho+ucZhgeCh4zrd9LMk+iuix4CrC0edoNk0HmzxfajrZ12iUaZRlGmUjjUZZ+DZMYMlc
1vS8tNWZ8MTs7EE6S6H4IKiougJ0+bHKY/iqybhdCya1Eu6KMkpnzZrou4mHldT2ybz03vdomecq
8lyuKANbXWlxzskVuYq8KC+XYKst8XL+fai44IbKtv0GAAAANkGlBdiC8m/8Zpl9KSyLrHqhrbf0
br+mJ0OKKizxeIatoJjbitYEiYdIevs9nC6vZrp967gZGmqGh5xrVsutKyz1QnNy7SJ3DRfUWJoP
07wF781QUvuFVY82a7aUi9R5+aapOL4Io3o+WGJcyH6nyXVTbM9N2cMiSYVzcnmhwhVyRS5VjclZ
4ZS7Ij1UlKqCXbvRBhgmQguwJcGAj0888awaEVznRvd+MMTjgvARvLV4SvDK5ealy8sr3bl9SyPT
05JlWbPyrl0d12VZFTJcc0mBZqeJ1pr6duacimh4yJkA06yOaxpyr/GlVd9H3E9S3+hrmm0Dz4e+
//u1zHPJORV5IecKFUU5TCSpCjBOzhXl91AFlya8xSsT158zyCx2fRZzVW5g4AgtwNYlE8tjvPZx
jluHkE0vwJe43zuLp3ucxXLZVFxGWVltKMNLW3WylZa6CuObqch1p2232pJJKqrnXHBsBbOJXF1p
qass3gab9u2v/mZ7qhid1WvD7/IjH/6wirp3pa60FE5FUVZcJKlwuVzu5FzeNCN775X7Daea28e8
13yx1MnZ2cpPAwwFoQXYhk4fbvJyfe3mTzodOjkjyVRJUg2e1xlhiPcTvDbcyfnFhabTiW4dHUtS
05DbvL9qqMhl5aJz3lxewCeCi+LztwuHitSs8VIHGBcEl67Eh+7vm16xoYuqVFI2ysJwVGRlJSUa
2il8eNmB7ltc84fjvfKi0GKx0Hfe+J7+73/5r9e9cWAQCC3AVtQr1cbTchPb9ShPjeZM+jgtDEFf
S/IAq/ebmvZrr4Lc0+zy4OEjTScTSdLx0VFbUbDTll079bmstpQn8lRw6QstrnofbeirKiy+Xec/
jj5hoSSqHMXfRdxfklqYz9xcLpbBWjXt/wI6cXKNxDWHvC+HnSSdnp/r4aNTXc5m+s7rb67dGzAU
hBZgC4IBoefQbtAWdFaUbOoA4+telURiSfRyvPrZcnn4V3/hH0bXKeobQyrde+u+JGk0Gun46Kj7
trxvFpjzVVhRFTiC4KI2qKRDi81MvmzIdesqGSsWdeusV5PaT/e7e+l979XDRyfKRiNNJ2NlWabl
cqnlMg/+FxF8rN73006FzvNci+VS8+VCr795r/xu77+ty6uZvPdaLJf9nxMYGEILsHVPPPZzzUNE
i63EvSy2qTZ+H9FJvA4s5e1/Vv7+hZ9PvwHbvCs1zaHffeNNfeQvf6gMG00I8NGEoTasuDXBRc41
/S1lU259jaFqqEj1jKFu/03vwrOpdWjCJ8x9JR/77pv3VBSFxqOR9vam2ptMNZvPtVwu5eWbytN4
PNY4yyQvzZdLXV1d6fziUt577U0nmk6nKvJCJ2dnevvhI52eX2ixWGi+WOjk7Lz8bqu+GTVDZMDN
QGgBtqCelvusTyg++Pe6Y0UnWm86Utf1UBhBkGkCzOruVtcs2V8HF3vdId/0oaSCi8yJuQ4t9raT
lDmpMONdzm7f9x3E7Smd5333c7m+D+n0ze+83lyqYDqZaG861dVspvl8rrwoNBmV/zne35/q9vGx
nKQ33npL9+4/0MXFha5mc+3v7enFF+7q0empHj46UREHt4Qvf/nLK58HhoTQAmyJ7xkSMBsk5kM/
1oGa332n6nYD1w55OFuJsMMsTxBgel72B3/0J/qRH/pwtUCvHXpREFhcz7Gb0RNTCQmGiur92j6i
aDfxYJYPKjFrZlS5vifa+289eNBO53ZO49FYi+VCi6rPxfuyOjIajbQ3mWiZ53p4cqLFfNFMeZ7N
Z3p0epr+EoF3AEILsAVtpaUOLL4ZEllfEenbaXTTdx5eI56u29OcG4WRTa17zb/5v/65OYaZtux8
03Pq6+Gd+p4JNsEQVOp9984A6gkj65bM70xvDp4MXvPbX/n9RFVoprwoVFQ/9vlT71VU1ySKW3Tr
hfiaI9X72+SiisDAEVqALWkuaBisJdI+5zcJHMmTsO/cXjOheuNm0mfJZS65mGzdMOudD4JHHWLa
9/qcxTOm1DN7yF5luxrO6fupt7Ehpj2ET19IckVY+dKXvvRknxHYMVx7CNiCIKCYVeqbKb+mVBI8
19nRimPY5+sihDdBqXku1UiqvkT0zIJMc0J21RL79T/NhQKbSxv2Ttp56tUG3w2Anbv1bKvkTCM1
b/Rx+5euU0npNCcDNwyVFmArqqEgEyLqwOLN6rDdMZ/6dnd9j6CmEieWRuJKzRv0YzQljmdYfMlc
Vn32evikOtnX9RRfzwKq81Q5VFRu3J1xdG1RD27nwb7tV30fzfDV6kpLvI2ikLNpELHBhioLbiIq
LcAWxOegOru0i6tVw0NRlSUeMgpzjQ8frIs23hzEqf3xZoP4nNgcOGqMeYajReUquG2FpX6fQcUl
VW2JZ/Y8abXFfmlNE259JzVot1mgWBU84oASh5zUc8A7EZUWYCt8MyzkbeiIgot9vLxp6ivN7fZ5
mzFsJSY5tFRPz01VT5wJAP4pBIENuGqmT5H1FYfM+r+m2iKpeYFrF7p9IkEOtGu6bPpdBN/p+p4W
9QSXOKD0DRHFzblUWXBTUWkBtiAIKvWgSCKjSN1iR3J/zet9WK3p2WfLtSfj5AY+OPk+S3/j7/z9
6kKJWVlhaVtZqttVBcZUW5pP0bSUhNOlry+Kd00mSlRxfLyReTxoE3K9IUQ91ZTU7/g19jYzh/BO
QWgBAACDwPAQsBXViq5RX0r79/y2ctK+JLzt48dMT0uwz7g/JeYS1YHgyegQz7SvpRwbypRV1xqq
1rKrD+9UrdNSFYGCdVrqB8tp0i49KNavHqoL555HfTP2zdbb2DfSXXzvN373K71DP6t6V7RhRYVh
IbyTEFqALSjPc3VTi4JhnfTQkO1QMc93TmztM2FPy9OwZgG3p3EEVzXgFmoTg2s/Q9kX2waUeJ0W
VwWWNq70TdvuSm7l4i2iGVRxj0tiLra9DpDWNN2mfje7NsdJhRcCC94JCC3AVvimOtD0o3gTMfom
qCQacdWc/Jo9J3pa1lQd6tlEfVc1rk7+RbXw2bNSN+P6TCqKrPosLqy4uO731GYIE1I27so11a1g
Wb+of8UlpnxvUHXq+776pjSnKjEASvS0AFvgbagIqik+DC/2b97xPiR1h4cS1Zres7YPf7uehtyq
+uElzeZzzebzx/rMm2gabqsLC9ZTnZvf1XtxzVRoU9ywBQ/XPrc2V9Rfm5f5/D2v2mhn4c3Pf/7z
zVL9RbRsv1391j6eWhF3FaoseKcgtABb8L/+738vvOaQ6Uepb6R6WnwUVjotGJ3XrxodSayOZtdw
scf1XvPFQienZ3p0eva4H3stZy4o2P60s4hkZxE5pzi1uNTQyYqZNUFOMY/Ftzbv40lvmOe58jwP
Qkt934aUVGB5nEXmgJuK4SFgS8qr+jqZ7CLFJ9Cop6V5XN2A0x0e6q/SBDtyiTuuXXp+uSxPuKfn
53r74bc41i8AAA+jSURBVCMtl/kTfe5N1MEjy6R6dCWcRVyvkmv7W+pqkR0eclE1KmYjS91XZPth
zNNxHomHiuLHzcJ0r732mn7mZ36mu+ma9Vqkbi+LbcilwoJ3GiotwJYslsvyBGXXjqv+3TnP2msH
JRaVCyo20fCSpKhy0ncidsHquN57zecLnZyd6e1Hj/TW2w90/8FDPTg5eWrfwcY667bYaks7ZNRs
Hg0P2dVdGmZYyNvhoebJ9tgrZw/1PR6VcL74xS9qsVgkh4pspWWVOrB47wkseEei0gJsyTe/84Ze
eu+L2t/ba4ZggiX1VywuZvtg0tf088E27ZNudcWgnUOs0/NzPTo508nZmRaLhc7OL3RxefVMpzz3
8p0MEE2Hdk1Qq0/q7Xau05TbRrzud+vrnccPJj937xPJmUR10Hj55ZeD92nf76qF4pxzhBW8oxFa
gC35B//H/6l/8o//kX70wz+g0Whk5q14079iaibBDKCwytIZHkrml56xDLucf+Xs4lKvv3lPj05O
dX55Je+9FsuF8mW+fjLO05A6iE/8BJsnmnj6ZjwnqiobzdbxZp+JULIpG160JqiIYSCgQWgBtuj3
/vBrypz0kQ//YFNl8fYk3FyLKFxMrg039Z6iE3bU09IylYFqn8vlQsuqKbReRv8b3/6Ovnf/gRaL
hfI8rxp+n18T6KZHSoW47oSqvtTSDg8ln05Nbe6bGm6H21YUX2KEEeB6CC3AFp2dX+r3vvbHeve7
XpD3XlnmlGUjTcYjZVmmUZap8F6+KJSbWSXNrJOqxFL+Ku/neTkzZbFcVrNWCnlfKMsyOTnlxbI6
9oUenpzq4vJS88VCeV5uM51O9Ma9+5rN51ucrVJXP2TKIj6OKb33vZ1pVe/IhzfTg0MV15c8fNvc
21lUrnv71c/+4jU+M4B1CC3AVnmdnJ7pK3/wNR3s7ylzTuPxWPt7ezo6PNDx4YEyl2mZ51oul81C
ZeXv8q/1WVb20y/zXBeXl7q4vNTl5ZUur2ZaVK9xzmlvOtH+3p7evHdfkvTg5ERXVzMt87w5CWfO
KcsyzReLbX0d7c2eVp5wAbjwdcE08aAqZft/ug3M6vS49PW0JC6cGLwBZ4akthX4gJuL0AJsUV3J
+Ma3v6v96VRyUuacRqOxjo8OdPv4WPt7U81mcy2WSy2XZZWkrL54ucxVFRRpuVzq5OxM5xdl5WQ+
b2eq2P1eXl0FxzZvpqzcbPGKwZ/53/6Ofvlf/4vNXxCOhpW34zs+8QK1eSVYz6YvZ6z8SkxVpp7m
3CwsA+BpIrQAW/Qrv/Ir+vSnP62iKHRRhYna6dmZ7t1/oL3pRPPFQkVeaFlUa6R4r6Lwzd/qnaS8
KMrtoim04QyVdjVbZ9ZiaRpBE4ElvlDfs+7D6MsNneJIZ4V+M1TU27Rc55hOrabniD3BY2XfCmEF
eFYILcCW2bU3ZCogRTXkczWbNcNC8VWBN/2pV5ftu1Jw33varp7xoeSzq1cQLoeG4lWCu7GlU5QJ
VrTz7RDRqms12e0BPFUsLgds2a/+6q8mG17j69E87oX01l0d2FZcVm0Xb/N8pI9n40hYYYk3TM2e
8tHNKtb4aCpR5ztwZnqQ2qnizWPhsc4uLq/5WQGsQ2gBAACDQGgBdsC668+kHrtO9WWT5/qqK8ne
l2cq8dlXbRoVSHxUh4mbcX28TbxWS3qJYTNU5LrPxZOZvNdX//jrG3xWANdBaAF2wOc+97nmdhxc
4qv8rgsgqRDTWdr+MWyrx8V3bvTcD4Z9wvVbvF01OBoW6uzBmSEg29TSyTIunAJdvc57r9ffvKe3
7r/92J8ZQBqNuMCOqNdTSVlXZdnEukrKJp5HT8v55aXGo7Em41H6PZjfvQWS9APJnpb2sgd2zy56
nfoXkzPfS57nWi5z/eHX/0y/w2q3wFNHpQXYEZ///OdXDhNdp8Kybphp0/AR7+fLX/7yNT/V9X35
K7+vL/7X/6Y//ea3NZsvUuM3qXda/Tt6rrNOS3d4KNHPG76+9zLP5YuLotDV1UxXVzM9OjnV9+6/
3ayFA+DpotIC7JBUtSUVXDYNHqlpzteprNTbPs+hoT/6sz9XkRf61nff0Adfep9+4kd/WFk1/DIe
ZXIuMxHCB7/kw/wRT3cOR4X6vj8zK6iz8G24jH+eF83lECTpwaMTPapuA3j6CC3ADvm1X/s1/ezP
/mzn8b6hoL51WazHCRy2ObcOPc/r4n6z2UyStDhd6o8uLjWfz7W/v6/xaKTDg33dPj7S4eGB9qdT
jcflf8K8+bddvj/6VGFYqXpfUlfFboeCwotLSpLPc8k5+aLQw5NT3Xv7gd5+8FCSdH5xofliucVr
NgE3G6EF2DF91ZZUQ+7jrt2yzuNWZp4Gb9LDYrnUn33rOxqPxxqPRxqPxrp1dKDbt27pxbt39MLd
25Kko8ODahZRNexTDyklmnWTw0PNgVNXcC63nc8XKnyhxaK8lMJiudR33nhT9x881FUVtIri+Q2j
Ae9EhBZgx/z6r/+6PvWpTzX3V80i6gstqenJfVOWd2P1236L5VKL5VJeXpnLdHp2qrcePNK9+2/r
Pe96QZL03ne/S9PptLng4yhz5TCSmZ3cnTSUmDkUTxry5fFn84XOzs91cTXTcrlUXhS6vLrS/bcf
bu/iksA7EKEF2EF9fSz2sU2GhFatcmuX99ea8PK8hoYk6Zd/+Zf1mc98pnlPDS8VvlCee80XS11e
Xens/EKS9PDkRAfVENJ0OtF0OtHeZKLpZFJWaUajcqir6m8pzGrDy7y8npMvCuV1latasX++WOrh
yakenpzo9Oy8vKSC9yryQlezmfLq8goAng9CC7CDXnvtNX3yk5/snT206bBQKryknrPhJbat/oxV
wc1731zVWpKu5jNNRuV/zkajTJPJWHvTqY4ODnR0eKDD/X3t75U9MHmeazafB79VTVf2XhqPR/Le
K8sy3bv/QG89eKCzswvNFvNy+KcaLiq859KIwHNGaAF21G/8xm/oE5/4RHO/L7QoUSXx5iKMqwKJ
NuhZ2UZ/xrrAEm9zdTXTlWbVcFD5eUdZpvF4pL3JRIcH+zo+OtLt46Ny2/lMs9lci+UyCC1ZVq4C
MR6P5b3Xm2/d18XFpfLq+k+yIc+8v+d5FWzgnYzQAuyw3/zN35QkvfLKKytXxo2nNvdNVb5u/8q2
T8Drqjzxd1I3wnrvtZCkmXThnE7Pz/Xw5FSH+/uaLxa6nJW9KUVeaLEsG2uzavgoyzJlLtMyX2o2
m6tYMxtrl/uBgJuG0AIMwG/91m/p4x//eHM/NfU5VWlZtc062w4s1qoqS2pbu13uy1lIV1cznV9c
ar5YyFf9LLYnxU7zjo+x7ruLXwvg2SC0AAPxO7/zO83tl19+OVlZqaVOnqtmDtl97UpY6QsmqxqT
4+3stoX3Ws5m1eOFisI3U6RrLtp/anG+lF377oCbimX8gQH60pe+tPIiiJs2z8ahZ1dOupvMnlIi
rKxbgK+93z7vlF6ofxurAQNYza35jxvLOgI77uWXX37ifexKWLF+7ud+TuoJKKt+p2ZWpR4vrjld
eZOKyy5+j8BAJf/PRqUFAAAMAj0twMDVf7v/2Mc+tnahuCFVAvrWqOl7bNVQ2bohpE3ex6rG5iF9
r8CQMTwEYGd9+tOfbm73DQXZ5zcZFtpkUb5NEFqAZyo5PESlBcDO6qumbFJl6QsofYHlulPCCSzA
80doAbCzVg0RrZri3LevVc9vElhY/RbYLhpxAeysz33uc2uHeNZNcY49ybAQ05+B7aLSAmCn9U1N
XhVW1k2Bfly2KZcqC/D8UWkBsNO+8IUvdNZXKaoLGNrHUuuwpB5/EusuPgng2aLSAmDn5Xm+0bV/
Vg0fPWlgsaiyANtBpQXAznvttdd6V7VNVVOeRnB5FmEHwJNhnRYAg/HJT35ybYNtX1hZN6zTtw0z
hoCtSP4fltACYFA+8YlPJB9PNeA+DhtSCCzA1hBaANwMH//4x5Vl2UZrtVx30bjU9oQV4LljRVwA
N4P3XnmeNwEly7Lm8diTzvYhsAC7g0oLgMF6+eWXm9v2v2VPY1oyYQXYKoaHANxccYB5nGX5RVgB
dgWhBcDNZ8NLjJACDEYytLBOCwAAGAQqLQBupLriQiUFGCSGhwAAwCAwPAQAAIaL0AIAAAaB0AIA
AAaB0AIAAAaB0AIAAAaB0AIAAAaB0AIAAAaB0AIAAAaB0AIAAAaB0AIAAAaB0AIAAAaB0AIAAAaB
0AIAAAaB0AIAAAaB0AIAAAaB0AIAAAaB0AIAAAaB0AIAAAaB0AIAAAaB0AIAAAaB0AIAAAaB0AIA
AAaB0AIAAAaB0AIAAAaB0AIAAAaB0AIAAAaB0AIAAAaB0AIAAAaB0AIAAAaB0AIAAAaB0AIAAAaB
0AIAAAaB0AIAAAaB0AIAAAaB0AIAAAaB0AIAAAaB0AIAAAaB0AIAAAaB0AIAAAaB0AIAAAaB0AIA
AAaB0AIAAAaB0AIAAAaB0AIAAAaB0AIAAAaB0AIAAAaB0AIAAAaB0AIAAAaB0AIAAAaB0AIAAAaB
0AIAAAaB0AIAAAaB0AIAAAaB0AIAAAaB0AIAAAaB0AIAAAaB0AIAAAaB0AIAAAaB0AIAAAaB0AIA
AAaB0AIAAAaB0AIAAAaB0AIAAAaB0AIAAAaB0AIAAAaB0AIAAAaB0AIAAAaB0AIAAAaB0AIAAAaB
0AIAAAaB0AIAAAaB0AIAAAaB0AIAAAaB0AIAAAaB0AIAAAaB0AIAAAaB0AIAAAaB0AIAAAaB0AIA
AAaB0AIAAAaB0AIAAAaB0AIAAAaB0AIAAAaB0AIAAAaB0AIAAAaB0AIAAAaB0AIAAAaB0AIAAAaB
0AIAAAaB0AIAAAaB0AIAAAaB0AIAAAaB0AIAAAaB0AIAAAaB0AIAAAaB0AIAAAaB0AIAAAaB0AIA
AAaB0AIAAAaB0AIAAAaB0AIAAAaB0AIAAAaB0AIAAAaB0AIAAAaB0AIAAAaB0AIAAAaB0AIAAAaB
0AIAAAaB0AIAAAaB0AIAAAaB0AIAAAaB0AIAAAaB0AIAAAaB0AIAAAaB0AIAAAaB0AIAAAaB0AIA
AAaB0AIAAAaB0AIAAAaB0AIAAAaB0AIAAAaB0AIAAAaB0AIAAAaB0AIAAAaB0AIAAAaB0AIAAAaB
0AIAAAaB0AIAAAaB0AIAAAaB0AIAAAaB0AIAAAaB0AIAAAaB0AIAAAaB0AIAAAaB0AIAAAaB0AIA
AAaB0AIAAAaB0AIAAAaB0AIAAAaB0AIAAAaB0AIAAAZhvOZ595zeBwAAwEpUWgAAwCAQWgAAwCAQ
WgAAwCAQWgAAwCAQWgAAwCAQWgAAwCD8Ty1NHDnivun2AAAAAElFTkSuQmCC
"/>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<h2 id="6.-Batched-Rendering">6. Batched Rendering<a class="anchor-link" href="#6.-Batched-Rendering"></a></h2><p>One of the core design choices of the PyTorch3D API is to support <strong>batched inputs for all components</strong>.
The renderer and associated components can take batched inputs and <strong>render a batch of output images in one forward pass</strong>. We will now use this feature to render the mesh from many different viewpoints.</p>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In [10]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython3"><pre><span></span><span class="c1"># Set batch size - this is the number of different viewpoints from which we want to render the mesh.</span>
<span class="n">batch_size</span> <span class="o">=</span> <span class="mi">20</span>
<span class="c1"># Create a batch of meshes by repeating the cow mesh and associated textures. </span>
<span class="c1"># Meshes has a useful `extend` method which allows us do this very easily. </span>
<span class="c1"># This also extends the textures. </span>
<span class="n">meshes</span> <span class="o">=</span> <span class="n">mesh</span><span class="o">.</span><span class="n">extend</span><span class="p">(</span><span class="n">batch_size</span><span class="p">)</span>
<span class="c1"># Get a batch of viewing angles. </span>
<span class="n">elev</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">linspace</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="mi">180</span><span class="p">,</span> <span class="n">batch_size</span><span class="p">)</span>
<span class="n">azim</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">linspace</span><span class="p">(</span><span class="o">-</span><span class="mi">180</span><span class="p">,</span> <span class="mi">180</span><span class="p">,</span> <span class="n">batch_size</span><span class="p">)</span>
<span class="c1"># All the cameras helper methods support mixed type inputs and broadcasting. So we can </span>
<span class="c1"># view the camera from the same distance and specify dist=2.7 as a float,</span>
<span class="c1"># and then specify elevation and azimuth angles for each viewpoint as tensors. </span>
<span class="n">R</span><span class="p">,</span> <span class="n">T</span> <span class="o">=</span> <span class="n">look_at_view_transform</span><span class="p">(</span><span class="n">dist</span><span class="o">=</span><span class="mf">2.7</span><span class="p">,</span> <span class="n">elev</span><span class="o">=</span><span class="n">elev</span><span class="p">,</span> <span class="n">azim</span><span class="o">=</span><span class="n">azim</span><span class="p">)</span>
<span class="n">cameras</span> <span class="o">=</span> <span class="n">OpenGLPerspectiveCameras</span><span class="p">(</span><span class="n">device</span><span class="o">=</span><span class="n">device</span><span class="p">,</span> <span class="n">R</span><span class="o">=</span><span class="n">R</span><span class="p">,</span> <span class="n">T</span><span class="o">=</span><span class="n">T</span><span class="p">)</span>
<span class="c1"># Move the light back in front of the cow which is facing the -z direction.</span>
<span class="n">lights</span><span class="o">.</span><span class="n">location</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">tensor</span><span class="p">([[</span><span class="mf">0.0</span><span class="p">,</span> <span class="mf">0.0</span><span class="p">,</span> <span class="o">-</span><span class="mf">3.0</span><span class="p">]],</span> <span class="n">device</span><span class="o">=</span><span class="n">device</span><span class="p">)</span>
</pre></div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In [11]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython3"><pre><span></span><span class="c1"># We can pass arbirary keyword arguments to the rasterizer/shader via the renderer</span>
<span class="c1"># so the renderer does not need to be reinitialized if any of the settings change.</span>
<span class="n">images</span> <span class="o">=</span> <span class="n">renderer</span><span class="p">(</span><span class="n">meshes</span><span class="p">,</span> <span class="n">cameras</span><span class="o">=</span><span class="n">cameras</span><span class="p">,</span> <span class="n">lights</span><span class="o">=</span><span class="n">lights</span><span class="p">)</span>
</pre></div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In [14]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">image_grid</span><span class="p">(</span><span class="n">images</span><span class="o">.</span><span class="n">cpu</span><span class="p">()</span><span class="o">.</span><span class="n">numpy</span><span class="p">(),</span> <span class="n">rows</span><span class="o">=</span><span class="mi">4</span><span class="p">,</span> <span class="n">cols</span><span class="o">=</span><span class="mi">5</span><span class="p">,</span> <span class="n">rgb</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area">
<div class="prompt"></div>
<div class="output_png output_subarea ">
<img src="
AAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0
dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOydebwdRZn+n6rq7rPdLQtkB0LYoiBB
EFBQHBVlcYMAQVGDDLiM28wPBBTRiBsiIO5oFAmCIygoCjo4DsrMKI7K6oIKyBYI2e56tt6qfn9U
dXX3WXJvQpZ7k/ebz+Gc06dPnz6HrltVT73v8zKlFAiCIAiCIAiCIAiCIDYF39EnQBAEQRAEQRAE
QRDE5IcEBIIgCIIgCIIgCIIgxoUEBIIgCIIgCIIgCIIgxoUEBIIgCIIgCIIgCIIgxoUEBIIgCIIg
CIIgCIIgxoUEBIIgCIIgCIIgCIIgxsUZ53Wq8UhMBtiOPoFtBLUvYjJA7Ysgth3Uvghi20HtiyC2
HV3bF0UgEARBEARBEARBEAQxLiQgEARBEARBEARBEAQxLiQgEARBEARBEARBEAQxLiQgEARBEARB
EARBEAQxLiQgEARBEARBEARBEAQxLiQgEARBEARBEARBEAQxLiQgEARBEARBEARBEAQxLiQgEARB
EARBEARBEAQxLiQgEARBEARBEARBEAQxLiQgEARBEARBEARBEAQxLiQgEARBEARBEARBEAQxLiQg
EARBEARBEARBEAQxLiQgEARBEARBEARBEAQxLiQgEARBEARBEARBEAQxLiQgEARBEARBEARBEAQx
LiQgEARBEARBEARBEAQxLiQgEARBEARBEARBEAQxLiQgEARBEARBEARBEAQxLiQgEARBEARBEARB
EAQxLiQgEARBEARBEARBEAQxLiQgEARBEARBEARBEAQxLiQgEARBEARBEARBEAQxLiQgEARBEARB
EARBEAQxLs6OPgGCIIitxWkvXACHc9SCCLc++PSOPh2CIAiCIAiC2KlgSqlNvb7JF3dF3nX0IigA
QSTx7d8+tlWO+fYjF8JzOBiAq//30a1yzJ0MtqNPYBtB7WsrcvaL94bncHDGUAsiDNYDEhEmBrUv
gth2UPsiiG0HtS+C2HZ0bV+UwrAZvPOoRSi7DsquQMVzsPyIvZ7zMZcfsRcqnj5m2XXwzqMWbZVz
JYjJzllHLsSZRyzEKUsWbJXjlTyBoivgCgbP4Sg49OeNIAiCIAiCILYmlMKwGTicQQgGKAZAouSK
53zMkpnwOJwDTH8GQezsvO+YfVEpOAhjBcEZ3nToHvj3e57c4uO986hFqBQcOJwhlgAHg2DUlohd
i9NeuABBJKGALY6+OfOIhQhiSWlABEEQBEF0hASEzUBBT0wYBwAOVyj884v3xrfu/scWHe+fX7w3
yp6AwzkEZ1CKYpaIXQNPcH2tKwmAoegKLF0yHzffv3rLjudwOJyBM4YYyvwjiF2Dtx2+F0quQF/B
ReBINMMYb3jBvM0WABIhToQxolhu0TEIYmfjTYfugSCWiKTuVahNEMTW5ZQlCxBKCVD7mjJQjO9m
EEuFWClwBgjO4HAGT3Ccdsjmh2CfdsgCeEJPegRn4AyIlUIsadpD7PwIc93rG4fDOUqugze8YN5m
H+udRy2Cy7mNOFAAlAK1JWKXYXrZg+dwuA6H53CUPLFF0WwlV8A1fZsraHhAEO8+eh+UPQdl14HL
dZvYkn6KIIjOnP3ivVF0BbgZw1H7mhrQCGEzCGKJWOrwUM70aqfgDL1Fd7OP1Vt0jXCgbwpALCWC
WG6TcyeIyQRnOsVAcH2vJyzMDtA2B8/hcAQDYwxSKURS3+SmDWIJYqfBEdy2peTmCb5ZA7H3HbMv
HMHBzCCOMoAIAibFlFlvHYDs7Qhia5JdkE0gEWHyQykMm8FwI0TJFTpyQKQrqPsfdwa+evml8DwX
gnMwzttsKxUAJbUAEQQh9j/uDDz9yxshOANjQBwr+JHEcCPcQd+OILYfYSxRcPQqqVSAVNoHpOSJ
zQqbfudRi1DxHKNc6wieKJaIZBpuShA7OzrawKTBKQapTARBGE/4GEVHQHBGkTsEkUFwDsGV6aP0
JCcYJ71n6ZL5lO5AEBPgvFfun4tIZaTPTRlIQNgMfvjAapz9kr0RxBLcK2DfE94K13HgOA6EEBCc
g2dWcGwrSJ4qBWmiGPp6e7D7qf+CMIrgjK7Bg3f+BEEs8cMHtiwHnCCmEomAwBgDZ0laEOBmVOgV
F5wH103/RIVRpLdfernd5pj0H87StIVIKoSxooEbscvAWBIVl4+OczmfkCD3/pfvh7IrkCYBEQRx
/qsOyLWpJHJuU/zzi/dGwRGIAt1fkY8IQXSHQYsGzIzjBGe0+DNFIAFhM/EjiUNOejsqlTJKxSIc
R4AzLRowBiMeaA0tiaDW/Y3Z5iizSqQglUQUxWi4LvY54e347fe/voO/HUFsH75418P40KsXA5n2
sfCVp8MreHAdB1+9/DOYPWs33bWY8Zo0ETxXfeYSRGEEPwiw21FvxPP23w8iqOHum76OUErEUiGk
VCBiF0MwhpipjJigw67DCTQFT3CdSscYYhlBqrT/Iohdlct+8Vd88JVaREgmOHwT3iLvfdm+KDgc
UdL/qE1VUScIIpk3aREhkRPIUX4qQALCZnLU6e9Gf18fPNcFFxyccXDOrHCQNASYFVEkEySVmLsp
Iy4oSMnBOYcjBAqeh6NOf/cO/nYEsf0IIon5zz8UzvznoVgs2igeQDeapEOx/YnSvgYyjhFLiTiO
4fsBHnv8CTR8H0tOey/uWnUlgpi8RIhdCykVuPHUSaN6mDWlGg9hBPAwio1ZMJmQEgQAO75jtm3p
yLdOq6RJegM3fiQxzYIIYpPwzOIry3rvkPA26SEBYTP42hWXYtrAAFzXges44Jxj/fAI3vn+c/H2
M07HSScel1sxbUMBt97xn/jaN7+NfznnLJzwyn+CUhKSS4ABA/39+NoVl+Ld5164nb8ZQWx/Fh73
NlQqFThCaPFACBuNoO9MxwIGpVQqIBjxQEoJ13XheS6choNHHnsc8152MlbfcxdKTn1Hfz2C2G58
9hd/xUWveR7AlO1+lFLY91WnAgBWXHhu1xHZ4N23olJw0Nvbhw1Dw8aTREHS5IcgwDK3JMRacI4o
zvuL/Ns/7ac9sCTSiRA1IYLYJCzTMyUCODE1IAFhglz28Y9gwdy5KHie8Tzg+NVvfovPfeErAID/
/d09eNFhL8Qec2Z3PcazIyP42je/DQC448678D+/vhufXXEROOdgTEczDPT14bKPfwTnf+yT2+27
EcT25ltfuhLTBgaM8aiwqzsaZSI/mRUUlAnhyQsJMZxIRy0wxuD7AYIwwPxDj9mxX44gdgBKAcwt
YfZRJ8ARIjN30ekIOgUoRhzFuQolXrEEpiI4jmNLFUupICmIhyDM6iismK1RAANOedE++MHvHwEA
U/ZUG5kiif5RilZSCWJTZBaNGANEpokllRjIQ2RywtSmEx13av30C5/5BPp6e+B5LhhLy4coJREb
s8PAD1Ct17HbjOno6+uFI4Sd8J9w2hkAgKuuugqLFy/GiSeeiJ/edH3Xz3v1yafbx3fccQeGh4fR
50qoSOpIBCkRxTFGR8ewfuMgespleAVPuwAL3naOQRBidKyKD3zo4m32G00SdtYueKduX9247mtf
RLlUAuc6hYclIaLZwVmSvpBsUbATIaWkydHWpqRRFCEIQwwODaNaq5mVoTT5tFjw4DouHMfRYd6c
pyGpRpxQSiGK9eRqZGwUKy69Ykf8NDsKal87AV/4zCfgui6EMSFN+vakzcSxjtyJ4ghhGMEPfAAM
PeUynr94f9x59SfQCGM0whh+FKMexIgVmZFuBah9TWE+/OrnoR5Epl1INCKJfY4+EW6pbLoZ3df4
99yOaTNm4Mln1qIRxhhrhvBNKh21oW0Kta8pzEWveZ5uK5FOPW2EMQRjqBoT0gRqQzuMru1rl41A
+MZVn8OcWbujVCrCdV09mWHM+hTEcYzQTEq44KiUy1Y8EFwgyvykz3ve83QNeinBOcdE3Kc455g2
bRrOfNtbcc2XPw8oAZj/IZVyGX4QwHUcTJ82YAaFwuYIJWHcYRiiUi7jG1d9Du/41w9uy5+LIDab
FReci2KxmDERBfbaYz56e3qseJDNL20nIyl4Li6/8ot4/3vfDUfGaRSCiRdlnKFcLkEqiXq9AcYY
isUCioUCSsWibUPCtGHOmYlwyAgIkZ5YVSplXPnJFfh/H1mxPX8ugtgiVl71Obieh+nTBmw7yi4M
KNNf6KiCGFEc6+o/TQdBEKBaq+P/7rkPlRe9FgsGBnDvbdcjjnw4BQ8veMXrd+A3I4gdw1cv/wzq
jQaiKELl8NejZAx8NQpQJj8hW3GLAY2mb+LnQKHYBDEBFrxmOVY/9RRqwxsxZ9Y8rPv1j1D1o7Sc
4y4ho0xNdlkBoVQs2kgCwYUOpRbCvh5FEZRSGK1WMWOa9j3Irpje+uPb7b5PPvkk5s6dCyklIAQQ
j197+/HHH8fMmTPxzLNrwRmHYgoceuXIdR2US0VsHBrG7rvNNNUe0v9VcRwjCEJELAbnHKVicav/
PgSxJVx95WUoFjyAMSzccw8oADLWk5b+vj7tVyB0JMBrT38benoq+MG3V3bVOBmAwWoNbzrtHADA
nf/9v/jp928ApAJTynqOMMbgeS7cwAXnPoQQcB0XpWIRvb09cB29MpsIcdxE8yTiQRhGNkWiVCyi
0WhixYXn7mqRCMQk55MfuQAFzzOCtcKs3WZqHxFTDUihvXqCFg8kpJKQsYCIY93XKWUF6dj0WYPD
w9jr6NfmInhWXHhernQqQezsFAoFhGEEz3URxxJhFGYieGIbdq1haNxzG/r6+rBhaARSwkbIEQTR
mU9f/CEEYQgAcApF9M/S6QrCLCrZco6mmVE51MnHLikgrLjwPOy1YL52cpfajC37x54zBmkmFb4f
wHU9vXJpfAoYGH5/7/12/7PPPjs9uFITiqc655xz0icMYMpMahj05Mf14PsBwjBCXJCQYYR6s4kw
igElUfRcnc9qDOVokEdMBnafOUNH4TDjVyAVYhmj0Wii4HlWiDvhtLcAAKZNmw7mCHRKuE4U6Ded
qdvK/PnzsXLlSmx45nHM7O0zpbW42ZfBcz0UvBA1U8lBCA7P81AsFPJVHpJIHpMyFEURkuqryhjI
cc7MKhNBTB7mz5mjI+SkRKlYRKHgmei5VBCzKzbJ4qhthxJSxIhjARZFxojUpO7EscnX7myBveLC
83JblP1vupX6H2Jn4MffvRZKKfRUyqZ/0IJbkv4jTKRa1kckmfQopTqKeCRGE4TmK5/7NIIwbInQ
0f1W7Q+3w/M8cD/q6CGy4sLz9D31NZOCXVNAuPRyfPMLlyOKIkSRg4Zs4vd//hvqTR8A4DgCRy05
EL7vY6C/z+aUZu14H3viibbj9vf1gm2B8xRDZq5i7oXgGOjvw+hYFU9vGMTG4VHUm751oFdK4rDF
++mQ1CiiBkVMCsqlkvbrMKk8sdQeBZ7rQggtHtz2n3cCAJYsWYJLL70UkT8Gt8tqzT9Wp4rz1772
NXDOcfMtt+JdZ77NbuecQSkGIQQcx4Hj6MGeXjmK9HYh4Hkekj5JSgVAZsK7dYh34kUSS4kVn6U2
RUwu+np7tXAcx/Bcz5QSZpnUBaQTe6Y3KKWgmALjDEpycK77qNisrgqhSwm3usoDgOs4KBQ804ac
VNXTn2bSInR0w2Ufv1j7kQQhwGiQR0w9Vl51OUqlIoqFAqSUYFxHrclYIowj8FBHrSoFu3qaUC5X
EG8Y1J4jbZHXjBZ5iF2ea79ylY5+M20nWaxN+ivOgHkLFmDwL3+zizqdoLY0OdglBQQAGBwewe6O
gyiWuP9vjwKM2fDmMIrwi9/+AUv23Que8UcAmPUgAICDD3w+/vs3v80d840nHLfJz9xt5kys37Ch
wyt6VGbr3kMbvXmui6bvY/WzGxBG2lAk68/w+DNrMHvGNAwODW+134UgngtKKbiua1NulFJ47Ikn
MW1gwBiBMnx15TUAgMsuuwxhGGqBgfOOx/v4Jz9rHxcKBcBUMHn325fb7Ywxa46Y+BxEUYwgDBEE
gRESYtT9KoZGxrB+aATVeh1+ECCKYhRcB3vM2R09pYIOU41iVGtUBpKYfJTLJaxbvwF9vT3gXOQ8
RFSHhNGkaolSAFNSl2ZkgFIOPKmvdSEcCJFG4jHOTbUhAc/1bHpf4h+StTpN9ARlonmCIEAQhgjD
yKwWKVp5JaYMAwN9ppKCbhucc53iE0V2/KegIKVAFEWQSgJgeOEZ5+L3373KVjFJ2hwAuIWSfqBo
4kPs2nAzzuOMw3GEFp/N3EZ3XQxjY2PgjEGM4yGy4sLzAKWw4rPUv+woOo/adwHO/9gnUKs3MDI2
hqbv6/A0E9aZeAwEoV69ZFkZzHQibzzx+LZjvuXNy5KdWmr/aFHgum9+tfPJsCSljmU2aUEjiiM0
mg17XtlznN7Xg1qthvNXUMlHYnLgB0E6ETFpDKVSEUJo/5D1wyN2X8YYVq5ciaKZlCSmhtnbs+vW
2f2DINC5cYK37ae9TLj1KUkiC4IgxPDoKJ5euw73/uVv+POjj+HZDRsxWq2h0fTR9H0Mjoziwb89
ikbTRxhFaPpNfOSTl+6gX5AgulMuldDTU4HjOPjzI4/gdW9aDsGNua/Qfj76uTELLXjgxu+Hc64j
Fjg3lX0EuOA2AoFxDsdx4DoOPM9FpVxGb08FvT0V9FTMrVxGpVJBpVJGr9lWKZdQKhVRLpVQKZdR
KZVQLhXRU6nsxAbpxM7GD1athGuuf0c4cFwXnufCM4K44zpwHdfs48J1XXt9/+mhv2K3o07GwN4H
IlIMUunIuHkHHIIDX/FG/QHUFIhdmJuv+yZgRAThCNtvMWSz4RQGBwfBmY5O6IjKPmA2rYHY/uyy
EQgA8J4PfggrTSoDMxEIUkowxuxkveB5Zm9l7xQDDnrBgbljnfrG14FJaS5p1dE51DUhqKNjY3bb
B979Dh1mitaGoRuajCVCI2Qkq0nJuUEpvPf8i7bJb0MQW0K1VsOjq9dg3dAIGGNwHQeHP38/Wzrx
3f+a/rFvNpv40Y9+hPee/TbAqNC5rDjXzR37zW9+M+r1OnafOcP6hiQGioxp3wLOmJ4MmTYchiHq
9QaqfojRaj1T2k7ZdKA4jhGYNhVFEUX0EJOWjYNDKHgF8IKHD39MC8eMszSzwDQgLUgLHGdKB//0
+zdAxjDGo4DiKhUSuNB16znThsKui2KhiFKphEqpBMd1jDgnjB6etlIpJaIoNiJ7bHLAtY+II6JO
X4EgJiWu45p0OP2ccQYogdhU/QFMShBcSCnhxAJhyGwUQrVehzdnH+w1ex8oJW0aX6twQFEIxK7G
j7+7Si8QcT0+i+PYitlAxq8nMbA366msNaYuZ7vD7GPyRtgx7LIRCAnnfOA87L9gDnzfRxAECMMQ
YRgijmOsXbcejiOsKY4uHadXV1UQ4orPfAIvOmQJ7vjRTXjH8rckBbczYaP5G5TCLdd9E9d85SrM
nT0L3712JU489hXtx1Y6TM5xBIaGh+1EKDQh2b7vY9/5s/DOfzt/R/98BJHjLe98L/pLBTQaDQRB
gOcvnG+jDxhjqGVSA173utfpCJ8osvYiOcL8BGR0dBRRFOElh78oZ4LNknczncbgui4Y09VK/CBA
0/cBGcP3fVOqMbSpE0lEjys4Gs0mnl23Hh/9zOe2/Q9FEFuA67oQnOOEk5bhmGOOwW233aaNfZn2
QsjejluqxYNrrrkGf/r7wyYKQRivEGHTEnR5YmaOoz+jWPBQLmoRoa+nB329vejtraC3pweVchmF
QgGu4+j2y9vLsAouUu8ggpjk3H7jd/Dmc/7FtAluPT90dI4Dz9URB9lywILrqJ1cz5Wkc9uJUadV
VEWrpsQuRdIX6DZlouM6tI0kFS+JSO0ahZCQ886idrW9oR4ewHkfvQQLdpuGer2OIAjsxKKvr9e6
4STl3uwNCgfttw8+dfGF2jjRTvzHuSlgwZzZuParX8DMvl6jaLcfO3lDX1+vPZ8gCBAEARbsNg3n
f4zSFojJydkfOBcN05Zc10m9Qzr4HJx+ykldj8PKpY7b33rGsnQfpKFvJr3brKzqkqxBGCKKQrgO
h8O5FQez6UBhGGLfBXPwvvMvIgWbmLRcd/WXIARHzddmvxdddBHuvPPOTKacmcgzhjt+eRcA4NOf
/jTmzZuH++99wLwO6+eT+IbolB8dMpqMx6I4hjIDP9d1cciSJZg3dx76BwbAmBYDla3wIPP9lzFV
jKLxyxkTxI7m1huuBS+VUG80bHvQonfSPvS9k4gLZp/MAqhGtavgQggUTCUgx5ROTdZVV1xwHlZc
eO52/rYEsSNI+xrGEmHAGP8me1hDRfuWdv2t7TnLhChQjtD2ZpdOYciSnTicccYZcBwHnuOaeXwa
WTAhOu2XzHRMroLK7GsHYplIBSMjwHNcBEEAwRmu+fa1W+OrEsQ2Z+U3db7bj797rZ3UMEe07XfW
297cEmmQWrSpZrPjsculEhDFueA2lWlXjDE4jgPVbEIpBd8PAACzpvfj0dVrdGqQqbwAJXHNNdds
za9OENuE6QP9EJzjlLeeBZjr/Morr8TxL70xF+rJAFzx5asBAIcddhgAoNZs2CgBxpQR9Yz5ohGw
dZUGZQRrgTiKEEuJsVod/3XX/2DNhkFUa3U0fB9BGNqqJbsN9GPubtPTtCAptYFpGJIgR0x6XNfF
CW84FUuWLNEiWlKOUekqI4zr1B+ueOotYkqncs7Bk74EAMCs0OA4ri5bbMQ2my5nTEaTMSGFXxM7
M8uWLcPypa/LiXHMPE7EBGna2wFveAd+f+NXIFX7NOqQE97UUaRrKydMKULbDRIQOnDDDTcAAK75
0pW5SYqUKh18yRgsqAFhEyz0oeIQkDGgpLnyW65+xs0ykQCEAzgelFsC3AKUW4QCs6kMKQqe52LV
qlXb66sTxFbj21+5CjOmT8ubkLYSRmhfytF1TVk3wS6OM8lx2jEbLbW3uQlDjWNpJjsSlUoZAz1l
rB8agYxjHLDXfHzokk9vle9KENsaIUQaGm0EhAs+8J5UGEhfyO0jpcRBixfrdpiLVMgfXwsCOpUu
DCNU63XESsGPYjzxzDr4YZiZWEnrIfKPag1r1q3HAQv3AOcMURTB9300ugiABDGZEIKjv78fC+fN
0UK3MgubjoMzznwHvvP1L0MxBcVVzsQXSdUskzrHzH2S3lMoeDYSTkEhjiWkjOEIB6EIEZjI0gSq
WkLsjPzzspMQx3Gb8bVNPk1qawN4avUzmPeypRh89EEMP/s0VBCgMmsPzD3g4PxBs5oBa9+44oJz
qTrDdoAEhC5c8ckVmDljul2pUVEINEeB+ggQ+9ZlnmnLRE1uTNY6I9LhnAoAgnSrXv1hABdQhQpU
eQDSLdm8biEErvjkCpz7kRXb/ksTxFbEVjBJmkJLSPO573u3edTZdFQp4MDFB+BPD/3VbnvzKSfl
TEeT1dNk8gOk+XPZSVIUxxgZHcO0njIuu/KqbfOFCWIbwhnDQ4/+wz5/1atehV/87FbA93OlFe+9
7/7c+0499VR85UtX5tIXshEI+h65VdcojlCr1RHFEgrMeoYkJAJCchut1bF+aBgz+ntRrdVQrdVp
FYiY9Pz0putx4rK34uc//zlYfRhKGjEaDMedpFPleMEz0WzpxAdm/JcY9zKhIxK0f0gBpVIRBc+z
bS4xv46lhOu6OoUujhGFEcIoRL3RROIcRyuoxM5EIhLk0uySqOvWpVYGxFKif+GB6F94YOeDoXV6
1Wkjw8KFC/HYY49t7a9DZCAPhC4UCp7uGMIG1NqHodb8FWpoDVRQh4xTs0OZM0qEDb1pN1Fsf00m
vglKQkYBZG0Ict0/oJ7+C9TgajClVbtCwZvAGRPE5KJcKqaLoSY3Ouk8Zu22G45/xcu7+4aY/1xx
2afgulrnPGC/ffH2M0434kGSb91iVGpodYtPoIgDYiry4++uAuMc537oo7ntLCMewAyhLvlcKpCd
cMIJGB0dxezp02xkQiJOd/Kn0lUVtFggpYTvN8GYQqngWv+QbCnhrIjgCoFqrYbzLr6EJkDElMAR
um9JVkETUW3D4BAA4Fvf+haYENb3Iwm7ThqPlMqWQXVdB6ViQZcwLZdRLpVQLukSp/qmq5r0VLQZ
aVoGtYyBvr7cOG/FBWQGR0x9Zs2a1UG0hk3TBtqNEPNMMG28Faaw/LSTt/i8iYlBEQhdcIQAG3oa
Km4CgmsDuPE8Oox9qEI+pDSTqd21PWTDeJRSULUhqLGNYJXdbRgcQUwlktUapRQU0ykJd9x2i05N
CMNNljyFaTc8ivDTH96EqNmE4EILBtaTBJnKJcoY8KiWzyeIqY8QHAwsFwUwd87sjvtWazX7OAzD
5IHdlq776PaRlG8MocsZh2FkInoARwn4zSb6K0U0fR9Do1VjupimMoRhiEqpiGp1jIQDYkrBuG4D
xx57LH7xo5ts9MEZ5/wLAGD+/PmQtWEzAdJRBumbkzQGXYnBdV0UCgUtGpRLcB0HDCzfR0lThjuO
4DgCjuNAOAJCBDYFotFsAoxyuYmpz957zAcYcPwpZ+An37suX7BEKUjZarQ7nmtiZ7PS9td1jitF
IWxbSEDowOWXfBTTmmvBPBdw2n+i7LykNe+003WdTWtQmRXZthqnSY4qdI1urhT4yBo4ocTll3wU
5330kq3w7Qhi23PDN76CUrGYC40GY0CzmbnOJ6YvqyCAYNx4HbRH9yRmbkpJ/Rgwrr/GJE6pCfQ6
BDF54Vy0Xb7fufpLnQ17W1i0155t2xKvA5vWwJnxEdHtJzT52cIREKEWsKdVSpg9vR9hGGH1ug3Y
MDSM73zn+q32HQlie/Pqk3Wp0xuvXan7o0yI9fXXX5/6XbF8VJuNWDDPhan8o5Qeu82YPt2kQ8Ck
uzL09fWjVq9h48aNNv016QCTfkpKiSiOtMniFi6+EsRk4ZMfudBGiSappSqJxDYiNWNMh2ebMaFw
HJv24DoOpFImhS5O8lM7kDZlexcAACAASURBVBnfMf141U23AACJCNsQSmHoQGl0NYQxxbF5O5yZ
lRqeu3H7mEHwpDRWvkRWdpuwt+x7M8dgaT3uRJF2mEJxbM2O/lkIYsKkJeM6pfNIXepNxlBRABU2
oUJf34Kmfh75kHGk9zFl4ZKUBSnTeylbj206qqT92DI/JB4QU5ObV30TnOev37mzZ6XiQTq76fj+
L1z+mbZtSSqdlPoYnGnT0WwqkAIQRTH8IIAfBKjV6xgcGsLYWBX95SIWze0cAUEQU4Gf3/w9+3jm
QD9geok3nnEmYMKvzzzzTJjAa6SSdzLRl7ZdSqV9Q6IoglQS1WpVH5il48Ag8FGtVlMfBeQXnoQQ
EEKkUQ7UZRFTmKR897EnL8Mdd9xhK/4AQCxjI2AbAc6kAXmeh3KxiHK5hN6eCgpFbUjKxXgR4NnQ
Bmo42wuKQOiAY1x2han96whuQ0iHh4ZQq9fQ19uHgWkDqcN8p6iEli05Qdmm/yiMVsegpESlp0cb
zxmDHpicVMEZXE5yNDF10HW0RVqWtFkFwgYQ1KGiAEzGmXKmmWs7e5mbSZHiAhAe4JiKJV4FiouW
8qfppAhWwEjyVSn6gJi6OB3Kn1539ZfSNZdNRCEIIVAQwpYPRrbNWONRvWoqhC5RF9uSdJ3aTYeK
KQQxBWG884VcreoUoCiK8Mwzz9hVzyTLNFk91d4fqeCm/UNi1BtNKIzgsaefxWitgSCM4AiOvkoJ
/T0VlApeWr4+I9Zlx4QEMdXp5N3GTNUsmYnOyS60FrwCCgUPjkn/CaMISio4QiBikRG8VSqWZ2sX
2w9p77coCmHbQAJCC1/8tzNRKRV0fppIBQRA4Vd3/hc2btgAACgWC3jVscdiYGDaFn+WUhKPPPwo
7rvvPoRRCM/zcOhhL8L8BQsQm77FEQquoxBLiS/+vzPx/iuv3YrfliC2Pt+5+ksolYpgzVGo2kYg
9CGRVi1BNk2t62xEZaqhRlDwATWamiwyARR6IEu9kE4RShmvhaSmfUu5IIKYqnAurLPo/LlzcM3X
vwxEUT4lrgs/+cF3bbUS5Mx9ZWpilaysts1bsi4+HR5TsyJ2An5++w9zHiEJxx9/PN506skZL500
zUcqCQbYe0CLClEcoVqtoukHkMaMMWlWG4aGrfkoZ8Bec2dj9+kDkFJH5MVSG5QmAgL5HxBTmZ/e
mKa3LT35ZNz07a8D2XLBxow+Ea6LhQKKRe0hIgRHGMVQUJBSIJYOhIggpSn7nXRDbeW/022L912E
hx5+dHt+5V0OSmFowXE4XEfAFQKu48BzBTzXwQP33oPBjevBmQJnQOD7WL92rRYZHKHf4wgrPIiW
W6f9oBQefeRhRGEAphRCv4n/+82vMTo0BM/Vn+2I9FwKLuk9xOTHiQOwNX+H2vgk4NehZIeqJUiq
krSnIOgBWmu1ksxNSqgohKwNQq1/HGrNw5BDz0DFUa7KSbZkEEFMRa7/+pe1aaGZ7l/z5c+DRVEa
uaPab2ef+RYAQKVShquypqOp8aGetJjXWBKYnSyBtpxEa52tzMYVF5y7zX8Dgtja/PTG6wFPr5CK
MExTgHh+SHzWW9+ce570YckKKhQQxxJRFGnfkDBCGMUIfB8CCgM9Jfi+byuXJG0wjGL89bEn8ev7
/oQgCBFLiTCMUKvXEUYRiQfElOY/f3QTwBju/eOf8Pa3vx03f1cvfCqlF0OVSftJUl1dx0GxWECl
XEalUkahUECx4MF1XbiOC8EFRJLGkBMOsn2WMtv1i4e/8OAd8t13JUhAyPCZd58Oz3FR9PSt4Drw
HAeOENi4YT24yanmDOAmx9oRAk7Gx8AxoaDJdsekQYgO+wFAGPj2eNw4hz75xONwHQHPiAaem95/
6l2n7+ifiSA2CR98Ekxpd93WCLN0Ot+WvGCfp5OjcT7IzJlkHEJWN0KtfRRqdL3xTEhFBHSbGBHE
JMfz3Pz1m9Q4Vfau7bbsja/HT/79OvzwO9e0lBSWNuxaJsJcJgRbdVrVSUOF8tsUy4eSEsQUIklf
+MWPf5CmEiggaE1riLJmhmnZucQvJCEpb5qYj4ZRhGajid5SAXvP2R3TekpoNpu2PKo0onoQhvjj
I48hiiLUG41M+hBBTF2SVvTBiy/BtddeC0SRrZolpUQcxen4TAGu64Axhp6eHpRLJRQ8D57rwXNd
uJ5rIxNKxULmU1Tqd9AxmpVh+bKl2+kb75qQgJCh6Hk24sBzHbiuFg8EZ5g9e7YxVoTxRxCYP39e
Jn8nvVlDxCQCIWOamL2VikXsueeemXBrrcQNDPRb/wU3ORdHwBUOKrkGRBCTixtWvDetl51YT7Eu
k5CMiJAvwNhZPOgWYZ2GkEbA2AZgw+NgQdPW9M6689KKKTGVKBb033ubdpDckKbrtEUhSKnzTzMp
PYlgYCuWyMx2E40AJClGmZbWrazQJtOPCGJywxgDggAqjk07AQCFH918q93nZS85Mn2DQs7vIMnd
1gfTd3EcIwxDBEGAINTGo/V6Hc1mAy4D9p0/C/vNn4195s3CPvNmYeHsGZg3vR/TKkWsXb8BTd/f
nj8BQWwTfnzZB/WDTFtJElellJBxjDCKMh5VQGRSe+I4gue6KJdKcF0HpWIB5WIRpWIRRXNfKhZT
EZu1DiDbB47Lly3FaW84ESsuPG+7/g67AhQTn6FU8FBw3dQ40VZQ4Dj8iCMwa/dZWL9+HTzPw14L
F2L33XfXYoHjwHEccFOKJ5bSqswAcsICY0w79kYR4ijCS15yFGbOnIk1a9aAM4Y58+ZhwR57mM5J
QihuvRhcR6DouTv6ZyKIriSiWbaCCWfMTjg6Tjna6jmmRm0KAMu4zatkmZSptnmOPbaMwIZWgykG
VtktkxdHBnDE1OEHX/0cCv4wlIqhwCBZ6mwNLsA418aijgcUe4BCBeAOEoe2Vt8DaXK3dQSCtLnX
NpWhNV6oq/doZj+K6iGmGD+5/lvwimUbcqOY7mMUGP7713fb/T76wX+zJqN25VTGuRS5tDKQtE0h
llKnJKgwJ5z7ftC5zL1qeU4QUxi3JdX69lu+Z4W3OI4RxbGZH8WQUkfzSCkRhCGqtTpc18P0gX4w
xjBjxgzMmDkTD/3lIVRrNTiOA8dx4bkuxqpVSCU7R8G1dGWlYnGbf+9dERIQMiRlGrkpvcMyAzbP
9bDvfvthn3330SWvHJ2W4LouisUiyqUyCsUCPNeD42oHUWnq1nOmc1ijMNLKdNNHvVFHs9kEGMP+
+x+ARYv20Z2SUbVVJj+Im3NKBA2CmIys/NA7MK23AlcILZZxZo0T2xcsW67j3NNMLEImhFrposGp
n0Knij02V4Lp8NPB1UBllpnsUMg1MXUQo88Cgutr3rpOm1ztOAJiAFGgt1c3avHALQCFXqhSH+B4
LZVKzGRHJSVQTaoP2kKANJ08FFtfpOZETDHY2oehps2C6t0dcBiYMiICFA5Z8gI89PeH8Y0vXG69
epI2JFW6MJRULRFCaG+Djh80Xh+XaWDULxE7Abddfj4coasGjQTamNRD6n2VRBogU0o4MVSMEGFo
aBj1RhOrn12HxfssxNjoGIaGhgEoOI5AQXk2skFKiVq9DplE3mUHmdSctgskIGRIwmms8ZpqHzxx
LsCYDmeLQm2MEwQBarUaHOHAcR0UvAJcz4XnapOeIAwQBiH8wEcURohi/b4kdFQqBS54rgxd7vM7
nRtBTDIqxQI8YyIqpcRjj/wDnHPssceepqTPOH/c7aWfDqwSgSAR3xzHheM4aXlISCil2w5nUgtt
jEFy7VXClARqg0DPDOpViCnDjZ/4AIqFlmizJOUzW/ote1XHIVQcAo0qMLoOyitBVWZAeWUoxkza
QhJ1oMUDZI6UM1JMPqxjERPWTVUgiEnNrZedB8E5MLIOqj4CTJ8PlHp1QBtjePvyt2DhXntirwXz
rTdCWrJR2oqpablgMyabSOnFXJPJ1v1ub0fdwq3JXJGYrPzkcx9M03oU8JblZ8Nz3eSpFsKlTv2x
gjYUwjDUKUGSQwoF2dBRCHff+yAO2HsvFDwHUiqbkuo4DjylEMcRoriAhlmI7YrKdFkAVlx4bt7b
x7bLtIFSO5sYJCBkYC2rNVJPT6y5Z9aPDVCIFQOTQMx07htMkHbrZF+pTCgp8gJBdiioTNhpIiQk
n589JxqyEZORay56F/orJZ3KA4Xbb78NfrMBIRzEUYgDDzook2E9AYNEg1QKTz75BP720F8xNjaG
UrmMo49+KUqVCiClnhhxBqV01BBXCpwrMCnTHLvmGFDqBwT9uSOmBq4jbF/SmviTm4eorM6ctisV
R0BjDKo+poWE3t0g3VKavmCqmVg3+Taj0ZZ0n7bonfRxMtmhQRcx2eGmPSmlgNAH1j8GDMwB+mZq
EcH3ccyRh1tfhKRqSSxT35BsRJxSatNdWbbdbIXB24oLzrPHWXXjzbna9tnX8ufQ+bOpvRJbkyRq
W6Mw0N+HVV/7oo1889w0Ii7paBiYFRGSVAYp9X3JEfjHk0/iqXWD2GvuLMzffab21jLR2K7jwnUj
hKFAFMfdNe2Mg7fuq0wKbDdUvi1RO+kOjagzpCE1OjyGMwbFFFRiNZksyqh0fJXz7TBhcJ1WUpF9
1HLt2lxVcxI27FRm8usy50YQk41KUZfdKbgO/ve/70LgN8AZoGSMDevWwhFL8q0hydFugWUnLgpY
u3Yt7vvDH9BoNrRLtt/E/fffi6Nf+jIILsDiZDAHcK49QxRXGWNSM2AcfgaYsQd1BsSk598veR/K
xUI6GOsa+txuPGrjB5IwT6WgmlWoZh3SKUCWp0E6pTR9IZe/3akmSjL52UQKkFKoN5o45Q2vgwJw
0AH7ZfbrPKqjdkhsb2z0gbXu0IajGHoGCJtQ0+ZpXwOk/ZOSeU+rrLdVMh5rWbzM03FldILRO9oA
qCVaIX24fNnJ+UiFboe0TTHffvV7FVZcesX450IQm+DrHzgd8/fY015sCsC1V38JSkrdzJRE0XUB
48Wj21kahSCVgowiANC+ckLYaIbZ/RX8Y/UaPPzEahxywD62nD3jzJR3NALC5gh0iuWEBfugQ9Nc
uHAh3njcsfj8177xHH+lnQ8SEDI0/ADlUsGY4HAwJs2FzqwZHMv8XVctf9xZ28Jq59l+2z4tA78k
X0iazis292Es0fCDbfDNCeK5US5q8cAVAhvWr7NtBYA2vhGJCscyrtfZUNDOf/3XrX0Wgd80JU41
G9evQxyGKBSLGaEgTidNRvxL/Ev03EdOLMyUIHYwBde1XjxtqE7ehS0djw2zTtPglIohm1XIRhXK
LUGWpkEqnpoqZsKz0+O0RCHYELx04y9/fTeeXP1M7m33Pvgn+7hbGS2KWiC2Jzd/+t/gmVJxueid
ZNBW3aj7penz7WsyU/pUybwHQmzKMFpaRT7VTTxo2zl9T0dfoE0LcfnPzKxqte3aTelgWHHhedQO
iefEwoV7I4pjKx8opcCMN4j2c+No+k3EcQzOGBzh6PTvOLIVgBKBKzEhzTK9rNPBVz/9NJ4ZHMXi
hQtQLhTSSkRZul3/XYS48Vh+2lLc8+AfsXDhQigArzjqxdhj/twOh858RjZtguW3r/jsztPWSEDI
UPd99IYlhG5kzQoTAYEbIysbUmqjYJ77pCSneGcds6VCFEtEpuxJEEaoU6kfYhLiOrrUqBAc/X39
2LhhvYnIYZhjSqAmqMwMSHtfo+tfdM9z00Gf2UVwDqVkWlbV7JvUt9eVU9IqEPYvedjAwoULc2Gf
BDHZ8FzHGPl2MiDIR6FlB0+dHmXelYZj10chq6NQbhnK67EeIrn3dZ2vZPP4GFY/vWaT32XVjTdj
+bKlWHXjzXZbVlRYceF5kHGMSz73+U0ehyCeC6WCnoC0tYxsJFx1ECj0AKX+THtJRYTsTbUKCDkm
OjvJNrLOq58A0Gz6+NNf/4bHn1qNRtOHUhKOcHDYkhdgv0UL0+NkDpW0t+fvvy8eevhRvPiwQ7DP
wr26fj4JesRzJpkjK2gvHu5CQSGOY3iFAuq1ujHBNtW5jEge2fd3bwPZF+ZO78PI8DBGOpUGZ90m
8637qg5RdV0i7JjCoQcfhEMPPqjD52Xf002gyG9P0iN2hrbGuv8RBLbK7HiK8ZXzzkJ/TxmlggfX
lE5Mqh/YKASWiAvJu7Y0uS31PkCX6IMwihHGMRp+gJFqHe+5/Jqt8C2nHDur9cNO0b6+94n3Y0Z/
L4quC8cRqFWrePD++1GtjWHRon2w7377gTPe8b3J4M2uCyVVG7g2y4EC7rvvHqxfvx6FQgGMcSxc
uDfmzJ2Lpu+b1SDdSflhpG9BiGYQouEHaPgBqo2mVrS5g+t+8TsopUhEyEPta5Lw0ysvwMjgIO66
61f4p1e8EtOnzzCvZBJ+Mt452b7DpsDlxGjYKINYSitIx7FEEEWIYonQKSLy+hCCIYp0mS37QeNc
Gv9x511Yt2FjblunMcXy05baQz3x1GrsOX9ebrCWTHh20nZJ7WsH8h+f/xAefeTv2Gef/Uy4dIed
sqWCK9OAvtlQjEFKiSiKEYQhwjBEEIQIwtAaYwdhaMvSbbK9tBmXjF9SOI5i3HDLrZsQKpJTVzjz
9FPy4UkMuOnW29Bo5hecli872Txi2QNg1U232KdTsA1S+9rB/PwLH0YcS9sH8d33Boq9pqx9DNf1
MDQ8hHq9gUazCd8PbJuKx2s7OVpC8Fj7S7nnrfuMd+zWdpmLJOj0IV3eh0SkyJxAlxTAKSAkdP0F
O4/qd2Hec/k1qDd8BGGEIIrsBD40A6vklg7GJGJTmiSW0tY57XTL7qP3M++XMrdf9jODJPKg4e+q
4gExyTn94i/acGsGoLe3Fy85+mgce+xrsN/++2vxIFGGW25pCgJsycf0762CcAQOP+JIHH30S/HC
Fx6Go48+GvsfsL82a+Q8fa+JOkhWbrkV+9L0iOvv/IP9vIULF+7In4wgOlL0PNz5i/9EHIbYuH4d
XFPVRHBu0xpY5vpuveaZjb5hGRPfNF87mYxkn6tGFWr4GajaEFQiHih0ypVoSwMKwyjvN5L53Cyr
bkojEPZcMD9d/TEsP+3ktvcQxNbgtlt/iFq1ZsoKt6YGqVxVEykl1NhGyNF1uYgDWzUrCZnOuMin
1zHLHTYTZte+IrkpEzfDz+781bjiAUyU7Kobb26bMJ32htdi+bKlWL5sKU4+8TjzvcefTVHfSGwu
qTamhWw5tt6Y9epUhGaziSiKbepPslDa4QibxtbtVi0TfdV+iLbLfby21EEE6OST0OWtLSfaoYxr
J3Wje8WVqQAJCB0YHKui3jQiQpgXERIhISsohEYIiKLksXktiu2Kjt0v0sJBdr/sMXPigfn8etPH
4Fh1R/8sBNGVJH0g+cc5g3B0hpSturCJv99punYaah2GIZqNBuq1OlzPQ6lUQiwVhoaG0Wg2Uv+E
7L9WQYKxnM9CEjoHGigRkxBXCCsGlMslOILDEQKOiYQTgsPhHIInIaA8JyggCQ/NRMtZIQEZ8cBs
QfJKHAG1YajRtdpYjmUGZdnQh8wgSHCO6dP6OwoIHT1NWidD2X3MY2qTxNYm9H2UigUrwNm2gvwc
H9ZAW0GOrIMcXW/zsfMGimmUDxJRrrVvy648dk0F6kR6rMHhEb1nt/bUwnXf/2HX13p7KnjraSfl
PzsTddEKtUNi88hfQ7JRzXiFAH7gpwut8abSfwzjZgdNbHLe/RytORAajQZGRsdQrdYQRdHme2Wp
Tm0z//clv397FMNUFRHIA6EDF3713/Hxc07Fgt1nGLVMmjQGnhuUpdV52ktede5P8gp1OqBDi/eB
tOkLfhhh9fpBfGzl97f9FyeILSQIQwjBISUH54BUrSk++cnIpnwPkJ3sJP+V+bDtZBUo2VeZ46fp
aOkTKVMBAWYCxTmHlBIrLjyvrRwWQewohBEDFBRmTJ8BIbi93jnT/QNyc3HdHqI4wsN//zs2btyI
6dNnYOGivdN624xBskRgQ9dJvlIKKmoCo2uBnpmAo2t4d2umruviZUcejsefejp3jKxol+XpNc9i
3tw5yWm3HXf5spOx6sZbyKeE2KowBixevBiOEIgQW32MA5CZlJtcb6IU4qFnIYMAsjTQIiKofAQP
uvkidqtakj25Dq8x6IlMRjxI2hW6pAgl24MggOd53X6J/IdMQJQgiAmRmS8rYz6qjHgQqxhhGNk2
pGz0QSpgt5kPjndpdlrxbw8X6JoZEYYRbv/FLzEyOtbx8Eop7D5zBk541T+1nF9Lm1YKURzjhptv
BQCUyyUoqTB9oB+vOuboDsbDLZ4LmfyIqWhmShEIXfjYyu/jrE9djVrTR70ZmPzqEL5NbUhucYfH
cZdbt/31MbOfUW8GqDV9nPWpq0k8ICY9J553mU3tiWMjhBkvj6TufDrwSl9Xqn2bzA7OMq+1vk/m
QrM7CMfJZ0JhzvMPR8Hz2iZPickbrbgQkwHGOebOnYtyqYSBgQGbuiCELm2VPNeRCdyUseL48x//
iAfuvw9PPP4YHrj/Xjz7zDP5FB+WT23oHCBgVj8jX4sIUdB5kGdMUz3XRX9/X649Ze9bBYpf/+He
zBftEJEAhnmzZwG0AkpsRWZMn4FKpZymAXEGbubPPFn7abkWdSRCjHhkHeLRDVCmb7MigpKZSJ7c
O9OH3Sbo2TS+tiag3/PYk6vb2tVEohBu/Y9fjP+DdPjgTmIitUFiorDk0s2UD5bVQUgpEfgBoji2
xqO27diUOpY/UCc2FRSgVMs1nW2D7bv7vo/v3vLjruIBTHtYv3EQ1954M0ZGq5mVr0xan/lcx0nX
4ROPh6efXYvv2Iig7ElkzzPdrqREFEVTLhKBBIRxeMelK1FtNFFr+mj6IZpBgGYQwg+MmGCM24Ls
zQgCXZ9n3pM1fWsGAZp+iFrTR7XRxDsuXbmjvz5BTJimHyKMYsRSh6nFMhUOkrrzsUyem0gbIy7E
Jl8uf0v3tSJC9nGyT1JqS6XqdmKumNTsFkLg/eec2XGyA+MMTwMmYkejlMJrjjsOx77mNSgVi9bf
QJi0BUcIIyZkhAXO8egjDwOmfKlSEv949BE4XKc/8JbQbZ4pSWw/t/WRjICx9TqdAS1hmkqhUPDg
uA4c4WDhHrr03XgTnGaLoZudYGXGe6865ugt/OUIojOfuu0PVmhL2kvihdAqKKdidNqPyJF1kBtX
6zKomSgE65+Qm9x0iTjYVFS1yu9b8DwMDg93TAkaT0ioNxotH9yN/DHedNLr8q9SdAKxGSTVrmwE
glSIh9ciMgukMo7bFpFUmw/Cpj6gdYN1D+5QBYHl90kem6c/+MnPxv24ND0W+NHPfg7fD9vPJVMC
7M0nv77tGDJbijKbBpj5Mnf88i6suvEWXPf9H+KGm2/FqhtvnlIiAgkIE+C9V3wbtd75GByrotbw
UW/6qPuBERRC+GGIZpBGD/iBuYX6tfR5lNu3GYRo+iHqfoB600etob0OLvvBL/HeK769o782QWwW
rz//c2j4AQLj45E1HNWRCWkN7TS3VNn7jjcjFtjVH/M4TqovyKRiibKiRRynnxVGMfY4+CUm/5Xb
EnLZgdif//YwsIma9QSxvQjCCEoBM2fO1BsyEwjOeComMJ1SJ8xzKGVXVDljCHxf+yUIDtd4KHCe
N2PsnEea2RaHurRdzrBKoVgswnVcuI4DITiWvvZ4TOvvM4fo7oFgB4u5OpQwhnIZQ0XjFE+CHrG1
4IzlonkcwW2EjhUSkKYIJFFwVqD2q1Aj66DqI5AyzpR47HBNt2KbVct13+GJ6zlwXRczZ8zoKB5M
mK55FZ1xXRdc0HSA2DKyxqRJu4kDH2FtxBqQxnFsxQXbxiZ09E57tZZgbJmkt13/erL/0N8fQSzl
pr16OrS1G2/9ySbbuOu61rD0NS9/KRSAA/ZZlJ6PNU1Nj/v7+x/Es+s2tB0rW/J4skN/MSbApR+7
CKVSEdP3OxQ9i5agvPBgFPY8CGs2DmHDyBg2jlQxNFbF8FgdI9U6Rmp1jNbqGKk1MFJrmMf6teGx
OobGqtg4UsWGkTGs2TiEwp4HobzwYPQsWoLp+x0KzjkWLVo0gTMjiMnFa8+7DKPVOhp+AN8PtQlp
GGlRoSW9RxuH5tOBopZbum9agi4yFUzy700+Q4sXQRSh4etoIeE44GbldtZuMzOh3fqP+R/uf9C6
Zq+4YOqov8TOx8vfcwmCKEpNSbMrnFn/Alt1RIsISw45xAoDgnPsteeemD1rFubMno1isQDXEfAc
3QZ4YsDIWW7NpuNQKqhpQxNzEsVCEeVySUcgOA6EiXA4+y2no1godPxObatMOfPE1k/XKzTLly3F
W089CQSxNTjsrA+DcwbXEbY8tysEVj/5BP760F+0x4DJZ8hGHyQTHikVZOhDjqyF2rgaqj4MJfWq
ahq/PR4t132LiWGx4KFcLKHguVjy/AO2KAKhv6+37aMmVA1QAW895Y1tm89//3sm8L2IXZ27fvVL
RJFepU8XfWKE6x5HNLIOURRaE8U0hSGJbkP+3tI+6c77h7QK4F0eI40m+MMDf5yY4W/rmSjgV3f/
37j7AcDsWbvjzGVLccShSzInk/8M3/fxF7Nw1YmpIp6TieIEqJTLdrAkhA5/A4A9Dnmp3eYIB9w4
Zie5qsmFaY0RzeRHxhJRHJmV0ti6wisl4ftBzimeIKYaSz/8efz7Je9DqeDp9pBMVpKw6Zbw6Sx2
oJTZ1tqvpJOrfH37RJQIwgjNIMRYo4lFLzrGmlApzlGt19uqMqSGPvpTp6KZDbHz8NJ3rcCvv/5x
24ckkZJtZr1IJ+AHHXggOGN46qmnUCqVse9++yEMAsyZO0/Xqh8chJQKgnNETNo5T3bl1R6vU162
AgoFD6ViEQXPg+s4NjpCSQUFiRcdcjD+57e/y7wtb/7WRkeDq7SOPeec2iKx1YhjadMYACAIAvzf
3XcjlgrTp8/AzFm7QxGurQAAIABJREFU23aR+Bvk7pNb5EP6DSjuAqUBgDv5dJxEHGCs/XmCyk6A
FBzhoOAV4LoOhNBRCIcefCDuffDPuf6q0+Msi/fttPDUJa2iLTWbYflpS3MlV8vl0pb81MQuxjNP
rzZ/62Gjc+LYpACNbYD0fcTFfhttmnggAJ29DwGTNtexv2vzH8y+qf1AisFxBR74019zfVG2/XRr
T1meeOrpfDtubePdPr8Df7j/j+PuMxX6PpqljsOlH7sInufitp/faVZbjGDgCBQ8D4WCB8/1UPA8
FAsFlIpFlEsllDK3cqmEUrGIYrGIYqGAgmfeU9Dvc+zKkMD1N//ICgh77733jv76BLFFvOmjX8Ib
L7hCp/z4gUnjCdv9QnLeIXHGMyRfOjVvRBp1NCtNfEYafoDhsTr2O+IVVuDjnCOOY3zzhhs7hoWu
uukWfeKU+klMAo5658cQZtJ/EjNSlY1KyNwY43j+gQfi1a9+DY46+mj09fWhWqvhkUceRq1WBWPM
VHgw6Qu2pKmOZrB0GENxIWw/5nmeCXcWtjIR4wyMc8ycNjCBFZ0uBlfWBbVDPW+C2AoccfZHTKqP
jtJpNpvmucLTTz8FwXiLw2E7SgESShvC+Q1gdD3QHANk3BKqjPRabptgZFIaFOAIB6VSEa7rwnVd
21+9/MVHdp3Ad5vs7L3nHhP4JVR+IpZgvvZbTz0Je86fhzed/PrNL2lH7JIwMHhuUrWHGf8rXYlB
xjFkdQiyPmqNFCfkf7CpfiAnOmTLhLe/yfNcFAsFrB8c7BjNs8V+H7YMX0sj6va1MtsHh4cn8AGT
v+2RgDAOlXIJV33j2/jbo//QHY9xvnaEA9d10ogDx9wLYet2O46j74XIRDCk+zpCmGM41uRn/cb0
IhdC7OivTxDPiWUXfwFLP3QlRmp11JuBTiswqQV+m8loVmBIK55kDUjttpb3+mGIhh9grN7A9ANe
hANe8iobCcSZXsn92qrvwvcDe26tHcfqZ9bYx1PJyIbYOXnpu1YgCCOdzmPSdrS3R6aySTIYS8I0
ebrCCigbNsqSAROHSX3Ih3AmOaxtWamV6eitVNBTKaNcLqFULNioIiGENWRUSuVCPLvlbQ+PjNl0
oRy27CqjSQuxzTjsrIv0/JkzTBsYsJ4hMor1xD2J9mGpMVyCSkpvJykOUEAcALUhbTgahanZaPa9
rEuJOTC4roNyqYRioQDPcyG48SoxwvexLzvaHG78SQ5nDG4yiWujdZLTLmSkx+F4+VFHwnN1gDL1
hcR4cA44jgPGGFzHaSlLr9MZ5Og6yOaYNSJNafl7r7q/lHvBvsY6an6MMZSKBZ3C57ool0qbXdWk
nU5ie4sa1zW8Nn1YLpfH/aRVN96CFReeuwXnuP0gAWEcvnzNd+xjpZSZ6Iu0rFaywplx9UVmUMaZ
WaHJOWDztvcLIXIXNKUxEDsTb/34V7Ds4i/g1Iuuwkitjmqjac1IG0ZYyN9CNO29rlDSMFVKmn6I
RpCYjwaoN3xU603MfP6RmHfIS+HZqB4BbnK07/rt71Ct1TaZU/pf//ObHfwrEUSel7/nEiu2hVGc
8wDJGotmq5WoXHnT/ECLZSMP7L/uzN5zESqVMsrlsjZPdN1MKp8+VhxLrLrplrayWJ0GaLf+x392
D/O0Ia2bWMUhiOfIYWd9GADSCiUAKpUyHMFRLpdsBIAeqyXvUnbSYptU1rQtbGoRoTnWLoB1uJYF
5ygWPJRKRRQKBdNnObmxIGMMe5kKJxNhwby5nV/IrswmJ54Nw86mWSDbNBkm5u1A7OrMnj0HgnO4
roueXu3DkQbImX4pjiFH1kGNbYCKow4T8JauofW6bBG6OnZc5nVHCJRLRRS8AjzXheu4OPCA/fTb
JiAedIqOKBa8Lj4LHUwbs38gOng77LPXRCKFgBWXXjGh/XYU5IGwCS77+MW5CUcQBKiUS+BcmJxu
bo2sEmMquz8yYoJUmYEb10KEEpBKZgZ1qi1flDGGRYsW4dFHH92hvwNBbE3O+tTXc88XL14Mzjne
8erDUHBdk/NtjOJMDnhaM9g4/BpDxQOOPt6UjYzTCRRPV2WTfLzf/v7etjy3bNtOtq+68WaqxkBM
Ko79wKcAAD+78kJ4rpPrcxJfkdRfRL8naw5vWgIAhaxs0Fp0wY55zLZFL3q5Gb8pO7FRmZ2U0hEO
X/zmtfCDABNl1U23YPlpJ3c2wVIKY7Uafn/fg/CDAMe/8uXP6bcjiE5EUQxHCCw95RT89Ke3Y968
uRCcY+7ceRgcGsaaZ5+FTMxGmUzLO5r3t00/lKlaUhvU9z3T0hzuzISIcYZyqQjHcUwVEwHXdfXq
LawBA6R5nPigtE5oOm1bMHdOywl1iICwfyRURiDImjkmggIJB8TE+djNv8H/Xr0CoZSYO2cO1jy7
1qgHyrYdXYZb6lSGoAmU+gG32GKq20lcTiJmOngitMJgU8tdx7X9FgDsvecCFAsFNH2//W0dxoat
HPOSI/UDe4rJg+7eRN1OMt9Wpy4kIGyCldd/z4blMMZQLJas63RWPGCt4kFyTdk6oSw1rEpEBABM
MjAmIc19FKFNQKAoBGJnR4eaFbH34a9IS2sZNdtzXb1SZFZlkklL1pQ0PU4+vy4RHTYObUScCZkb
b0D281/9D6SUuP3QF+L399y7HX8JgujO8f/vUgDA7VdcYMvQJZUXbERB6gJnzd+kNE7ymbxTm6qQ
7AdASWnHPAe97Diz2qrfl4h6KlmFNaa/X7/uRgRh2PWcu7Hqpltw+CEHa9O3TJ/3/Z/8DLV6g+Yv
xDblyHMuxt0rP4Hevj6cvPQUOxEY3LAB06bPwIYNGxDFMp9ZkyZabwJlPBEioHd3s42hr7fHiAQs
TW81EajZaLjEtJEDkIzZEsObT4el0tzcrONSaufJEEUDEROAm3LCgEqN4XMGpEj7oLAJhD5QqADl
AUAkU9GsmJC5bzNUzF+k3KR8O45jqg65NsLICt5QeOELDsRvfn9P27mP58cghMDs3ZLSyp3PwRxo
09UhkvM155ZP5Zh6kIDQhc+u+EhOFOCco6eSCgicaeMonnnd7p/848zYi0gbkZAVBBRTYIqBMwmp
2nNGk/0pCoHYWVm8eDGEEDj/ve+E4zi52twiaSuJEz1LBlm6U1CKQyhlxV47AGsREH57z31t7rud
UhiSTmTN2nVYvmzplKrHS+w6nHjuZ+3jmz75ryh6LjzXSaudIF1BzOehatEtzhhZSQVIacqjmsHM
Ea85ydTszoSfyjSiBwqQSuJL37weGwaH7Lm0tqNu2xJ+d98D+N19D2DZG15rSkAq1BskHhDbhxef
czEA4P++9Ukrlvl+E6tXP2XFuSiXjtrdXNGizCpqUAdUhIOedyCiODITBSOAy9h684AlbSPfd61e
8yx++NM72tKCun6sUvjd/Q9g7732aFk9VekKbqt7fPuJdzz2is9Obid4YnLwknd8FL/8ykfxyMMP
g0F77eTHY3m/HkABflW3lfI0oFgBWJcF08yK/757L8RYtWoXkQCYqHDd/wnO4Tjp1FYHzen+7+Dn
HYC7/3Dv+AaOLZz6uuO7ROVkykG0Ru50qxBh7k57/Yn43o9+0vHzTnndCakp5SSGBIQurLzhRjhJ
LhqAV7z0Jal4YIWD1N8gl1ttS9Fl1bSW/Yxax6WCng8pBEF+JScrXhDEzgjnHOVSET2VSk6Ey5u8
wbQmrSInsly2LXGlwPj/Z+/O4+SqyryB/869VdVrEhLAEBIIQfY9gAugMmGdBNlVxBl1ZnSWj7M4
844j+upoeF0GlEVxXJAgEER2SAIEARVR9lVWWRMgZF96q+Wu57x/3O3cW7eqOiGddHX/vn5iV9dy
q6qpU/ec5zznOUay/ltbvrBy1Zr4+RoNcqKgwuaeWIi2p098/Qfx5Ru/9UV0dZbCjAQjLm4YtIVg
Gzs/DBb40d72MijM6Ho+/uKMT8VFFxFvjBBsl6qEPosksXLlWmzoSypJZ7eYwzBmdeLXvfjOcNmQ
wL7v3ROvvLEsuZHNkUbYBz73dTx6xbfC/n/QazMEtKyeaMlQsJwhV86Y/cNHHx0WQA12DYoCcb70
495hnOGDoF3ZtoublizFsrfe3qxzUbDE1sWvf/cATjz2Q9oASqR+hHfWXquC7bh48ZVXsfztd1Ct
VjFx4gSc/pcntA6WEGUUCyYcN5n1D84LSYmA3E+UkkBlI2APARN2Bkxt4KwFu+ZfcDEevHsxqtUa
JkzoRa1mwfeDnbkQ5RBlBvnRuU9JCSEECsXNH/Lu895Z6OjoiA7YpFmI9B3q7pe+vqOjVJeFYBgG
/vpjZ2z5zhDbGAMIDRhCYEJvD47/8DHYd6898Z6ddkyCB1rmQf2/ZPlLfAIQQVA6tYwhSu8xEMyo
KgVhpBtANKhplw8T0eb64t//DXbeccekcFVOAEEPxQnEqQjBD0PAkEEZ4FTmAaIBjcS6jZuCx+YM
choGDzhwoTZzzn//MPX7jd/6IkrFQrLsIJyF8fwk48DxPBx96ichpQ/P86HCdoRU9oGIBzpKKQgF
3HXv/XWZDlmbHZBTwAeOOCwOIHzmE2dxDEPbxAf//r/x0OXnx4OQKAOuYJrwfL9u55JAzmc7vOnk
T/wNnKguSLj8J9qG1ZRmaktWEZ6zhgaGcNmCa+IA3pYEtNdt2Igbbr8DHzhiNmbtPiM1E5ullMIN
t98B23FS58H+gcH0sgeiYfrQP34Tv7nsa2HtDiTL66KVpo3GMgqA5wB9K4FCB9C7YxBIiIMHQRZM
wTRRLBURVTP1fYmi58GXMi7hESxXTTJQpZJBfxHA8y+9slnvp1Aw8cHDD0uuqEvcyVtakRNl0Auu
an+DvzrrNCy+5zeoVms4cL99cNhBB7RVo2MAIce3vnYe5p0wB4ccsB8mTZiAUqmUGtjEJxItQq0P
diL1X/5JLQTtKkAGa956e3pgCAE/M8gBgFmzZmH58uUj/+aJtqEdp0wOIrGiUWAupz5NFIhDMDMk
hYwzehB3yMIVq0IE29g16YwxA4HGIj2g8Jvbb4zr+QT1RYLtgxWCJQwi7OgpJaCi9atROxLJQEdK
hUrVwpr164fVXrIB8eZ3DgZahmGEHUJGD2jbOeYfv4kHfvJNQFs+apoiteNIPCASIjUm0E9SH/3U
5+H7fnA+M01Em3ELGZ1nZHw5GuBIqfDjq67dKmuifSnx8BNP4ZEnn8bUnXfCMe87Ar29PXX3e/Hl
V+G4biqYDiCdOs0mSJvphH/7Du686MtwPB+e4aNgGvB8A9DqVdXRx92eDfSvAowC5v/8htTdTNNE
wTShCgUUpYRpSpimAc/344zT6FhBuwo+176U+N1Dj+DJPz1f99RRO8xzxKEHB33LZq87faFBo4le
V6Z2g2nizHknNzroqMfc+BylYgH77bUnSsVivK6mPq26PngQ1a9KKmFrH8xo4lRbmpA9RkdHB2bu
NiMV5eYyBhrLokI30Y4L2SyfRnlv0exnFEww9OCeYST/9MfUzSA15vk+Dj/4wK36Xom2h1uuWRC0
BW3wEzWq6JwVnIe07ev0dpj6J/DqsuUjGmibc8wHg10aiLaxY79wPlzPi5cVRMsXTCNdhyfquwFJ
f2/+gltw4sc+E1xlJMuIzLCeQrIE1kxl3BnCwBN/ehaepxcEHt4gIq8dxoVSlcKadetx612/1mZe
k/tPyAkqAMAnzzw1vu+iu+8d1usg0n30S99DR7EQf85NQ6tp1YiW2DN/wS11wQMAeN/xc4NjhgVI
g7ZkomAWYBpm2NbMcGm5gbXrN+CGRXfikp8uwJN/ej5Vi2E4do+2Rh3W/Zvcp0lftvEhRv9kFjMQ
ckQFOUzTjGscGMJID/xz/qWjB0GRxOhyQDT9DBlC4NSTjsfPr70eNcviDAyNefk1D/KzerSqBcku
J1Hl+fgmEWQghPeXYXVeP4xQJ3drPnvaPzCAgw/Yb4TeNdG201Eq5gS/9YnTbH2eYFlQso+3CLIQ
pIQSAn945PFU1o6uWSbPcDN8ZuhbXI3+PhSNMSd+8bsAgDsv+jKUQlzvKimSHYi2F56/4Jb4sSKu
kZYExBG1i3hJajQzGtQgcVwf997/xy16rXl9xLzrnn7+BRy4395B4UYEDX/3GdPr7rf79F2TwIgC
5h7HbVRpy5z11Utw83f+PSjgG9bfMQ0Dvi/jZXV60AAi3ZYaCQJ6yfaMensU4W4pruVhwXU3Yu36
DcHhGwTaWp6P4n1btTNmzuuuuw+yxUrziieo1HgRIn2X+Rdc3PJvsb0xgJBDhKkyphYh1iPPEJks
Am2739TqOFV/3PQvWnongpPLHrvPwDlnnIIlv/4tNvX3x88xaeKEbfDOibadBT+8GLtOm9ogeKBl
GMSPCJf2hL/FxRXzKt2GTNPErlPfgxWrVg/rNXV2dEAqiZ2mTI7X3RG1M30r4ijjLRCUJI0yK5Ns
HgPKyFbPBqRhwK5Z8c4LeQGBbGBBrzky7KyFVBNmBIG2j49+6Xvx5V9+819QMAz4YTq2YQh844qb
6x6jZLjpfaaPaMS1RZLMhmi5wsNPPJXZjnh4bWVzl9zVLAs9XV1x31MIgffPPhSPP/MsEH5PzPnQ
UdE7AcJCb0Rb6uNfC4r8LvzGF+BLiYLpQyozLnwYmX9l68BBRGhbfeunh6it2Y6LH115DYbKlXf9
+v/04ks4+sjDtcJ2CArapbKP9MCCvjxdDzakC5cmk80NqjK2yWmPAYQcIko3M404iBB9aJEq6RY/
Igl/xZ8JpUWvUP9BykQYogrzhhA45ID98d6ZM/HSq6/jhZdfQalYwF57zNw2b55oG5kwoSdMNzOS
9hNLdl+A1qSQaTXI1uXJBnWFwPEfOQa33LEUQ+VKbiFFhPVHDtxvb8yYtkuYaicw/ytfYhCB2l7B
LCSfdW0GVW9U8dbD2Ro9SKZahZSoWdYWrdNuNtDZYdLEzPMhacjMwqNR4K/P/9/h3VGIOCyXLD1V
AIJq64YQ4a1Be3BdDw8+9qT28JGrw6NkdvtGhf33fi9eX/4mujo7ccKxH9LfSDstxaZR7jP/7ydb
7VhC22UIhoAKV+IbMOB5PhZcdyPKlepWea7Xlr2JUqmEww86EIYZdSxbFU5sthNDtsOac7+mOz2M
Lgwg5DDNoPpuIVpnY9YHEWJKZYJFIgkeqLq7ptfgZGdvoq0dAfT0dGP2wQdg/733RLlSxYZNm0bs
/RJtD8ViMW5bhkiH5ZKtGyPZdpYN7NYXa4vqJBxywH7Ya4+ZePxPz+K5l17GunUb4EkfAsD0XXbB
HrtNx/RpU+E4LlzXbZfgL9GwmOF2xNGuCjDqg3LxjKkWWIsGM1FBUgiBzo4OdHd1oVKtNh3o5KWH
CiFQKhbR3dUJx3Vh2Tam7LAD5p0wB+loO1LtmYE8ahdBZoGCYegZCAYMI2kLSlsKft8DD8Ky7bqM
neE8z+YEGhSA7u6u+isFcOrJJ6R+r7tMNIq8//i5ePTeO2Ga6ZoKSiqs27AhXraATDvZ0sDciy+/
ihdffhWTJk7A4QcfiF13mZqzu4lI90WjpAQpYdk2qpaFwaEyBofKqNZqEBB476yZ2HnHKfVPKADP
9eqvH4UYQMhRLBRQKBTqt5XLBorCVBQRbZMV36AFpbTrVPQYpeIBUWpddvjTEAJKK2RVKBRQbLId
D1E7Mg0ztauJLmhaSdBAqJzeTJR7HTwi57Zg0GMIge6uTnzkg+/HBw+fjXKlAtu2YdkOTEOgZtmw
bTsYYGVfBFGbM4wkhTrZWQFBrRA9CqcV+UVczyC5XQiB3t4evH/2IXjg4cfgD2PnEhEGHfbYfQZ2
nz4NkyZMRKlYgC8lHMdFd3cn4ievW7rAEQy1l7i+iEoXzAaStiK0WiFvvPXWZgcDsll0w3lsVKw4
cyDtl0wAj0uIaBTLLnk1hIAHiatvvDV3CV3k3WT3DAwO4XcPPYpioYAPHH4o9tx9NximmRnwJe3n
z6++jsefeTZ8zuxSW+CVN5bhs+ecVX+eU8B1ty3Gty/+wRa/1m2Fo9Ic0VYhejV4kSmIE0e1oCBU
znZz+goGLfU61YlLRR2SRhGnukUBhDATgmgsMc0kq0ef7Yzo3/X6174eMtADctklQXEqdLQzg5Qo
FguY0NuDzo4OdLkuKpVK/MVed3Jh+jSNAXHxNwH4frBlnICMt2tMf8oFhLbGU+lL7cKK8sd/+BhY
toPHnv5TvEUqMu3HEALdPd044pCDsNuu04JCptIPttkCUAgD4/GxVTa9WuRcRzS6RUVIfd8PludF
ATklUueZ6Ly1ueOZbMBguAOiU06Y0+rIDeJ1bH80+nzgxFPw8D13QAgV9x/7+gfQPzDY8rHvJogg
AHieh4cefwrPPP8i5h0/Bz093fX1D5SKa4s0KoavFwjXLbz51i1+fdsaAwg5CoVCKrVaz0TQSSnD
QIGKiysms6nZtdbRnr9htoLe2Yo6cuHx9UBFsJewkZMyQ9TeTNOM21c0wJFhGxEqWDdq1FUnVeE6
0+jXMJtHJUuEdFEgwQDiOgvRdnTxlo967RKiMWTRL3+BHadMgWEIKBUEBzzPAwqFcMeSYLcgoYfl
GrSDIOFHoKe7C2fOPQmHHbQ/Hnv6Wby+/E04jgPP89Db04Mpk3fAjpN3wJ4zd0OxUITnecEuKFKh
LrMgrj4dj67iy9GyCw5iqJ0IBOcYX8rc2iNx5qoQOPSA/bByzZphn3u2ZPAzc7fpmLzDpGEcnE2N
2kkSPIAQ2LCpr2H72JqZCJFqzcLvH340CM7l7LbQ3dWJas1q+Pi/OvsM/QUBQqBaq0EpYPny5e/6
9W0LHJXmiJYvmFrgIEqTSQ1chAi2too/jAIyHJggZ1WnVErrREXR6iR4EKW/Sa1QiKktYyAaKxb+
9DJMfc/OyRIhQwTfoeGMpwzbldQCDJFUXYRsXRFNsktDkNUTtTdDSghhhFu0RjNESTCCvSgaKwzT
hGHoW6IGgW/HcVEqBcsbgiSdKL1ZpTLlUoSAEW6NWigW8N49ZmLmjOkoVyqwajYqtRqKhQIUFBzH
get6sB0nDpwHTTsz0xnthRctlRACHaVS/PzZat1Eo1m8bAEGXNdCsVioX10XbTUsBI563+F44k/P
Yd2GjcN+jvR2xMHxTCOocyKVircs7uwo4fBDDsbee+7R4rQWFSzNuY5olDr65NPw4N2L43HTlAZB
suFsKZytldAoayBrY19/9sjRAXHUkYfjt398OPdxnzrztHQNh/D5PM8PawK1B45Kc+jLF/TggQg7
W9BSp/VtrhQkhAy2u8p+/BSCghrhapg4YCW0aHQ0C2vIYKZH6HUQuISBxpAJvb1a8CAKECgIkQTk
fN8PBi1SxvfJfrmnlhMppbWjZBYTWlYPpIQMMxDMcItWwzDCjOmk09RRKsJ23G39ZyHaqsx47/qw
TYTBaCkdOI4Tb/EYbYSi1+rJdrCiWZIoCAchUDBNdHd1o1QsoaurE7bjwHacIAMvXFYklYRS4c4N
dWurRWr2prOjEx0dJSipYNn2Nv1bEb1rWgmBYrEYtzHkDGQEgN7ubvzz330GV99wC5a/vSL3ftl2
WCgUsMPECdh5px2x69T3YOKEXpSKxfC+gO97QcHSUkcQIIS2FCg7q1X/S5PriEaXeGJICEzdeSdM
6O3B4FA5vn1LMg2GGzxAWC8vPnFm2syMabvgwH33xouvvBZf19nRgXNOP6XhYyZO6AHQu9mveXth
ACHj2187D++dtQcMEazPNlLbOCL+jx7v6xtnFsgg9VoIiPBDrX9XR5WslVJx6rSpBQmi4IEItyaJ
YlMiHOSYpolvf+08fP07F26vPw3RVhMVdtODdMgs31EqyESQcTtIp4PqA514ramWKqoH5aREkHEA
A4ZSMA0DntCeHyI1UVQqdcBhAIHanCG09hUW/DUNA8ViEbWaBV86KIS7NGSLrGWDdXEbDbMQ4owe
Q6QCd6nSbDLIuqvvx2ULuAlMmzoVSin4voTrJW2POzBQ+0gPCAzDgOM4dee5+KdhYGJvD/7hM+fi
rvt+h+deehmDQ+UgeB4+3jQM9Pb2YMa0XTB92lTsMHFikKWDoK3UDZJUsT5oEJ8U81+1ob0e6ftQ
TECgNhCNw6K29c9/+2n8z2U/3axjvJutU3ecMjn5JdtmhMARhx6MYqGI/sEBHPO+I1Eo6kPu+nNg
uzU6BhAyJvT2olAwYZrh8oEwvToe4IczKwqA0ipb+0JA+kmRqPqq8sH1hiFgFAqp2gqGPmsaPixI
LQ1mSU3TQKFgYkJv+0SmiJoxDDOZHY2WB4moaJsRLmMIOjOu68XbzBlakCAq8Kb0JT/R7dkqvYYK
1wZJwDBSWQhRu4va6K67TIVlcfaT2l9UjycJIBiQhoKpFEodJTiOg0q1ikKhoLWFJBCQF+TTAxLw
/TCLR4RLgqLHI166ILPVUDN9pA8ccThs20HNsmBZFlzPC+o0ELWb1EAk6Cn6UqJaq6GjVIJpFuLU
ZREuCYJhoLNUwmknn4C5x/8FbMtG38AAEGbhua4bLE3wfHi+D9/34EsJ6UuoMBMofLqAtnNKfnEF
Fe96IgTQ1dWJQqEQB+9sx4bvS9YEolHvkiuuwdnzTsLuu+4C0zQxdeedcMqJc3DXfffHgYW84MBw
CpG2WspgGAZOPPZD4W85RUjDxx960P45B4+q62d3H2ovDCBkGKYRbi+XdJqi9E+h7xqnrT/T11Ar
JePiOdlq8aZhQCkj/OJOghJRcbd49jR8omRwFb6mzL6nRO0qykBIzY6q6DZAqTC4JmVc1VqGSxmi
LXH0IqXRLKrQBjiGIcIiitGSoSS7QQgjbuNG5iQRpHXb7D9R+xPpi3FfJfzcm6aJQqGAarWGYrEY
7IyCIBhgGAbMsI1FuwBFbSvaKQhRQdJoOVBOe4o7aHW7KiiccOyH4Xl+UFDVNIIBUxg8kErGM7FE
7UBpP5VKMnDKIOKUAAAgAElEQVSklNiwqQ87TJqIrs7O1LI9FS5lNYQBUxgoFAuYNHEiHNeB47jB
uc/z4/6ljI6ZbU+5hYDzrhQ49MADULMsOOGSI8/zIaUPS9pJQdU2HdTQ+HHbbbfhjDPOgO/7OO8L
n4NhGJhzzFGYOWM6fnnzIvQNDGxxhkGz4IEQAh8/da52n5wogGiyNXEqUyF7RftgACEjLpwYdoqg
D/Qh4poFiGsZ6JkDAp7vQ/oyDEhFxRTDnRdMhZJhxrOpqeBEHDwIk6m1ivFxZy67jy9Rm8pmCEQV
3qNVQlEAIJoBtR0n2DIOIlzXGVAKKBRM+BAwzXQFd6HNvCZNKkq91v8Z8Rf4wfvvF1TCBXdloPYn
WnVMwo5VsViAZdsQAvG2wXpWQhArSAJyeupoKkvBEKmOl4xqHwCpwc7kyVMwfZepkFIFzyVlkgER
Bh2ee+kVLF+xEt/a6n8VopES56cmO29JGW6fKrHinZXYc4+ZKJVKYX/PgGmEs5WGDJfZJdmuiAIR
4f+k1HbzSp4yILRZzdRgJWl3Jx77EUglYdt2slwQgCE8WHaynjzC5UM02kUFt79z2eX46r/+AwxP
YPfpu+I//vHv8MzzL+Kd1WuwfuNGrF2/AYYQKJVKKJgmFBSKhWJcc8f3PZgFE57no1ypYmiojJpl
wZfBOSxoJ8CkiRNx6knHZ5b8NTjPNq01kreEob0wgJBhmmbcCUoPcJIgQZymltn/2vM8uK4XdqzS
AQSlACElDGGgWCwkEbFo1jRew51Uqk49vyHiWSCidhenQ2szosHioKiYIuIv1Cio4HlemMljxkVo
lAI834NpmiiViloGQpTZo+3GAJUEJjLBi+iru1gsQlgWoBT6B1vvKUw0mqmoLeX0TaK6PFJK2LaD
arUKx3HQPziEmTOmAwg6S4ZpwtCy5uIzW7SDkJZJlAw+wqw8WR+Fm3/BRTjzjDNQKBbR29ONzlIJ
M6dPwzMvvISOUglvr1wF13Vh2zaefPLJEf37EG1NK9esw+67TgszUqM2pgUSpMRTzz6H2YccjJ7u
bkBbx21k+pxAFOALC3XHwYOoKGlepkD0uPqU6vkXXIQv/vMXcPrJx6GjoyO4d1z93Yu7tjIaMEkJ
otFuyZIlOOWUU+K+YVS7rlgs4JAD98d+e78Xtm2jUq3Bl0EmaxDUC7J6fCnjLKHUAiSlIH2Jmm3B
dV2USqU4e2hY9JiAfuC8jIQ2XcrAAEJGdkARdb7iddLaJ0HfPs73fXi+F38o9dRoGRV6EyK+j6nV
T0giCMkXetzx0wZZm1MdlGi0a5p9qW3P6HpBGnNQYTqYzQnWkQooJYPrPR+yO5iZCZOtk4wDiLA/
JSDCPe/15UFRoAHx9qzA/Y88gdsXL9mWfw6irU5mB/Bx/Dsc2GidKc/zMFSpoFKt4qVXX8P8Cy7C
tT/7EaZNnYpiuFuDSCJyQUdN24s7zlCIsjebpI1KpeB5HvoHBqGUwso1a+F5Hjb29ceDLaJ2c/an
/w6P3HcnDGGkCmendutSwEOPPo6TjvuLcPvi4DwWZfKYpgHhJueo7FbFQZtukDqdqcWWzSB4e9Vq
/PxXN2P2gftj9oH7x6tng13Fgp8DQ2W88Mpr2NjXj/O34d+OaEvdddddOPnkk2GaZlggOwl0B+3I
CAN1QVHuOBinLTHK9j9FuMSvt6cn/WSNliVkL2c7uK2E2UPtlPXDAEJGPEjXZlvi2+KtqZLRTpRO
5jhuMIiRQSFFIQRUGKmKUmwMQ8D3DDiOGxetiY8lcp5DT8FmAIHGHNGw8Gy8llQpSOmjWqvCsh2U
KxUUTBNdXV3BnvPRHvNSoq+/H1MmTw4KjxpGWPNAaPVtghMJRHq7R/0l/OyXN8J1XVQqlW33ZyAa
IVGALT7HaOUIgo5TUDjND2dHszUHPv1P/woA+N3im1EodGv1RMLlfBBx3QMhksy55PlV6gQXdY6i
7bcQt3GZGSRJZh9QW/r+z67CjF2m4uy5J6S3+g6XNaxYtRpvr1yNpb/7A3703fkQBqCUCcMItyvW
l8ZGjTZcxtA0sKYtr200CFFKwbYdPPLUn/Dg40/B8zwYQqBSrcYFG6PvgCeeeGJk/kBEI+Cee+4B
APzhrtvDYFwwdtLbXxSMk2HwIMpGaBjqTvVN05nn2av17YhzKirCNAtJVk9YR6jJk7UFBhAy9NTq
uuvzpknDaJZt26jUanAdB6a2ywLCzlJQRddDsVQCAHR1dqaOkTxRGDdTqatSr41o7GgcPYi+6H1f
wvN8DAwO4t+/+o34bqeeeipM08RxHzwCUincdNe9+OLnPh2vQE2OLlIjKL0Z6StWoQ1mWLyNxgI9
AyF1SSXp0NHn3dd2Ecp+/o87/eN45N47tToI4baoKj3YieuOhG1LhjOb2WZ+xx134LTTTosLXOnt
znVdPPbYYyP7hyEaIUpKvLN6DS5dsBC+72PypAnY1NcPx3HRUSpi/cZNcfuK+pVRfzEp+psMRlQc
PMjUPgiOoF1sPXu5aNEinHHGGUn2KwDHDbZMjQZTYPCA2liUhWAII1l1Dv18lwQOpFL5wYPcoVaY
vpeKE+TsvhBeccKxH8ba9etRrlSxqa8P0NqY9GWw21Cb9zMZQMgQQtR9oPROUTQIiarsBuvafDiu
g/5Xn4IvFaq909DZ2YFCIfjzep4Hy7LRXV4N0xAoHvD+cC2OCaVMrX+ldc4y0QrFAAKNJamVO3rb
knHaZ5xa7QdftK7jpg5xxx13YN68ebj3wccgpYTneRgYHMTOO+0UF7FKjp7O7IlfRpRTimTZhJQS
jz/++Lb5OxCNoFPP/QweueeOsCUk5y09tVpqs6SAQl//AJ5/+bX6g8V1e6IfBgxDpbZuTAICyRrw
RrOiS5YswV/+5V8CcR0GGw888MBI/0mIRtTtt9+O008/HQjb2PqNfeF5zIc1lN4eWEHBgBHX3QoK
B6cLGerFE+uXBQW/z7/g4mG/Ptd1451UoswffU04gwfUzoyoMLZevy61lEimMw82p/ZAZhehbGad
7sv/59/x0eOPRbFQhPQlPM+F70tYjg1HOVvjrW53DCBkxFsyZoJLwtCyAvQZUqngeT48zw8qwpsG
JtXWAVZyTBNAhwKUaaTuXyxoJwSVrrUAP6p7gPhDzgACjRWZWtX1ATMtxSyoe+DH1XB1S5cuxXHH
HQcVrqmu1aywU1T/nHWtR8XZoXH7c10XlmXVP5ioTXm+HxbgFUmLUyq9tjq874ZNfXji2RfirRR1
6SYVBPtShU4h0iHvYWyd9etf//pdvjui0Wfx4sU49dRT49/1wX9dEEAICES7mCQ7kaQyolV9XzHu
pG6mu+66CwBw0kknhYW/g4KlDJrTWBBsKRzu1qVlH+g1RDYreJC5z3BrFLz+5tt46vkXccBe70VX
VwdqNQVfOjkFhzf/2KMFAwit1FXRTBaRZtM/73llHWzbxv3334/5n/8YukolQAA128H8Bbdgzpw5
6OrqxMf28uN97aWS2tq1dH2FNlwSQ7SZcopARR0tJIWdoqI3eX73u9/Fl6/44UWQvkyKQmUyzNLx
YxU/R8SyLDz66KNb8f0RbV8/XXgDDtp/Hxxz5OygPki4m0+8JlRKrN+4CX9+7Q289Orr8Dyv5Sxk
crZK1a1OZzRwH1Qax+644w7MnTu3rti2vkzgsfvuSi1Rjc9PYe51nCkUZumkC7e/u6Jr995777t+
j0SjTVxDJBXcTk9KyWgXE4GGNQvi7IILt6x9SSnx+0eewG8ffBSfPuvUJNgX12GQ0QsDhMBdv30A
87fsLW83DCDkiSuyJ5+jYKCfGeNrhW18P9z6JhzkzF9wS91how9wtCdwPECK7xCeJLSghWIwgcag
eEYmygIQSVuIOk2IC9/IOIrcyt9/8Uu497Yb4k5XqtlkCzbG7SsZ7Dz88MNb/b0SbU+/uuEGnHnm
mXjquRchABQKBbieB8dxoJSC4zhwXTfeJrWRYABjarOeepp1ttq80hIQGEig8enuu+8GABx77LFw
HAePPPJI6va8lpEs60vOgdF67boTGpsWUYqC3tcT4W5d6XNT/bRSNLAT8ePebTbAokWLcNppp0Ep
hStvuDUoWGoI7DVzd6zbsAGu56FatTBYLgNtWneEAYQslZ6RTA1otOui2RZosy1SSrium3dUIFx7
ViqVksGQtu40yUpLD6TSL4RnCxobGg9UlNbCkBqILF+xcpgHz/6SRH5zi6CGhVDZGaOxSq934DtO
vPY5Wves36/ZMaBPgKZvzNmujtFvIgBNanvUt7ekBlCmPok+o6WCDIT5Fw6/9gHRuKGSOlvZ4EFd
Jg+0wEF43dZaSrBkyRLMmzcvKVjquHj+5VfheR5834+XMbRj8ADhPmekiavcZgcaSostaIMahSA7
IeqMPfTQQw2P/dBDD8UdNqmSrUNUtMZNz3rIRjH010bU5t5csTJuC0nQTGtn2oBnw6Y+vPnOSjz/
8qvDOrYeoIMeBNTvEa/7Dv6/fnaHaOxYtGhRnDpdPxuD1PWtOjPppQlRgSqtaGKcOZQUDWq3tZ1E
24Sq/zXuH+rbmyLqc4pkZMQTFlEdbf+SYJm5kqngQW5fbwtqHAzX0qVLU0uXotcihMATTzzRtsED
MAOhXrI3p14xUa/gXt/himZcbNuuO16Wbdvp4lWpoEB2VWn6Ofv6B97VeyMaLf7lv76Kf/r85/Ch
DxyJHSZNQE9XF8qVKtwwMvvwU3/CqjXrMFQuw3GcON16OKLgQFIkJ2lHdYk8cVuUHOTQmOY4Trwz
UP1yg2Sw0oxKddAQh+aSeiIqWd7HDASiplT2t6g9Si14oCUeJPWyiChPksETbdmotyWVqTknMme1
kaHX6RpLGEDIeOSpP+GUE+bAj7e4MeOtP/XosOt5+PMby+HYNn7zx0dQrVbx4IMPtjz+gw8+iNM+
+lFIpTBtl6no6x/AhJ4eqHAv4Am9vZi+y3vgeR4m9PZgyqRJePn1ZdjQ14fnXvwz/usb/2+b/B2I
Rtrbq1bjlrvuSVWk1Qczyd70yWzMcDzw6JOYMnkHfGD2IUDBREGEX3NaZo9enKpWs7Bq7foRe59E
o8HSpUsBAHPnzgXCYHnUxjzPa1k88c+vL8Oh++8LKBHULNEyhoD416CWj0r2lH/6+ZdG/s0RtaF7
HngQpxx/bBzYTlWJz6ZdA/VbEBNRmp5tIP046yBYEiRzavgkbYqTSJuHAYSMP7/2BgzTxJTJk/H+
ww6GAuB5Pro6O7B67Xq8s2YtBgaHsG7jJliWBd/34TgObGf4+3pu7OtDV1cXVq5eA9M04YVrYYQQ
GBgq453Va7TsBAXHceG6LnzfH9H3TrQtOY6DYrGYCh4gZ3Z0cz370ssoFAp49OlnUSgUsO+ee+Cg
ffdGd1cnenu6UTBNeJ4Hy7Kxqb8fi+/9LQYGh7b6+yMajaLCbgDwkY98BH/4wx+G9bg7f/N7vPXO
Kpx64hyYhlFf9DSpDhTvmrJyzVqsXsfgHFGe+d+5AE/89u5M9qmWQRdPWoW/iWS2dOnv/oDzt8/L
Jhq19CV2cba3TDJ7Gj+QAbnNxQBCxqOPPooTTjgBq9aux6vL3kShEOyfbRhGPIDPS//cnMF9vPY7
Z4CUHUTJMBNCSsnt5WhM+c1vfoOPfvSjQLh3L7LFSjPta7hrxfTHKKXw4quv48VXX4cQAh2lIqZP
nYoVq1ejZlkYGirDtocf/CMaS4YbPEDYrv78+jK8/tYKfOr0edh5xylhJmh0zgIABelL2I6D5/78
CpavWNnWazyJRtplV12Hf/mbT6Xq9kSCq/SlRQL9g0N46Imn2a6Iclz4kyvxb3/7V0haTCAOxOWs
WPj9I4/j9w8M/1xIAQYQcvi+j0KhEKZ4BpkBjWZH61PMWsump+mDJpFZ37YlAQqidhFlIUR700Nb
v6Z/9j3PG/Yxfd9P9rrX2paUEpWqh1eWLY+Publtl2i8itqk67pYeOsSlIpFHHXEodhjxnS4bpAl
t2rtevz2wUcwODgEaxg1gYjGu0q1iv+9+jr84199QqvRE9VDCM+DUqJqWXjljTexau267f2SiUa1
+x9+HO879CAgtZuXXv8gaGiO6+G+P3Lr7i0lWqQIj8ucjqOPPho9PT0olUooFAqpNdrQBjjRIMRx
HNx///2b9Rxz5syJj2+aJgzDqHsOpVR8/EqlMp73qB+rVYPGZfvKOvnkk+M2kK2BEH3+m+1ukjVn
zhx0d3ejUCik2lXesW3bhmVZ4z27h+2LhuWMM85IZQvFWXJhrRI7LHgaLbnjLCnA9kXNnHnmmQCA
9x92MGZMm4qJvT2wbRv9g0PYuKkP69ZvwBPPvgDLtuPJrCeffHJ7v+zRhO2LUk499VQAwOknzkGl
WoHv+6hUqqjUarAtGwNDZTz/ymvxBBPbU1MN2xcDCA3MmTMHHR0d8RrtbKcpGtxHg5DNSQUFgGOP
PTYOIOhBimiwo8/22La92QGKMYYniHHg5JNPTlWCd10XlUpli77c586dGwfnGgUQXNdFrVaDbdvj
faDD9kXDctppp9VlC+mFGKNMBNd1IaUc7+0qwvZFTZ155pmpoqYdxSIGhobgum68AxEHOw2xfVGd
uXPnwnXd1Hkpb7zLc1RLDdsXlzA0YNt2PCsazYxG0V89xdr3/WFt39jo+KZpwvf9eKY0+xxRgIJo
rLvnnnu22rEcx4kDB3kzpvqghycQouFZsmQJTjvttNyAerZuDxENT7a+Vrlabbm8lYgay9aaY/Bg
62MGQgsnnnhiHEiIRB0k13VRrVbx2GOPbdGxjzrqKHR2dqJYLMaBCv05fN/Hfffdt1XeR5sbq2fO
cd++RtKxxx6L7u7uODiXt3xhc5ZGjGFsX7RZouKneqA7mumJZkzZOYuxfVFL8+bNS9X8idpTVP+H
7akhti9q6X3vex/AdrQluIRhSx199NEoFovxemq9uFu5XH7XH8YjjzwSEyZMAMKZ0ug5opPHOK57
oOMJgrbYcccdh1KplAoePPDAA9v7ZY0mbF+02ebOnZsa8LiuiwcffHB7v6zRiO2Lhm3OnDmpDLkt
naAaR9i+iEYOAwhbw9FHHz3iA/pt8RxtiCcIopHD9kU0cti+iEYO2xfRyGEAgdoaTxBEI4fti2jk
sH0RjRy2L6KR07B9GY1uICIiIiIiIiKKMIBARERERERERC0xgEBERERERERELTGAQEREREREREQt
MYBARERERERERC0xgEBERERERERELTGAQEREREREREQtMYBARERERERERC0xgEBERERERERELTGA
QEREREREREQtMYBARERERERERC0xgEBERERERERELTGAQEREREREREQtMYBARERERERERC0xgEBE
RERERERELTGAQEREREREREQtMYBARERERERERC0xgEBERERERERELTGAQEREREREREQtMYBARERE
RERERC0xgEBERERERERELTGAQEREREREREQtMYBARERERERERC0xgEBERERERERELTGAQERERERE
REQtMYBARERERERERC0xgEBERERERERELTGAQEREREREREQtMYBARERERERERC0xgEBERERERERE
LTGAQEREREREREQtMYBARERERERERC0xgEBERERERERELTGAQEREREREREQtMYBARERERERERC0x
gEBERERERERELTGAQEREREREREQtMYBARERERERERC0xgEBERERERERELTGAQEREREREREQtMYBA
RERERERERC0xgEBERERERERELTGAQEREREREREQtMYBARERERERERC0xgEBERERERERELTGAQERE
REREREQtMYBARERERERERC0xgEBERERERERELTGAQEREREREREQtMYBARERERERERC0xgEBERERE
RERELTGAQEREREREREQtMYBARERERERERC0xgEBERERERERELTGAQEREREREREQtMYBARERERERE
RC0xgEBERERERERELTGAQEREREREREQtMYBARERERERERC0xgEBERERERERELTGAQEREREREREQt
MYBARERERERERC0xgEBERERERERELTGAQEREREREREQtMYBARERERERERC0xgEBERERERERELTGA
QEREREREREQtMYBARERERERERC0xgEBERERERERELTGAQEREREREREQtMYDQwBmHTMfph0zf3i+D
iIiIiIiIaFQQSqlmtze9caz62w/OwpDlwZUSALD4uZXb+yWNd2J7v4ARMi7bV57PHbUnNlTs4BcF
LH6ebW4bYvsiGjlsX0Qjh+2LaOQ0bF/MQMhhCAHTSP5mzEQgGlmW6ye/CLY5IiIiIqLRiAGEjH89
dm8ACAIIijFAopH2Tx96L5sZ0Xb0qSNnbu+XQERERG2isL1fwGgkRJizMVYTo4hGkWKpA6rmNr3P
5Zd+D6vXrA0aZ8b8Cy4awVdHNLZ98ojdUXP9OOuHS/aIiIioGQYQGsjOiJ5+yHTMnntuJqigMP+C
i7ftCyMaQ847cX90d/dC9pdzb//F/16Kvv4BDJXLucEDKGD+V77EIALRFvjn4w9CTV8+RERERNQC
AwgZAgIiTD4Q2UBC3fhFYP5X/pNBBKItVHN8QNmQejFXFbS1n//g+xgcHEK5WmmcDsQsIaIt8sUT
DsSm/qFh3fdnl1yITX39cNwoUyhspOEPBvCIiIjGD9ZAyBDh2oXhlz/gCIZoSykAlVoVqc1gwiZV
qVZRs6wklKe0BxHRuzJzjz3h+vWNSS9geuVll+BHF34b/QODYfAgur9IfiiF+V/5z231somIiGg7
YwZChhAGFPzmYQGl8tOpiWizdHX3YGBTf5CBoNLxOMuy4Us/yQeKUoJENPvJdki0pf78ymvxVsW6
xc+txKJfXoW169ejWquhVrO0zAOtvUXtry5Vj4iIiMYyBhAyhCFgiAb9onjyRSS/C67BJtpSk6dM
xuqNfUEAIRMLcBxHG7Do0YVo9lNrh0TU0NU//gEGh8qo1mrwPA/rHrwN5aod3JgJ3P3iR5fAsm3U
LBu1Wg2e5ydBO53Q2iPPg0REROMGAwgZvi8hlQomVyCg9IFNmK6ZSt8EOIIhGoaf/+D76OsfQM2q
ARAwhMCOEydBqfwWlL5OT5nmyiGi4bjqxz/AULmMWs2CZVlhm1JwJeDKsIVl2tLgUBmO68JxnTB4
oN2JbY9oq/n3v9gHg45EX8WCVIo7oBBR22AAAcHMSWTAL8BzLTi+hCgU0DtxMoRhYPq+hwZ3yKZM
q5zriCjlJxddgHKlnKppICXwxptvwZcNAnBKC9rpbSyVlFCfuUA03t1yzQJs3LQJlWoVlmVrSxCA
nu4eGIUiPL+aPEAlwblKtQopJXwp69tWk7bG7AOietcv+Ckcx4HjuHBcF67rwvVcrPjtDeievDPe
XPZWPC91+iHTGUQgorYwrgMIl37nfJSr1dR1s46Zm/zScLYlLwuBiPL8+PvfRf/AIFzP064N0p4n
HnocKq8+B3fFMhSKJThWFRACh5xwVty2zv/eJfjmeTlF2sKZUQ5ciAI3XfVzbOrrQ82yULMsOI5b
dyIrrXwOVctOJdPpP+N2ymwDos1201WXw3Fc1CwLruvB9dzgp+vC9314vo++R5eg5gu8veytICuo
STtbfN1VGCpX4uPZjg3bdqCUhFKAVBJf//aF2/AdEo1uD11+PizHhS8llFJQUiU1uMOK3fP+k23m
3RqXAYSbr/451qxdj5plwfeDPbCfuev6+Et89rxzgwvsPBFtsduuvRKrVq/FULkcDEpUdtlP8Mu0
fQ7BtH0OqT9AeJc4eMABDVFDV//khxgaKoeBAwdeeG7LNpqHnnoOpvJat6W85UIN2iCDeDSe3XLN
AriuAykVqrVanHHg+R5c14PneVqhYIWK42HI8uprbIVta8n116BaraJSDY4VBCK88LKb3vY4zKIV
QuCb//P9bfq+ibanP/z0m7BdLwgShP+kltGqBw2C5pfc55bv/gc838cn//uy7fb62924DCBs3NQH
y7bjQc0L99yYuv2Zpddj9txz04MdFVZVTF1ObiaitFWr16BcqcJ2nOCK1MAjUxwxb2CSXb4gkBnB
KMy/4OIRfhdEo9+Vl12McqUaD15yT0lh0zng+LPwwm9vB+DX3eWwueekr9DbHAN4RCk3X30FSqUS
HNfFwOAQHNuB6wUBA8/zIKVMD/YFsObBRag6Piwv0/7CtnX5pd+DECLIVvB82I4N1w2WP6hGEYdw
kMRCpjRW/f7H/w3H89OBgrBvqJ+WhBAQUZ/RLAATdwZ6dgweE2btGEoBa96ArAzg2m/+M1zPx999
52fb5421sXEXQLj6Jz+E7Tjw/SBqteIPtwVrsDMdo2fuvj7JRIDQqlCL/IEOEcV+dsmFsO1gtqS5
VkuBGjS2VnmfROPEtT/7EcpVPXjQYKSvLVM46Pgz8eazj2Bo/Sp4bhDgmz33kw3q+YSpCA1q/XDA
QuPRTb+4HFN22glvvPEGKpVqHDiQUkJKGZyiogB4OPAvFEzUXB92NnigKVcqAASUkkEAwbaRnlON
zoE5fVHOZtEYsviC/0Cp1BEH4eKPexgkEEJAGAbE1PdCdPRAiKA4t22amHfq2bjvvvuglMJJJ50E
ALh78c2A40AphcKMfWE4LtxKBXjzOfzsy5/HP31vwfZ7s21o3AUQbNuGkkmaiy8VJOr3oK/HwQrR
cFz1v5fCdpwwUJdTiC1XNMsZDVRUOljXqJAi0Th27eU/QqVaQ61WC2YoMcylPgLY47CjhvksWoXF
7G4MHK/QOHPz1Vdg5513xsQddsCLL70E23bguA58z69vDnH2XNBgVvz+FliuhNeocDAAy7IhhIBU
Cl6qbhDSDTu3jQtmIVDbu+vi8yClglkowpcyDhYYhSKM6QfAMAwYhgEAkErB93z4nhdmJkhIqbDo
l1ehvPC5hGUAACAASURBVGYFlFK49ZoFkEqhvKkvzERIljz4UsKYvj/km89v77fddsZVAOGGK3+q
pbEoDD5+R9N+0DNL9SyEKMjAkQtRI9cv+Alqlg3HcfHY4oWp22bPOzd/cBM1PqG3QpG+MXemhW2R
xq/rfv5j2LaDcqUMx3GD4lB556hGbS67RKhhk8pWWkweO/9CLiGi8eGO6xfCdhzsPnMmXn755bhY
qef5kFK2eHQQHHd8GWQfqORq3ey55+bUC8rgqY/GqMUXfglKKQhDQEDAKHbAnHEATMPASWefG9/v
7puug+fb8H0JqSSKxRJKpRKEEEFQwPfjZUSudllKCRXuMKTC5UVRoWFz6t649IufwX/8cGHT10iJ
cRVA8H0ZR6eigjamEDANAc9vNZWSly5GRLpyuYqnbv05NpTtuknLdEAOmXoi2lKGVJmDbL2RaMDD
3Rdo/PrVFT+B6/kYGBiEZdmQSuafoxoNNuKYQHZGs0mWQbYAKoPpNE7cdNXleM97psLasAGPP/EE
7HBrVKflEr00y/Wbr75r1qRUuNQ2bnd6bZLk8vwLeV6k9nPjt74I0xAwDAPF3Q6BaZoolUp47Y3l
mDlzd9xx/UL4vg9f+qhaNfT09GLqlCkolUpYv2ED+vr64DoOHMeBL5OxngonjKUM6h9Ek8jRUiPf
l/HODOZOs7b3n6GtjJsAwm0LrwyiUGE0yvd9GIaAYQAFw4AnG69JS8vM8oQDGqaN0Xj3qyt+gppt
YcjWOlXZ2iJLrwfinU6yA56cAqV1JRA4aKHx7fbrrsbA0BD+cN2P4SsFUwjse+InGtw7bxsFpK9L
LQ/KSZGu24UhuILnOxrrFv3yF7BdF9WqhWeefRau48Lx3PzlCkB6MF93vYA5cSdg49rc50oF13OD
ftnAgX6u5Lbi1L4WfuMLKBRLMGcciM7OLigAnuehZlnYacpkDA0OwjANmIYJ35ewbBsbN/Vh2fLl
YVAhCAYg3Gkh+zPISghrk0TLFxBs7wghIACUikV4nodv/9//wte/y91MhsPY3i9gW/F9P65q6/nB
ujJTAAVDoGA0+dZV2j+gfuZFuzz/K18aqZdPNKrdunABqtUqXl96DaTc0o5MTkChySJrtjcab25Z
eCX+cN3/4tdXX4aq68P2JKqOj2eWXh8H5+IgN/ICbiKpNYKc+6gmbS66TTF4QGPfjb/4GQbLFWza
1I/1GzagWq2hatXgNQoexOerzPI7JEW693r/HBiGWfewju7ezHGaaZCtx6AetSnPl8Au+8AwDFRq
VQwODWGoXEGlEmxlWq5U0LepH+vWrce69RvQ3z+ASqWKas1CzbJQq4X/rOSnZdnJz5oFy7bguG5Q
7NT34XvB8gfpS/Q/uhhSKXR1dqJlMjrFxkUA4a4brw0+MFLGQQQoha4jPwqBYAmDkepEZSZqRJMB
UVy1KjD/K/85ou+FaDQKvqAd7HzMmWEV+OaeWXp9fT9JZa/Ia3j8dqfx6aarfo57L/8fLHtndfoG
rYnUtavM+akusFDX5Jqc7JrdRjRG3H3JV3Dt5T9Cf/8gNm3qw+DQEKq1WlCboOnnX6R2XMivHSJw
yIlnY+eZ+8AslLDbQe/D7FPOxQF/cWp8l/MvvATnX3hxfduNpbeFjM6bDB5QO/rpf30Oapd9YNsO
+vsHMDA4hKFyGUPlMsqVCsqVMsrlCiq1KqpWDZYVBgosC5ZlwbJt2I4TLylyPS/+5/k+PN8Pd3EQ
dW1nw8NLMLn/Nawv23jh7uvw+G0Lgu1QP/+x7fknaRvjYgmD5/vhWpcgCyEgUDBNmEYQQCgYAo4/
nN0YQkof36RzrmfNmoXly5ePzJshGmVuufoKWJYN27HhS1m/JKhpEbfw99TazmYPJBqfZs6cibK+
PKhB83jm7hsABcw+5dz681N21lI0P1Z8Y5QuLThQobFr8fe+hMGJMzE4VEatZqHv2fvx9op34Hke
DCFQNA3sMefs5gepy6JLrwEShokZBx6BGQccnjnnKZx/4SX45nn6JJTIHELVXydYD4jal+v7MH0f
VbuWWmIQ1ClQkNIPaxmklx5ENQ1ardDLnvB6e7qx4rc3wHJ9uFLhkSeegaVlFT2z9Hr89X98c9u8
+TY3LgIIvufHwYO4Wq4IAgs7TNsd1orlMA0B+OkP3uy5n2xdhCrHZ885m0EEGjcsJ0gVs20HUAoT
OwtwKsGXf8Psnbz11XpUQWWWCjVoh6w9QuPBnTddh2XLlwepnpEWk6HVgU3onjQl9zYg269qtssQ
CwjT2Lfk+/+Fjd3TMdTfj1rNwtNLFsL263dX6Ft6PUqmgYkTJ2K3o+Y2qDOSe4JLt6Wc5UXp4EHm
EHqtEi5boDHCmzIT/f0DkErBMARc10vtpiCjzNTcSaecA9Zdl2TbrX7iXphuFY4n4UqJWrgMMBY+
R9/AAK792Y9gmmbY5IJjRIGNgllAd3cXTjv3s1v/D9JGxvwSBiEEfBkUTnTDbTx0hT1mo2PKtGAp
g/aFPnveuckHtC61utEa0fSFWbNY0ZPGtluvWQDfl0H2ge8DQmD6R85CV9FsOuiIt3TU14nqna74
RKHfHtwWZBFxKQOND9cv+ClWrVqFarWGA04+p/UDwqax6pVn01dkCaR7YyxQSuNY1XIwNFSGbdvw
PC83eBBxfIkNff146Z4bc5rXlrYj1bwGiQhrl2g3M3hA7c7zJbywT2fbDjzfj5ciyFStnuinSgfV
skt6Gnj76QcAu4Kq46Pq+ijbXhA8yNk93LZtlCtVDA2VMTBYxsDgIPoHBjAwOIjBwTI2btqEt1es
xBU/vAhX//gHW/Gv0V6Eqhscp7R9L/3OG67F4NAQBoeGUK5UUa5Ukhv1iFYcKNAixK0yqJukZnue
h+tuXYzPfPxMnP+9S0birY0nY7Vn2/bt657bbsRLL7+MWs2C4zrxf6oJPd14ctHVqLr1u5vMnntu
/n/RVDX46Lr6yZ2HnngSry9/CztNmYxTTjwOYEfq3WL7GqVuXbgAq1avRaVaheO6cQA8KZgYyjkX
zZ73yeb/aRvsRd8K29pmY/sa5RZ+4wsQ0/fHqtVrIaUPx3HxtN7GmvQFS929OFCrYZC0q2EswctN
wc45D2buyzaYwvbVpuZ//mMo7rIXCoUCAIW1D9wCRypMnDQJA319MA2Buf96Pp574SXULCvpI+aO
3aKsnvx29+b9t8LxZZx90MwxZ/8thDBgGgZkvA2ktrTCl5Dh1pCFQgFF08R5539npP5M21vD9jXm
MxB8GS1fkPA8L/2XyEvfbBU8yIlW5U2iBg0CWHjz7awWT2PSrdcsQP/AQBg19rRvdGCoUsVOM/dJ
ZfVAz+xBXgG37DOo+s6VAI55/5EAgA2b+uKDzM9L/SRqc319A8G+1vryuzyZtjN9v9k5J6gGj0tN
IuRcHvPdWBrvHNeDYztQSsE0TBiG1jVuEQdwqpX0Fbm1seozVOsolf84/bgMHtAY43keioUCXr3n
eqwtW9hQtvDW6nUYsj2UbQ+3XfJ1LP/N9Vj/8GKUjChQEP0MDyJEeivibOIqAMvzUXW8lsGDw+ed
C9f14LouapYV7L5SrQVFG20LjuPGdfWC1++iZtuYf974G+eN6QDCfffdF+664MH1XKhGM5wQyQcy
0nCGVIsSqwYf5nCtTMS2na31lohGjZ3f8x6sWr0aSulpYEkj2HGfw3DIyR9HZ89EzDr8Q+l9rnOK
4jZeR5qVPOiaG28LHzpWJyFoPKvUqrAdJ4xvp5fYHXr86bmP2e9Dc/GeWfu1PnjuMm1RfznTtBgQ
p7Hkiq/+A1wYsGwHQgClUgmGYSTnq5anFtX015jex8zL/onrGzRaxqAYPKAxZf6CW6AATJo0EX1V
B2XbQy1cXjBguRiyPVSc4Pey7WLZA4uw6rmH8zqPIW0spnchFVBzG22/mpg971woKLiel1pGkaym
zUk515bajrcgwpgOIPgD6+GH62n02RshBIQQMAwDhUKwJ6+AaHKe0NJj9IGSyPTAtE/nwptuiy/f
sOgOdrpoTLn7puuw4p13UlVzA/pPBRgm9v/IKdhhl93SB6jLNGuZjpB0wFR+eifbGI0lV/zwIti2
A8MIdwwy06dro6OrrtnMnncuuibuUF+1PU/cVBl8o/HLcT24vVNh2zaEMNDZ2YGOUgmmYQTL7VrY
dd9D01c0bE5RPzFnwmoYB5h/wcUtXwtRuznkwP2DXfJkfZtwfImKE2QiVBwfQ5aH6vqVkH7elqqZ
c11OLLyZ2XPPzQ8S1AX7MoHAaHvj8Me3/u+XWz/ZGDFmd2G466LzIHY/GICA5wXpJlJKFMwgYGAY
BorFIpSS6AAgpYoLLaZk+19CvzK/c/arWxeP8Lsj2r4cz8XAwABc14NSgFkwobQ1YvGgRKSjwLlt
KbvjQq4mhXKGsdSUqJ0svvBL8Is7h4HvKIBgwjQ82E6U0SaCrRrzMusiuW0jU+unwUNt20ZHR0fu
bdz9hMYKx/XgS8D3Pdi2jR0n7wDDNOKg+Ox559bXHAntcdjRmLzrzPobVLavqF0PbH5tBK4jojHm
zhsWwnFcVKpBll2z5eMKgOtLuAAcX+DNpx/Cnu87NvOA7JanaTvP3Afr33o197agXhCajO0aXJ+z
9bjfYonEWDJmMxCKO+wcVmsHlJLwPD/MOCigVCqiu6sL3V2d6OnuRmdHJ4QQ8BoGDzInAKX1vOpq
Iqj6IASAa268dQTeJdH2oSBgWTaUUigUTBQLBZRKJXR3d6FULEIYOVu/pb6PtfXVwxr8RycIVdeX
ev3Nt+LjMQuBxgJv6j5wnCBzTgiB3t5eTJo4AYWCGSxl0NtBs+BbTgenvndWPzgZGBzCDYvuxDU3
3oparaY9lmhscT0fruvC9z3su/de8Pwgq05oNbFSRRIRNIXZ887NDx5Ab2I5fcRm5zuVv50qsw9o
LLjrxl9i0S+vwk1X/Rz9A4PoGxhArWbBcz28/7RPB3dq0R+USsGqDKWvVHoNkRwKmHHgEZg0dUbd
TUGWUeNs8ngMGGcnaOdevR+L8ZfNNyYzEJZech6Ksw6HX6liYHAQjuMC4dKFQsFEb08Pent6oKBg
1SxYMihSleoe1c3qaB0vPZUlt6YC0di24p134Pk+DCPoEU3o7cHkyZPR19eHglmA7ThwXTfenqcu
Ohyv9xxGlFe/PWew9NDjT2KvWQ06ckRt5sZvfRH2znvBMEQ8kJkyeQfsuut0PPHUk+goleA4DmSU
8tksAwHZ5pQzzZPz2Mee/lN8+aYlS/HZc84OM4W22tskGhW+/OPrcPu1v0Bndzfeeecd1Go1+OGE
UzSbWOrubb2rSSONSvukshSQWRabeQxRG1v8q6uTLVL9KCNcQUofnh8E8BRU02wfXSGVGSeSQX4j
4Y4oex7x4Zwb0/3N8y+8GN9MFeXWM/ZU+jwYBfNFdmw4PozJDAQBASklpk2bFlfMNISIC+REM6UF
swCl7dQQ0LcD0a7KWwfDL3Yah+659fpwABOcBAoFExMnTESpWIRpmoAApIz29s1pO1G0uK79tMip
Dh98/4OP5F6fN5NK1E4WXfifsF0XjuPEHS3LtjBphx3w1ttvJcvxov2vc2Yrc21O21CAaeR0DTJ1
q5jtQ2PBjb+4HLbr4s033wwGOY4D1/PSGam5BdQaqGtqKqf/qJ8P89IS9ODg5rwbotFl4U8vw5q1
6zBULqNSraFaq6Fas1CrBTsbOI4D1/Xg+0GwLi5eqrejTJuaddjRDZ4tkxGQuin/HHj+hZekHpME
D3Iarcrs1Je9fZztkjLmAgj3XPpVGIUipC/hq6CuQbAuW0GpYMsQ13HRUSrBEMEMD5S+biWveFte
Jy0vWtxiJoiozd150ZcxVC6He+LKeNvdSrUCy7Lguh5s2wnXaecE46C1p9ym0uSsAeDe3z+It1eu
ynlc0B7ve+CP7+4NEm1HlZoN1wt2DvL9YBb0gH33xaZNm7Bu3XrYtg3HdZNzTXZ2MysagIhMr0dl
7pNK2VTo6e5OHUbGAXaisWHRL3+B6xf8DP0DA1izZi3K5Qoq4aDG9TyoZnV30Gy3hZwrskUT9VrD
uefBdHYQg3XUjq687GJs6uvHULmCoXIFlWoV1VoNtVot/GnBsuxkl7zQ7HnnotTVnXvMQ0/+OIpd
PcEv2Tao196qq8stcttsEDBQOYVNRf35skVhxvEUPMBYXMLgK4XijIPg2DZWrFgR1yPwpY+CaUIp
wPU8dHd1YahcBoB4zVudhoVwVKZDlp45/ewnzsLVN92W+nyde2ZmDR1Rm7nn0q9CTQqyeoQQUArw
fR8Fs4Bdd5mKNeEAx7bt8BEt1l+3WrGQyfX85S2L4ih11nW3LsZfnXUaVq1Zt1XeK9H24Hp++C+Y
kdlrz1mwHRdr165FzbLgZatPt0qfzAt8Z++cc59X3liWusYIiw9zNpTGgjtvuBYb+/pRrdZg2TYc
N5gFjeVWXhfpi42Kk+aKHpsJ/OX2L5OU69RjiNrITy76H5QrFVi2AyVlkABQ156UNuhPdwgPPO70
zH1zZIdhDQf4QpvgzTtei3bbqvkpYP6F4yt4gLEWQLjvh18LLwXf/latFq4jDfap930JwwjW2xSL
Bfi+DCrHx9kH2QqbqcMlX/Z6JCvvi10I/M05Z8NzPTzy1DM46sjZKBTG1J+axiHH8yC7JwPVKkyt
SrXtOChXqnAcB5ZtB2uzU82iQY8rOmHUfdFnHqeAV95Y1jB4AAATe3vYyaK253geXN+D53qYNXM3
mIUiVix/EzXLCpfZZTpAW/qZb7QuO74iK9PhE0D/wMCWPTfRdvbWihWoWTYcx4bjZoteRwMNLWAA
PfbWaOlQJrCnr5tutDyv7jiZ58a7aONE28mVP7oEff0D4QSuyhQXzATj6jK3hzu4z96lRUXuaPlB
vI1qzq4NqRolej82Z+JrHGYcZI2pUa3reRCGAakUJkycgLXr1wNAPNBJdmUIljN0dnTAsm0UioXm
a0mF9mGvm+3JnF20XwvFAj78wffFh/nW186DjIo1qrzBU30bGO8fUBod7r7kK/B8Cd9z4XkeDGFA
CAFf+ph98MFBenW4djQ3hTNXk5OK0G4XwKNPPdP09Z168gkAgOXLl2/hOyTa/nxfwvMkdpuxKyZM
nIQXXngR1VoN0pcNgnJ5mhQhza7hFNlzmUC1Wst5bP3MzQ9+esUWvkui7eeqH/8gKK7teqkgdUwv
jJY6F+nFDhs0syh7IDXTmTMpFd63ZtVw9+8ewO7Tp+PIww7OOdbWfvdEI29Faplpk+K7ej/vXcsG
BBpMCGefUx/C5U5mqdR9x2OmQSNjKoCgAIjpB8HzPEzp6YWUEoZhQAgDSgW1EBw3GAD98ZFHceB+
+2H33XbDK6++CmEIqLqZ04y6k0bON3y2c6bx9XWkuak09Qtt9LVvDCbQ9lJzHPg77gHHduJKuhCA
lAqWZWOwXEalUg3vrXIaQk6D0G/K65RlAwktXHPjrWwj1NZcz4PreRgqV/HaG8vDWiLZNiFaFFdr
kqYpmo1KguLDN99xd/PjCoHrblnEtkZtae269XAcL31uyTaZeKIo214aBANS1+kjlQbtTQXLam9a
shQA8OIrr2L2wQcExUvr+peMJFCbSy3DaRBcq39QfVCg0bLySMNs1gbyjpVdZgTBc10DYyaA8OtL
vxIWS5TwfRnvny0QbN3oum5YuTrYR9R2XJRKRQwNDmLChAmoWRbK8QAoI3ViaXxCqD/PqPQVdQ0h
r4PX4HhaMIEfZtqW7rroPEgFeKIIxwmKvEmZ1A2ZNm0alr/1llaIVP/oN9liJy+rs8Hlz3ziLCy8
6bZkf27NZ885K748/7wvBdk/pgkhBAxDwDBMnDf/21v+ByDaRv7t0mvw3X/6JNZv2BAED3I7T9ms
uJwDNdpyscH1r7y+rGWWj85jUUVqQ987/+uwbDu/H5c73siekHIGG9kZ1txBTnb7N+BXty1JPdPb
76zCrJm7aU+n3TlvVRHRKJRb8LPhcp+oSGHe2Ceb7a1fbnH+Q7Naddnfs98DybGZbdDcmAkg+L4K
liZIhY6ODqxfvz7YzlEFW81lBx0A8OiTT+PQA4Oob2dnZ1BBPprxidR9QDOf5mwgTU8iUJkG0Gig
lCe38xc0iPlf+RI/3LTNWI4DCQG3OgRPGZDSD+qGhJ91YRhBfYIofTN3q5tmX+AZeX07AXz2nLNx
0+K7ULOs+PpzzvhofPmz55wdX04PcNzckxoDcTQa7XLgB/DOqjAFdNjnjOxspcpf65lzvGtuuGUz
1lkLXHPjrVwqRG3Jslv17/S1zyLnftl93xtk1TXLTg1Jma7pM2PXadkXEp9L2dejtpTN2K4LYOtj
JC0Yl9s9bNSmGmUj5LVf7YEqr6hicpltrrUxEUC474dfg0KwVSOkxNRdpuL5F14MtnCUKjVbmvXs
iy/hgH32RmdHB3zPS2UqAJkPf94nu1FgLe+21AdWu8MwM9Ref/NtPPT4k5g4oRen/+WJzEigbcKT
Cp7vw1n3FrzJuwUZPkrFbWrZsmVBZyjqYNUFD5CXI9r4CXODZ8H1nzj9lCavNO8EpRqeLNh+aDQq
VyrhOUj77GZnOSPxRzrTrup+z3+uhTfdtllF2h54+NHNeStEo0o8aG+UoQNk+mjRddnLOYOOvCV5
qQclxRc9L1u4ESgWCvXnyOE3zf/P3n3HyVGceQP/VffMbFDOZLQEIQFCCBDB5IwEQlkCDMiXz5f9
ojN6fcHr850NPrh7bd/5zufzHStMWIlVBJGNwcaYZIHIUWQhCcWNE7rr/aPDVHdX98yudrWzs7/v
fXQ7obt3BndtdT391FNEFSTcZyX0Yf4modVJ/Dok4cKiahFT3dRYqQkeiOjr4eKlkQg7lVIVAQTL
drIMbAmMGjECgEC2K4uCVYhEeR3Bk+71t9/BMQ0TYds2CpaF1rb2hN/mpZOVWlon5jYqwhd8ydkG
6rGOmXgknn7uBexrbcOdq9YAgLK6Q/T3cWBEvcGyLGRzeeTzBXd5OWcKg9e2rEIhFKALdRZxd28S
hVM+NYE3xd0t63DdgjmatxLuFMHJmGAggSqJRKjKu/ZCJ3TNU2puaNzvigmsaz4UICQ++PhTLF28
AI0334S6ujqMHT0Kv/cXN3Xj2xFVADVTTttkvDYmQ9dtuuBD6C5qUv/mvndXyzrNe+hW2yWqRI23
3OZPJS1J1/34/VrMtRu8zDro22k4sKC7ZxVo85o3OGWoLFURQLBt545oTaYGhxx6KDZv3gzLttyg
gi77IJqu8u6WDwAA48eOQaFQQGdXNmYf9Q+9jE5TKEc5Ayjt8pBOmnZraxt+9dwLqK2pwVmnneJ+
lWh0z5vqEIjmee9xsERlsiwnsFYoFFDI51FwayB4mTqpVAqZTAaFTq96u2aAg+6ObXTRaqWzCL1/
3YI54Y2DvOkVCFXYVtpN4/JlbBfU75LHEUpjErrH3QlqS6RSJgqF5HoG3tSgO+5tQSaTcX+NQGdX
F7Zu247vfevvYJomUikT0pb4q2/8fekvSdRfwkXSIlmmSh+jyzYVoeMExKXPFd+7T1OkdPzYMfrP
yGs1GogiY/Jwu0jKSChxoag7Xjnt0L/WCwUFASUg4b0f/+upSJS4AzEg4jAb/vmvYUmg4aij8bkx
Cp9//jk6OjuRzeaQy+WcwY9VcNan9yVW30BNpkaphxBXOFHTgZQcJHXvDtF+K+OO7wDooKq1OQ+I
9rXi7/8E7Z1ZZPN55I0aFIaOQ74QzO4ZNXIEdu/e281zX/M8KbU0sEsP21E5uw2++iJsXxXk+7d8
W9+WAsFgxP/PFp53Gsn8CTYCrzipjlpXpKm5JfDcYwgB0y9aavjHX/6tf+reF69ebF8VQlvgLek6
rmR/E7pjGQ4uSImPPv0M7275EPva2tDW1h4sNuy6YdE8GEJZgcE9bFNzC+rr6/Haa6/t3xevbmxf
FaqYiRBqP5F2FZoGFBE3BtO9HDPdPI5mswEwJjqQ4m9nDPQAwkP/cjOyBQtHTGzA7j378Omufeis
HY1cLuemXTvLNpZfNbrUidyN/QLpb8ocbG3F0f4Q/OUVXByLHUQ/+tk3/xR72jqQzeeRy1uw6kai
kBkSuWiqq60NFDjstkhbKKfTiOuYkg9R8j1INN5ye/c+/8DF9lVhtAMdIHTSaqYzJCmxzbMvbsLb
72/BqJEjcdWlFwXeKwYPki7O9K8NonYUh+2rgjiDmhL9hpbm3E9oDk3NLWV/Jl1grqm5BX9w/TU4
5KAJEIaBn97VjO1f7MSbb75Z9nEHCbavKhPo/7TFDmNouyCJVRsehG3bWHz1LAgvUOdlpeqytxlA
UFVvAOGxH/wNpJHCIYcdjjfefAt79u1DfugEZEUK+XwBhYKTcm1ZtmbQoSvAkTSIKWf7pH2ck9W2
LeTyBdjSRiadVuoYeJvpAg8x1LtRkW27f7F5R3MLPqi8IAI7iH72/a8tRS5fQDZfgGXbkKOP0Bem
KZdubql+w9IXenFtVltMp8QvDL315DPP4oknf9mtrzYAsX1VmOIgx1NGpk6p6yt/6k84iJ2Q0VDy
mOWdPYP8goztq8LoByjK+5rz1ZkSGtffqdNZnUZRKoCgLkmsBhBs28adq9Zg6WLntdGjR6KuphbC
cPo0y5a4/T9+grfffrtb37mKsX1VmdgAujoVFSXGR9L5f00rVwdejgbrojd/B3l/FVa9AYRH/t83
MGrceGRzBby3ZQs6u7LImxnkhoxzMg8KFgqWFV8sKim6FagCioTMhPIG562tbXjg8SeQVZYSklLC
MAwcetAEnHvmDGeOadIgKS5qljiQK5F+p1FhDYgdRD/7r+V/gL1tHcjm3Gye2qHAsLHBjXoaTEjk
/ieS7skfCAiUuc5vNwJyhUIhGtAD0Lz2frxRvXd+2L4qkP4iqptB4aSgWVwaaXd14w5RhfUrBwrb
DfN/hwAAIABJREFUV5VovPmmYv0c6ILgxTZQbgbCtOMn4+SpJwAAPvnsczz+y6eVQY7EkPp6ZNIZ
ZDJpCCEgpYRlWcgXCvjaN77ZF19zoGH7qkJ+/xeeHlRuup0UaFoZbYOBAIIakHB/TDthCubd8Hu9
8yWqQ/UGEB79/jdQO3QEdu/di+1f7HSmLRQs5EccioJ0KsiXP31B0Z1rqTK27erqwr3rHih5M6cm
ncbcmZehrq62+wP/2DtJ4TtZ5R23gi722EFUgNv+/Hq/fUEAqB8F1I/ow8BBN299lhoQRToidV/n
O3gXfX4nEzpEBbWJ3sT2VaGKF1HFv+3qOVgslBvXHspoA4lTgrqRPqrNFgq+ls/n8U+3f7+8L189
2L6qSDCwl9wuSgURzjjlZEw+9ujAtuE7pKmUiUw6g1TKdJd6FLClDcuyYBUs/PU3v71f36cKsH1V
ofhpfKU4bXLV+o3o8At7O5bMuQq1tTWx+63a8BAAYPiwoXjmN8/28PdXneoNIDz+w79FezaP1vZO
tHd2IpcvIFcoIG8LFIZNgCXhV4tPprvQ8lI+S2xb4u18Po971mwof8ksAGfPOBXHNEzs1p9GNSUu
ZoPSA73QRV+FDJjYQVSI7/zxNcipa1iPPARIuZXZ4wb16M4gJKSHN0X1xyq99GpTczHd7ZwzTsPL
r76B+VddUfwsqMo0N7avAa70xVZc0FkJupVdwNR7Xmp6nfsztEkF19rpK2xfVai8OiXAXfet1d7E
Wrpkgb9p89r7sWTuVe7uwcw6AYFUKoWUacIwTZim4QQR3CwEKSW+8e3v9sVXHCjYvqpUpI0pWeHq
1ISGIw7HeWfN8KeuhqctAIBpGLh+0bzgcUJt9eiJR+K7P/gPf6z2xhtv9Nl3G0CqN4AAAPd952vo
6MqhM5tFNl9APl9AtlCABRPW0LGAmS5uXGruddKAJekOZnhD6cw1TZkp3NHcEqhYD5Ref1sCuPyC
c3HwhPFlXPwVOykhBG5cNK/M1SHUtZBj5otXRkV6dhAV5B/+YFEwKFc3HBgyWjuXDIjPuo5vgCjv
f3LtACb2l5Vl8+tvYtMr0YrXxQJy0c9WBYEEtq8q0vM7N54ypwOVta/+dSklvnXroCmuyPZVpWKr
zKu8vlKdRofiknLPb9qMGdOnxezr/D/DNGEaBgzDgGEI50aRhL8akgTw99/5Xl98xYGA7auKBeuV
wB+v6IIESXSFStXjTjziMAgh8OQzz+HXz78IACxY6qjuAMK6W5dhX3sn2jq7nABCoYCuXN79wyqA
+pHOIEd0Y3WFsrbTXWgBhjCQSqeQMlO4e/U6tLV3OO+6/63DP5MknvSKuFS5GxbNc5fWCn/m8B0n
3R0oGUmZ7SfsICpU4+8vLD6Jy0bozSwC5WBSSrz25tt489330NmVRco0cejBB+HUaSdiSH198v4l
UrNzuRx27dmDuto6jBg2rPRFoqIC2kt3sX0NAo0336TJqOtm4ywVAAwMjuL3/+zzbXj0yV8NlkwE
tq8q17j8Js30nZhpRLE1R+KygIrbGe5Sqd61oxc88D/HwOt7egPbVxWbOnUqFlx5ufus2Bb2a5UT
pV1m0mkMGzYUNZkMDMNw4xMS9z/2BF5/6x0WK632AAIA3PnNP0VbZxe6ss4c7Ww+H1xvNzMEGDYG
EMpgOjyICNxg7O6FlTN9IJ1OI5PJwDScpUJ+9L8/c9+OBg/KCSBcO2+2U1ix+Iu0n6t57QZ0KcUZ
PWNHj8aVl15Y7peIvXvbzx0TO4gBpPH3FwJjJyZvE3M+Bed8x//P/tEnn+EXv/5NbBs6/JCDceHZ
Z0J4wTNt+jW6Md9bza6IybQIbDqglq9j+xpE/uH//jVsaStV4xM2LtkNxgQRtKufBHkXgIMgiMD2
NUjc1/QTvPrGW6FXu3EtqY0thKfXxmXeOQZQv9Nb2L6q1CUXXYit27YDABZdNTMSb9MVSQw7cfIk
nDptqr+Pd4yuri7U1tYgk86gvq7OGbeZhlKo1Ma//vinAIB33nmnD77dgBHbvqLlxgeoEUPqkM3l
kRMF5wZI+A9srh3YawEjJhT/+IYHC3Fp1wkE4M9PS6VTMA0TpmnCMIT7d174tQnUn+V6d8uHOP64
Y0O/MWrJ3Nl49Y238Npb76Arm/Vfz2TS2u3jv034sZuFsHxZfwcRaIBo/O/7erzv1OMn48OPP0F7
e4cfZBOGAUM4d2ZMw8SDj/8Cn2z9PPE4H3+2FXetXo9Fs2eipqYm2mzCwQOgvGUp1f38JhKeFlVs
M+j/4BuR75HV92LC+HHYvWev20/sb3qQJlAQbj8xAXnvlYaGhsEQRKAqt+GeFbAKFg475GBs274D
eb9WUMKUHm2GQtwubj8TWYkobgeige2zz7f5j48+6khYBQsffPSJ2884mQWlMhH84IFrRfNq3Lhk
Pmpra/3XLNtCoVAAkHIvAyUs28af/M71uOu+dX3wzapD1WQgAEDT330V7V1ZtHc6tRD0qy8YwIjx
QLqm9B9dzfz/jSvvwu49e7Bn7z7YtuWnkJmmCdMwA/PTJCR+8JM7AstIeoOicjMQDho/DpdfeF55
/wHcDubt997Hr1/YhNqaGlwz98rg3dK4Dsv7wgn/TfpxIFStveOAal8HwqNrmvH5tu3o6OhEZ7bL
aUde24FEVzaH/7l7ZbemA0Wn8Xh6OHjqRpkGT4UHEdi+Bon1dzehvaMde/a2or2jA9lsFpZl+TVN
8vk82ts7YKZMDKmrg2GamqNobpN2p024fZC0gRWrivNYqziIwPZV5aZNm4ZlX/19pFImOju7sK+1
DXv27Qtu5BeA6+YZEQlqhzMSotd0Fd7f9Da2ryp0909+hG//yw8BODdiv/5nfwSrYCGby2L33r3I
5wuB7Xft3oMNjzyOUSOG4+rLL4G7o/PTzVbQTWVwVjlJI5VOIZ1KBwIIVsHyM9m/PnhXO6n+KQyq
H3ztK2jt6EQ+aflGYQJDRwOZ+ki6ZVLRwCfW34fW9nZ0dnY5F1+2s5wOAGeQIiVsJUBw56o12Lbj
C+fQoeBBOQGEcWNGY9YlSVMQ9HPNiysy6HLionPvtm3/Ak8//yJa29rd/QHDEJg36zIMGzrU37Kf
OiZ2EIPI6hU/RVe2C+0dnZC2hGVbfnt5+vkX8fymzYH2UyqIMGL4cMydeYl72vfwVOpR7RSpPBd4
7c23sWrt+p79/r7F9jVIrLv7DrS3dyCby6GjowP5fAG5fB4P/fxJfPTJp7Bs2+87hBA46sgjcPaM
UyCEkXxXVDvrJyabR9n2saeexqdKNlGVBhHYvqrc1KlTcdLxkzHz4vORzebQ1ZVFa1tbMRs0tv/o
SRA7/lpO2jaEYTCAUB0GdfuaPHmy/3jaCVNw+QXnwrJtfPTJp8gXCqit8ZZjjKsxkhB8k+5jt6ZI
yjSRduvWeTVGLNvyAwiDfKWT2Paluy034P3Fv96Bmkwahkj4etICWncAOz8EvvgAjbfc5vwrseJA
Op1GTTqD+rpa1NTUoK62BvV1dajJZIrL7BiGUzFXCEwYN3a/vsvEww9L3kCqDaX4J6c4hSP8Uyki
J4HnN72MpubVeOiJp/zgAfxsbonVDzyMFStX+wfe/wrfRMlSqRTS6TRqa2qQyaSd6HAqBdM08dnn
2/3tkpYsVYMJe/ftw0efbA1vEbOjVwguvE2ZfbkIPRHCf/Gg8ePQ0NBQ3nGI+oC0pVvJ3XDr9aRx
79oN+OjTz9z4mvDblZQS733wIVZt2KjP5lMvzsLXaAgG67Zu246Ojg6lbTkuOe9sXHr+OYAbgGf7
oIFm6tSpsG0br7/9DmzLuVtpGAJ3NLfg3rX348lfP4sdO3dGzn29bvY5MtgHrt74MHZ8sZPXaTTg
qTdaJ4wdg4Jl4b4ND+Letffjvg0PulMOSgTgIqvRKf2Ve4PV+x2WZaNQKKBgFWC52eUFywkgWHbC
zehBrGpqIIQt++HP+uS458ycg5+vuw9SStTUOCku3vKJtm3DkBIW4KS9CIGaQAHE7psy6ZjkDfz4
gO5CTlfMqlj/oeX+B/0VIpJI2ZMoOVHPeAOcVMr58ySEgLAs2EIgZZqBAU6ccHDhiaefwY2L5yvJ
ATEF5NRUUFlcaiu2oJVOTA3GMaNHwTRNNDQ0QEqJDz74IPk4RL3o3//5uxg6dAgy6TQMIWAaBmzD
QFt7R6S9qG2rsyuLu1evCy4PHM7miUyRg98IXnj5Fbz2plPJetHsWaivqw00kEMOmhBILf2zP/w9
/Nt//bRP/hsQ9TbbvUOZzeb8u5X/2XQ3CoUCpJT48JNP8cHHnwAADj/0EFx0zlnK3uHsHV0dKkW4
3YXqiyy46go0Na8ue/Uuokpl27bfLz30xFN46Imn/PeklLirZZ0+Q1tdySR8LRZJRhB+toF3XFgW
DEPAtqUz/dydps46cFFVmYHQ1wzTgGm6WQbuT6dwovufU7mL886WD4EeTl845KAJ+ozrsgPZmsI8
7u998513ywoeeNRCJYxuU18yDAFDGP6SVUIU7+Tv3rtPu0857amzs8vd2ItA69pS+OIMysZQ0t/C
H0D5qT2u4/qFc52j9HQqBVEP/fjOe/C9f/sx2twCpYDAx5+GM3P0pJTFwqW6AFkg0U0ENti1e4//
eNWGjcjl88jloisGecaOHsU+hgYM73rOtm3Yto0PP/kUnV1d2m0//vQzfL59R/DF7nQF2m2DIyQp
JZqaW/C3y/6qGwcmqiy6sVL4+Y6du/DCS5vVvQLjnMDrYUqQwbakPx3dsiwUCk5RxeAyqYN6RokW
Awg9YLp3SA3D9IMIwo0E27aFbDaLtvZ2PPWb57A3XEinTMOHDcMl550dSql2ae5uagndRs6Lz/72
5R59rsTfR9QLBASk+3/F1xxdMRdm5dj+xc5QNkHyxdsLL23GvWs34N0toUwB/66P5jjqT7XdBjIY
HEzXpgPJu/D6/k/+17kQg8T6hx8re/+nfvOce4yEDiDylsT5Xzoj8Mo9azbgnjUb/NpB0f2c6XUM
IlClmzJlip+BAABrH3wUK9c9kLjP40897Wwfbkq6mXPa55qdlH294PRdLaweTwPTd//+G4DmxisQ
vVn02lvvoL3dmx4n/NoGgHIzR8Zc6Pm1EOBPWShYFvKFgls8UfldcccYxBhA6AHh3hk1TcPPOtj4
2BP4zvd/hFt++GP864//B//+P3fi2RdfCuxXbuZBfV0d5s681O0IROnCb2q6Tvg1uB2On7Itkc/n
y/ymGlJ2L2JO1A1PPbAGe/btw3e//x/49r/8G1asXI3W9nZIADt370LeTQvtic6uzpjJ2uGXJJ56
5jm89tY7yGZzePq5F9HR0RnaUCnEE0fbbgXTS6lfFOd6WnjkyV/hi127kU3IBAjL5wt4/4OPlPM6
+a6O97Mmk8H1C+Zi3JjRgT127t4Tv3qD+7xx+U0MtFHFCg9w3nr3vZLXeQXLcpanE5HkgeBPZXAT
EJg6JCLXZM4UIQfbDg1E/31XszZrOy6I8OLmVzUNSHkaN2YRCE7LCz6IZKQyqB1UtTUQ+pJpGigU
itMUfvCTJnyxa5e204hLw4kzfOhQXH3FJcUU57gpDMKr8K5LuVbncbtvKJvta23r1vcNEDEp3ES9
QEqJW374H7DcYlQfffoZ/u2nK1BTk0FXVzawXXcDCUIYofxrTfV4NwV7y0cfB/ZduWEjZpw8FScc
N8n9AGq6NoKvxVWk99qhLK5f3NDQUK2V56mCTJ06NdBeXnz5FT/1M9yOktrV8y9vxtENR7rPwgWq
1KalRAYkYKZMZ66qlH5BxpRZzuUHA25Uubpzbafa/PqbOPTgg9QDRa7T4pfb9vbRTJcTQDa3HzeI
iCpAUjvSvffZ59uCDUKtg6AWjtfV7fEI3YuUhBkIPXDWZbP9atU/u28tdu7e3SvHHTZ0CObOvBSm
aSZX7PUGLrGZCV7wQDqdkN8wnMbR0dnzNHAgeZlLov1x/lXz/VNfjTZ3dnYlBuhQxsXbuDGj4wf8
gYM6dRhUAsALL72CdQ89Gtk2cBc1cEypZCkoHZr7c9YlF5T4r0HUe0rd0SknKJfN5uK3CfUzxXNe
Km1EIJVKOQVSY+8MRTMcGpcvw01/9sc9+NZEfSeuTZWqd7Vz9+7QFDehaQvKdVz0N+sLLyoBOg+z
EGgg6k4GQr5QUMZD4bbk3YxV+5VwZo9k8KAHGEDoIWEIvP72u3j97Xcj78V1HkkXZynTxJzLL4Xw
CjGqGQTa1Jqk17xDhMNrzvMh9XVJX01r6eL5AMAqpNTn4tpJqYuzpMKEw4cNw5jRo9SjxWa8QQA3
LJqPi845K3LMPV4RRxEcJ6n7BlJK/WAfQgEFYNyYMVi6ZAHT4qjPefO0ezLYCfPXtvdJ7UNfdwuG
+scI7jds6FA03nxT945F1IfUdhPXxnQsy3bnWKvTfULbes9FMEBQvCb03lf2EYJDIBrwdFlxcW3K
f57UdQX2EcoFnFojIaa4nJSR6ejkYAChhwQEXnz5lcjrpe6Sxhk9aiTMlBntFALndeikD/6S6EFj
ll8cNWJE4mfREoLBAzpgemuwAwCpVAqzL7so9GrS3R3H4YceghsWzQu8dtghBykXdjE7ioTIRHja
g3p3lqiP9GZ7sgrhNbFFIMMgOrVBd7cn9pMm3wQSggE3qhj7056cVYHUYHNoeqgu8OZmKjibJdQi
CWEWAlUrIQRS6tgJmiaRVLcHyZlwXbkc3nz3PRQKhd75wFWEAYQeOnfWXBx5+KGB18q5AIvbZm9r
q1uVulT8OFwbwZvHHYpSI9wBKXdqDYFMJl3ys3oWXnVF2dsSVZKUaeLaebOdlOlw5xFuNxpCCFx6
/jkQQmD0qBG4+Nyz9dMe/ANGHyZt5gUVOCiivuRl0iRNXyhXbU2NetvU/QUxG2tj2ElFq8rAFRqo
QvzhDdcCoel25banXD6vL/iWRAIPPPpzNDW34K1339futPjqWd35CkQVrZy2NGHc2Jh6cOGDRdJF
k9uc9FbvAprX3g9wGfsABhD2w4VfOtN/HJ6q0N2Lsmw2h+df2qzsUyotR50/F3orPCiS4YYDXHLu
2bFHHTl8OJbMuQpnn34arl8wB0OGDCn7exD1ht64Uzp96gm4bsEcf6WU+Is1NZUt1P4AHHLQBNy4
aD5mX3ZJcEWTCPVObOjY6mPmmNIB9rU/+t0eZ8ephBBuplw5J7F3cRaTGqqbwx3OztE89KYD8UKO
+lsulwsED7qjphs3cbzzf8vHH+OLXbshhC4D1pnbUFdXhynHHo2xo0fh9OnTMH7sGIBZCDRAJU1N
9Uw8/LDyAtHhRITEpRmd/uv1t94B3NVTfvXs891u59WMAYT9YJpmyZO7O1kJb77zHp741TPI5ZTI
tPD7BW9j+FVG0Y0AgwhuOG7sGJx8wpTAeOe4Y47CjYvmYc7MS1FbW4NjGo6EmXIqZXP6Ah0oZQ1N
EtrVlEnH4PqFc3HS8ZOdWFrcpuG51rrCO7rBjigOYhIOGjqO5pja7Yl6XzqV6nEgTjW0vt7t8yKR
Mo24tNEygw/qxZ0ui4GZCNTP/vafbgW6ETzwgw0Aamtr1XeS9vKv31qVFbTyhYImsuY0lNNPORlX
XnoRpkw6BjMvPh/HTDwyclSiSuWtTGWa5Q1RDzv4oPLvzMhie9LeRAr1bdt2fOHv+t4HH/mZCMQA
wn65YPYC/N51iwOv9eSizAtCCCHw8Wdb0XL/g8Vl5NRz2U+5jlZ01xxV/1z5fNNOPB5LF83D0sXz
ceOSBTjz1OnK3Vqi/nHTV38/8LzcAY8QApddcC5On36Su5IJNBV51R20BwkF7EJ3RLVBBuX9+PkN
0f00mUFEfSGfL/h3IlXd7a++dPqpys6Ro8W8UeIuj1ZCuy3nsEQHWDltybvWS5mm0kcheDJrp/Y4
75845bjA8VasXIOW+x9UP4W2/Z19xmnlfxGiCnH5Befh+oVzE7fJZDLIZDLJK9dFmlL4BqwIvpdw
qGwuV96HHwQ4WtxPUyYdg5qaml49Zi6fx1PPPIc1DzzszJOLCxaUc+0XW0zEfWoYxUGP1O/I7AM6
kEaPGukuZpBQcVdj+LChOHj8uJiMggS68Y6XYZAYMAjTFUks8cuUTXk3lfpKwSpg0eyZ+5WBcMpJ
J+KgcWOLgTI1q80L1nk/XR98/Ama196Pp555rlhBPqDUwKl0vRG2G+pP77/v1CIoJ9XaM/mYo2Lq
g6jZotELP0MYuGHRPLcOidMftrV3KG1ZU8TUtXTJAk5joAFl7OhRME0TMy+OX/L6knO/5DzQTd32
HggZDRaEi/sGtncefb59R+T3cQpDUaq/P8BAZ5omvvXXf4nvfP9H2L1nL9CLJ9i+tjbcvXo9xowa
gcsvPM+JsiFUmErKYsPRdUgivI2XuhNOD/UuCNVOS6KpeTUDCHRAWZaN5X/xVfzjv/6b9v249tXa
1g5bShhJg3hd5rUIbxC6cJNKQCHmuK++8RZe3Pxq7HeSUkIIgVNOOhFTJ09S1v12U7V5N5X6UC6X
R75g4Y9uuBb/ueLuxG0PGj8O48eOwYhhwzB61EgMHVLvFiFVhdqCJsi944udePLXzwIAtnz0Mfbs
3Yerr7hEu3tw3xKF5WSx/2pqbnGy5iTQeCv7KaoMRx52KD7Z+rlbGDuotiaD06ZNDaVPhzqkcDKb
0r4MIbBk7pUABLZu246hQ+pDwYtQn6IcfuLhh6KhocFPESeqZN55PX7sGFw3/2rcvXp94P2LzvkS
xmky64JNqpwUVGWMpLz+8BNPxX4mYgbCfkunUjAMA3/5+1/B+WedgXQ6WhhHt1Z9+UEGiV179uKB
x56A7XVG6nmuBA927NyJd7d8iC927kKhUID01hkOBAtEQuX56BUdOxrqL7Mvu7hb29u2jWd/+1Jy
BoB3gyZwN1Qq6W+afSN3hBRSYu3GRxKDB1Da/W83v4qmlauVAljB4AHvplJfsGwLlmUhXyjggi+d
EbtdfV0tLr/gPEyfegKOmng4Ro4YrgkeoESap/PGc5teDry6e+9efSFRv66Pl36tpGFH+kkZGng5
7b5pZQvbDvWb8HXSBV86A9cvnIP5V16BYUODRaivvuJSfWabeq4HrvHcx4Fpdc6LB08Yj2FDhoY+
jQgFH4rt6fyEtk9UaWy7eO6m02ncsGieP836yksuwOGHHlwyQ82n3nR1+42urq5I1pxn245o9gEF
MQNhP507ay4eXHUXDMPA2aefipOOPw7rH34c23bsCKWWObzn5UaxvO32tbZhz75WjB45Uns39OdP
P4OPP/1M+T3OT9M0UJPJYOLhh+H4447BUHVFhRJ1sJqaW5h9QAecbduwbRsTDz8Uf3TjdbirZS32
KcWjkrz93hYMHVKPqZOPiw+USTWopsnICd8RksoFmfoTEqs3PoLWtvI+m+qVN97CqdOman8dUa+T
gGVZKBQKaDjicDzx9G+0m9m2MkAPZMbI4J3R0LGL2WvF7U6bNhUPhe7g3HXfOlw3fw6EobQ/r+3p
7shG2rCafspGQ5VMYNjQIZh/pbMMdi6XQyqVgmEIfdZZXHFSGQokBPqiuAxUzR1Vd1tvKgNvDlEl
27JlC77+l3+K+ro6/+Q2DGcKT+C8104DEqEGEexT1j74CPbuawUALF0yP5Rt6mz7q2dfOBBfc0Bj
BkIvME3TCfoKJ0o265ILcMOiefjKkgWYdfEFOPaoiRhSX7ffv8cwjNhU6kwo88FLNLBtG51dXXjj
nXfRcv9D+NWzzyvTGOJ/V1NzCzsY6jfSHcwIAVw372qcctKJZe/7282vYfMbb4XuXmru7vhPlM5D
N0IKZ7a5fdP7H3yM1ra2/Sqc6v9iTqujPvS1v/kmLMuCLSUKloWvLFmg3a4rmy0+ibSTmDWzI1Pf
nB8Txo/D0ROPCGxasCw88NjPQ8dFqA0kF7FyNol+kKbmlhI7ER0YrW3tkdcymYx79zQcmFMJzYVZ
wt3UsrNJg9sOHVKf9PGJKsKuXXv0tXPCN4C0NNOC4ATSveBB4BChaUNxK5ewBkIRAwi9wHBXRrBt
Cen+g3SCCYccNAHnn3UGrpk7G9fNvxpnn34qDp4wHoZhdOtErKutwfBhXqpatPGcNm2qn9qTdNyD
xo+L1j9Qt5cSd9zLCzHqPxLSGey4mQiWbWH6icfjd69dhEyZa2dveuU1PPPiS8oroTYjEe18BII9
SBIBPPPCb52H+3UnVIYuKIn6ni1tjBk1EtD0F+0dHTF7qXdFlaWwwiuJKDMQzjk9Wv09sBqEGjQI
Xe9Fjhl8oMVpDNRf1BsuD/8iOndaLy5LTpbepsxD6fq6BVfNZEFFqngvvf5GZKp28FTuxoWTu6kZ
XmkunMngPp924vH6wzDzzccAQi8QhuGe4wISTnVrW9qQ/gDIGQRl0mkc2zARl51/Dm5YOBcLr5qJ
iYcfBpQR1br43LOd1LfIeiTO89raGlxx0XnOqzEn+KxLLsQxDRM1X6BYl6Fp5WpmhlK/8qZC29Jt
P5YNy7IgpcSXF8zFiOHDyjrOW+++hwce/XnwRaneSVUzD0KDGSSPVQqFAvKaAlndx+ABHRh/953v
uY+coNVVl17kF/dUrX3wUeWZ1D70lxOGUiNEnXOtXIylQzUUZkw/qXhXSVcLIREbC1W+9o5O50HS
6Sx1NT5c6h3W0NztskQuE0XkvaUxWUhElSKXywfPXV2Cjsq/ltPUzvGPIXDROWf5T++6by0++Wyr
9nA3Lp6PpYvnY+mSBZh1SfxKEIMVayD0Am9qgS2lf9fUtmwULMsf+Nj+xVFxHs7QoUNw/pfOwPk4
A1JK7N67F+9/8BF27tqNgmWhrq4OZ0yfhiF+upmuYnvxybgxo7Ho6ll49rcvYe++VtTX1uLUaVMx
ZtSo5BurUuKzbdvxy988D9M0YVkWpy9Qv7GsAizLgmXZKBScwm9SGXDMnXkpAIEnfvUMPlJXRLbW
AAAgAElEQVTqfoQJIfDFrt1Y/cBDmDfrcmegpAYO/A1DP9XXY+oTfPr5tl4cynjfjYMj6lteTZvG
m5cBEPjKNQuxYuXqQAC7UChgzcaHMW/W5cFGUOr09KcyBDe8bsEcp6CvEG6wQtOopKbGgmZmRBhL
IVAl2bJlS/DOvu7c9E7aSPAs2Afs3r0Hv33ldZx52skYUl+fXNMn/PvCNUm856EG07j8JjTecnvP
vixRH5s36zJl2jZKB5B1U3s011aHH3owrpl7FZrXPYCCZeH5TZtx2CEHRw+nXC+OGzPGHx+RQ5S4
883JHmV4Yv192LVnD9rbO9DW3oHOri7nDmUhD6tgBf8jBv6Al9koArpRcS3uYizuAs7tX1atfwCv
v/FmNz5Tn6vWS0S2L43m//lP7N6zF3v3tSKfz6NgWTHnvUQ+b+Hu1etKHnPKpGNw+vRp4d0d/nWW
/iIrso9wlqV76pnnevgNHeE7QP1YsJTtaxBS0/3vaG6JnATnnXU6Go44XL9zr47cI9VJE7YJsm0b
d65a4z9fumRBJRb+ZfsaZBoaGnDK1BMw9fjJ3dzT+U/64ubX8Oobb/mvnv+lM/xsVX3EIOZQQvNC
aFnvxlsHfACB7auK+f1UoFivSjfQCb2mKwjsPmxrb8fQ0Eopccfu6OzCqvUbB9sN1tj2xSkMvUDN
vJRSulMXLNiWHf0LELjoisvHUQ+I4N+RmLpw8R9O+VX+C3EFdgSEAM7WzFslOlCW/O4fO+1IOtN/
HLp2IpBOm1i6ZIGzrnaCLR9+FC3Goza/QGZCwiDGfWvUiBHd+k5havCg8ZbbKnHQQ1XOO+8efOKX
2qKKT/762eDUusgUhjLE9ld+h6lczAnltTBNnQUv+8911JFH8JKbKsaLr7ymPOvO9AOBV15/K/DS
7j17lcOIQFG46O+QwakPPi/DR00JF6wbQgNAaNop1H5CFLM4w9dwXv8SydqW/sNg8CDcqILjNWdF
CPIwgNALpLT9+drOYwnb9qYtaPco42W1sEfwD354k8TOKZzsIEV8dXr36U+afhZ/PKIDwDRNpyip
d67GXiw5J/gJkydh8dVXagc2Ek5FeCdtNGFunEeEBjEyNNABMGL4sB4X01k0e6b/axk4oP727LPP
ovGW27B0yYJQjEDg7pZ1gYutokjhEOUtdb4p9I+VqXzF40fTuCO/Q5O0t3TxfADAuWfO0LRvogNv
y5YtbuZ1eGDjiVt5xxnsHHdMsMChH7BW07mFEkRQpwCVnChONNAE5vu4L4U6F+09prh2oDle5PWY
TdwMI2IAoVcEah8o/4Jk8OpHF1zwOgepXFSpHUTc3aC4xqC7eBNKo4p0bJxQSpXhD//qr4tPtFlr
0fO0rq4WSxfPx42L5+O4Y46CYRgQQuDQgyY41eC1F3ICHZ2deOQXT+HlV99w2m0oWBBtM85Ll5x3
dre/14zp01BfXw8IBg+osjTechu+sjiYiVCwLOzes899pvZJujs93ktxF2cIvi5jjhWREDR376iO
dleU4MCJKsXIEcORzeUSTmsliCDVNiRx1qnTA5s+/VzMmvTqnG8p48dF4e1RYjuiCtF4y20J450Q
KbFi5Wrc0dyCu1rWlihOH45GK31KJBGh2FaZhVDEIoq9QAjhBA3cYonFookezQhIKSbVmwOJxuU3
lSiToLwplOfh1DaifvaNb38X3/g/f6ks3Rg+d6HMbyu+JwCceep0nBm6CIvT2taOrdt2YOu2Hdj0
6msYNWIErr78YjfDIKZNCOCQgybgmrlX4eXX3sCHn3wGy7IwfPhQjBg2HA1HHIaRw4fhyd88h+07
dmJIfR0Wzp7l787gAVWixltvAwQChRXfef8DnH7KNKXtyVDgIGkqXnhuqifmjpE6hRVJh1X+Dkhg
9mUXK28S9b9NL72MxptvCr0aai/hKXReQC103hcsC/taWzF82LDooTzh6zdt1xXeiTeNaAAo8xRt
7+x0VhYCUChYuHPVGtzoZqgFadpB5Noy9AHc8dKVl16IVes39uBLVB8WUewF1117DWZffD7a2tvR
2taOzs5O5AuF5J3c87WvBhKPrmnGlg8/QldXF7K5PLK5nJIZEbqwUwZgFTqwqdYeju2rDKeddhqE
EKirrcUFZ80IzHt+6Ilf4jfPPhvZp+x5nW5TePiJp/D59h2Rt088bhJOnXZi9CLLH+iEL8ASo3fO
Z6u8Nsb2RRGNy5ehULBgGCLQ5pLpLsw8mgKlpZpL6eYU+lUVWRSO7WsQi/ZFSSd1seDbipUtgcSe
pYvn6/sa/3BJATvlZejfqsB+qVxsX1Wucfmy4HkeWY2uqKm5xX88fOhQzLvy8uSD96AgcFNzy2Aq
pBj7H4cBhF5y70//E23t7djX2oqOjk63cnwS2afL53zlhutx5cXnY19rK3K5PDo6O5DL5ZDPF6JL
SioqtBNhB0G+GTNm4Pnnny97+8abl5U+g6TEPWs2IJfPa96SmDrlOJwaW6hRd1XG9lUB2L72U2Tw
E4kPaC6+ZChLQRNU2LptBza//ib27N0H27YxetRITJ1yHA45aILmU3QnilCRbYzta5CLDWgnrvgj
8cwLm7C3tRWXX3AuRNlBvDJIoL2zA0Pq6vxaCo23Vly7KRfbV5U7+qijcIM2kwBKIM3J/FZX5Vk4
e6azBGrCbt1/U6KpeTUDCKyB0Hv+d+UafPjJZ05wLBKUCT7v6OzCA48/1aefZ+eevdi6bbs7DxwQ
EBBC/Z87WoehRDCJqCJ0J3gANy07cVDhpkRfO/9qbWcjhMCrb76Ne9dsiDmAl5IqY4tjZbO5ShzY
ECVy5p8qE7XDNQh09Q4EYoMHtm1j5bqNeOQXv8Tn23egK5tFLp/H59t34NEnf4U77r0Pd7eswxe7
dinHrdbxAQ0qakFgP+acUNRaCJx12im44qLz3eBBXOHFcA2F8OHU2lnO4/c++BD3bXgQTStXu79r
v74ZUZ/yp4SrfZH/05t6IPD0cy8G9tu6bbvmaGo/pWszyjw6qezjPxaoq6vdvy9UJZiB0IsuvPBC
ZLNZjBk5AoccNB5jR42EaZro7OrC7j378Mqbb/sNobuDoJ644oorUCgUsHDWpejo7EQul0c+n3eX
xotG2Cp4gFOt3RvbVz9JnuIg8atnX8D7H37sB9UEBCYd0xCsq6AuI6Sdq+3cXRoA6W5sX1SS2mak
bWPPvlaMGjkiYdpCMIggpcTdLevKyM4rajjicJx31unKoZPTTSu0D2P7omIaNkqdEcU7qn6trECd
n/DP8L4IDoA07UVN806nUrhuwZxKbTvlYPsaBPz+Rzt91Hmxs7MLK9c/4O9zwnHH4rSTT9JuW2Zj
HGjZpH2BUxgOpBkzZsS+dyACB6qLL74YhUIB48eMxtTJx0JKGck0kLbEt75XcfNGVewgqM/o07RL
zVPVXZiF9pESTSsHRKob2xeVRW0r3iBk6ZIF0Q39a7Nim3jo509h245onZFSJIDLzj9HM73BuytV
DOBV6EUd2xcBAK5ZMA+Tjz3aeaKd5dO96TqJ4g7l9kuqpYsXcApD5WH7UhT7nnDtDwRO9l88/Rt8
/NlWnHDcsTjlpBPDbxefI6HQaEKNBW+TAdxeuosBhP7gBRIOdNAg7LzzzkOhUIBlWZrlJfv/85WB
HQQdECWDCdqLsmCHpkbBB0DwAGxf1B1eG3ntzbfxwsuvYPiwYZg367LiBv5ycsrUBcvCivvW7teJ
5t0pLfn5Ki+IwPZFgLt+vDbg5okEEvYjoBAzSLpnzXrkcsFaP0uXLKjEdlMutq9BIFhIMUZPm0vZ
+xWv9RhA4DKOfapSBuZPPdW39RaIqoV6EdW43C2+KJXlfbRTuwUe+vmT2LbjiwP+eYkONK+NNC6/
Ce99+BF279mLO+5twdLF89y52qFGIoFPt27b76v8fKGApuaW5AEYUQXbsmULJk8+DtfMnR0zHSec
xZY8PS7xNd0iDLYdCR4QDQRrNz6MubOUFRUiATLdNIWwmOK+5XROEsXpqtUasuomFlEkItJovOU2
DKmv03cWoWJyV1x0PpYuWYBr583G+LFjIeWAyT4g6pHGW27H1ZdfArizeVasWgNp227GDpSLM4n6
+rq++yAyobgcUYXJZnPOA6G5x+wPgGIGNv4CWkrRXnVfmXTfWmL9I4/HvUVU0V7a/ErwPBXhNpQw
5RShbWTS9jEYOIhgAIGIKMaE8eMxauQIGIbX8cRVunZkMhlcfO5ZuGFh6VRrooGu8ZbbAhkBK1at
QT5fCG0lMHrUyF75faNHuscJXBMK/0JyAKdh0yCxZcsWrFi5OpRdEDOCD/c3mjnfSHgp+L6AoSmo
eN28qwdTOjYNZNrpo6U2LKdI4v5vMhgxgEBEFOPGP/5z1NbUYOjQIUinUqEUOWhXYMhkMvj2bf/v
QH9Uon7hBRG+7NYnuHv1+kitHSEEzjhl2n7/rtmXX6zUWAjh3SEaIKR6DmvuhnZls/j1cy9i5YaN
eOSJp7CvtbX4ZqC+iBLYLlUyQTiZcqqxY0YjnUn30rci6msymHEm1YwC/ebB526KjkBwFa3ITjKa
uMAgQgRrIBARJbh3/YO4+tILYBhqvDXmKq0Xi2gTDRTenf+UmcLPWtbizlVrsHTJ/MB808nHHoOj
Jx6JlesfQD5fgEhYjlHHz3To5n5ElWbLli1uQcX5wfNZSjy76WW8+c57/kudnV1Ys/ERAMDJJx6P
aSdM1hT11Ux5UAsAuz/S6WCw4MqLL+zDb0nU24rn+XtbPsSLm1+FZVuYdFQDTj3pxGjfEO4qStQI
0b7htTF2OxFchYEGgmptumxfA8R5556LWRedh65sNvRONGIwANOo2b6o1zjVsqMrMfikRL5QwEuv
vYE33n4Xti1LxgSK0yT0d40qvM2xfZFW4/KbAqfHjp27sPGxJ0rud8PCuTBMs/xfpHRTuuVXK7z9
lML2NYh4/Ut4KVIAuPzC83DQ+HHuM81yjHHLpWoLmjqvf7L1czz+y1/j0IMm4JLzz/H3HeBtpju4
jCMNaOwgqCJ87U/+CCOGD1NeCVb1bbzl9n76ZPuF7Yt6VWQ5VCRl5zhvbN22HY/84peQUjrZCdId
5Cj7DNCLNrYviuW3FQms3LARnZ2dZe0nANzYkxVJQoOlAdqmVGxfg4jXXrxAWFjDkYfjvDNP75Xf
9Ytf/wYffvyp/3zpYidjqAraTHdwGUciov31rz/6MWbMmAHDEJh5wbmhC7EBGTwg6nWNt9wWDSLE
FoBzHh88YZwTMAi/LSUab2XbourkB8yERE06hTLjB5BuvZHr5l/dvV9YXcEDGmS0fYtiy4cf46Bx
4zDp6Ibii7rgtTrFB8GpPgBg23YgeABw+lwYAwhERN3w/PPP9/dHIKp4NZkMsrlc6NWYdbhV7ksc
3NBg8K1bb3cHRAJzZl6KpubVxaBCCfl8Hnfc24IbFs6BmTLjRkmaPVmsh6rXMy/8FsceNbHYhmJX
eBRKEEEpLWLbuHPVGu0u7JeKuAoDERER9ar/+w/fib4oBT75bGvMOtwCTc0tzh0mXqTRIFI83wW+
NOPUbhUYFQL4Wcs6tLa2K68qtUK0ifCDLg2bqkjjLbfhxsXzE7dZoamRUCSVwojRoNsKTfBg9MgR
PfuwVYwZCERERNT3BHDYIQcjl83hnrUbIm9v2bKlXz4WUUWQwLFHHYnOri5seuW1bu26euPDmDvr
MowY5tbo8WodxCUgEA1gAkAqZaJQsGK3uXftBlwzd7bzJJB0E5+ps/n1t7THmn35JQy6hTADgYiI
iHqdf8EVGLBIZGoyWLp4Pk6bNhWmaWLpkgUMHtCg1njLbf4d0ZOOn4wbF83v9jh/rbvcI5A8X7vx
Vg6EaGBrvPV2fHnB3MRturqy2L1nr/NEKK0p0rCE/+LWbdsD75imgaVLFjB4oMEAAhEREfWJ4sDI
4803FTjhuEl49913eXFGFCKEwFd6sMqClO7ydURVrvGW2wLLkYYJIbD+4cecJ2rQIJKAUMxA2P7F
Tv/lpUsW4PqF89g/xeAyjjQQVGtvyPZFlYDtiw4Yr4L2ILooY/uisumXQNWvex+2eM6VqKutjd9A
VmX2AdvXINe4fFnsso6eQKBBuv8vkKXjBBGefOZZnH3aqUilTefYXF0rtn0xgEADATsIor7D9kXU
d9i+qNsab74JhYKFVNotVSaBV998Cy9ufjWy7ZRJx+D06dOCL4ZWqPOPW32BO7YvKhlEmDfrMgz3
6oN4lFqjUZLBAwcDCDSgsYMg6jtsX0R9h+2Lek3jzcvKO6MCgQNZzSsvsH2Rr6GhIfa9pUsWuMVF
ET1tpJqRwOCBggEEGtDYQRD1HbYvor7D9kX9Qp0OUaXBA7B9kU7j8mX42ao1sGwbCE9hCKflhNJ1
qrit9AQDCDSgsYMg6jtsX0R9h+2LqO+wfVGixuU3aTIOlJeU7AMGDyIYQKABjR0EUd9h+yLqO2xf
RH2H7YvKoi9Q6p1BnLYQgwEEGtDYQRD1HbYvor7D9kXUd9i+qFvCgQRmHSRiAIEGNHYQRH2H7Yuo
77B9EfUdti+ivhPbvowD+zmIiIiIiIiIaCBiAIGIiIiIiIiISmIAgYiIiIiIiIhKYgCBiIiIiIiI
iEpiAIGIiIiIiIiISmIAgYiIiIiIiIhKYgCBiIiIiIiIiEpiAIGIiIiIiIiISmIAgYiIiIiIiIhK
YgCBiIiIiIiIiEpiAIGIiIiIiIiISmIAgYiIiIiIiIhKYgCBiIiIiIiIiEpiAIGIiIiIiIiISmIA
gYiIiIiIiIhKYgCBiIiIiIiIiEpiAIGIiIiIiIiISmIAgYiIiIiIiIhKYgCBiIiIiIiIiEpiAIGI
iIiIiIiISmIAgYiIiIiIiIhKYgCBiIiIiIiIiEpiAIGIiIiIiIiISmIAgYiIiIiIiIhKYgCBiIiI
iIiIiEpiAIGIiIiIiIiISmIAgYiIiIiIiIhKYgCBiIiIiIiIiEpiAIGIiIiIiIiISmIAgYiIiIiI
iIhKYgCBiIiIiIiIiEpiAIGIiIiIiIiISmIAgYiIiIiIiIhKYgCBiIiIiIiIiEpiAIGIiIiIiIiI
SmIAgYiIiIiIiIhKYgCBiIiIiIiIiEpiAIGIiIiIiIiISmIAgYiIiIiIiIhKYgCBiIiIiIiIiEpi
AIGIiIiIiIiISmIAgYiIiIiIiIhKYgCBiIiIiIiIiEpiAIGIiIiIiIiISmIAgYiIiIiIiIhKYgCB
iIiIiIiIiEpiAIGIiIiIiIiISmIAgYiIiIiIiIhKYgCBiIiIiIiIiEpiAIGIiIiIiIiISmIAgYiI
iIiIiIhKYgCBiIiIiIiIiEpiAIGIiIiIiIiISmIAgYiIiIiIiIhKYgCBiIiIiIiIiEpiAIGIiIiI
iIiISkr19wcgIiIiIiKiweeaU49AZ97yn6/b/Gm/fh4qTUgpk95PfJN6pnH5suITCUAAjbfc1p8f
qdKJ/v4AfYTtiyoB2xdR32H7Iuo7bF8D3FfPOQYd+QLasgUU7OLXZhChIsS2L05hOIAaly8LBg9Q
/J+mcflN/fKZiIiIiIiIDjgBGEIgbXJIOpDwf60+5AUMGm++CccdN6nE1iIaXCAiIiIiIqpChhAw
hYBpiOLt7kGTfzFwsQZCHzjqqKMQnhpy8PhxJfZy5jI0NDSgvr4Or732ep9+RiIiIiIiov4iAAgB
GBAwhIAlJSCAOScdiumzrvW341TvysIMhF7UuHwZGhoaIsEDALjswvPcR3FhteI0k46OTjQ0NDAj
gYiIiIiIqpIhBADhBBFEfEkLjokqCwMIvaRx+TI0Nbdo31u6ZIHyTDhBBIliMEEWH44ZNdLfsqm5
hQ2GiIiIiIiqjhBO8MB5EnqTUxkqFgMIvaDx5mXIZrOB19KpFJYuWRAKHniEG0cQ/lOv0Vx12cWB
LZuaW9DQ0NBnn52IiIiIiOhAM5TaB5H8g9ALvKlaORhA2E+Ny5cBQiKby/uvLV08H9ctmBPdOBxJ
E0lvan4PERERERFRFXAyEJz6B/oZDDLwgyoDiyjuB39QLwWGDxuKpYvnI+bs92okJii+ecJxx+K1
t94JvNvU3MICIkT7IS6TZ+mSBYAEGm+9zVk1he2MiGhQm3PSof5jr5Ab+waivmEYMTUQJIrjqsQx
FB1oDCD0Bj/3JuHsFlCiCGo0QX3N2fC0k0+KBBDgDoC2bNnS6x+fqFr97bK/wl0t6yClhAi1zy8v
mIOU6f4JFF5AUKLxZierCFKg8VZeMBIRDSa/c2YD6tMmugo2bCmxaeM9AIBGBhGIelXj8mVo78rB
ltL/Bwika+tgptKAAL516+345s03AbLknVg6gIRuxQAFE0ZixE4pkHAGH+Wc5AmbNa+9H12hugpw
75YOwg6sWv9isH31kcblNwEQeOe9LXjmhd/i2vlzkE7HxEtLNNdB0N7Yvoj6DtvXAPIft9+KTav/
C3nLRmfeQmfect6QwPQrmYlQgdi+Bpjvfetv0dnZFf2CUkJKGxBG5IaPshEab7m97z8keWLbF2sg
7LdQE0iavxP3PBDEcR4vmD1T+9tWrFzdkw9JNGg4wT2nIR57dANuXLIgPniAmDYri/+cYAQREVW7
dx74H6QMAdMQSJsGakz3MlkAmx64p78/HtGA9sPv/ROEMGAYmuGnEBCGqUnmloEsbdaEqwwMIPRA
482lTl51eoLm9qa6+oI6v0cW902ZpvbIUko2HqIY+rYRDdAFllH1l1VVNhHFf03Nq/H3X/8/ffip
iYiov6383x/DEIDpBRDcIILPvVTjNRhR9/30B7cDUsKyLNi2HXl/08Z73H/3Kq+qF2So5sSMAYcB
hJ4QStaATMqeUgMD0ZcBGYwteHUS3GNfv3Bur31komoXvKhTAwWaNirU10WoHUY7qDtXreFFIxFR
FbMsG4YQSJkmTCFguIEEU7kl6tVDIKLyrbrjJ7BsG5Zlw7atyLDo5QfvDTwvtjP14ow1ECoJAwg9
JTTRMBm8qen8FMEaiaUP7LcP0+T/PETliA7u96dqrz7w19Tc0qPPRkRElS+dSsEQAjU1GdRkMjDg
LC1nGtGOhAFlovJZluX/C8/a/uCJFpSox+diFkIl4Qi1mxoaGoJBAqFEB0Twpqb2Z+DEVzqlQHso
7nSDJguhvb1jv78HUbVInrYg9W0u0IHFdEYi+l7cUpBERDSwGaYBAcDK5zFm9GgIgeDScuEbRERU
0vp7mtxpC9Kpc6DegPXu9WiKJhazENQbtdKvg8AgXv9iAKEnIkGBcm5zysCP2GOGGKaJpUsW4KzT
psMwDKRTKQwZUt/dT0xUlYIDel1wzrvwSyp2GhfI0y/NyiACEVH1MQwDk+f9MQQkDj30EJiGAUMI
/5/XVWx60F3WkQMYopLy+Twsy4JhiGIwztX23AZADdJpKe+Fsr/ZBvtPQmlyKos/JafE3BxvKkOg
kchQSk78/pOOPgqTjj6q1z42UTW4cfH84hMp9E0osU6Jt0188+OsO6L9413kSSmRz+eRyaRh2xJv
vvsent+02d9uy5Yt/fgpabDz7oIKISAApEwDecvyiyraVjHC7K9NT0SxhBBY+b//VcwwEGq2gYB0
72QbuqGQdG/+6IILyvWe179wedUDiwGE/SXCFUJ1YhqAso9TWMRGOp0OLFcSPgxHMkSOhoYGLF2y
oPhCuG14HU+pGiRxyzgmlFFoaGjgYIcOiMablwVOwoF0keRc2BUbkxACmUwGAGAYAscfeyyOn3Rs
aHv38QD6nlQdBAQ6u7ogAHR2dqC2thbZfAGmAZhCIA/ndDbTaSd4IJ1zlucqkd4DzXeio7Mz8Jpf
70A6mQdCKIVKQxdcuz77AKMP1WR9BrZTpjWwLR4wnMLQDfrU5aSsg5hAQGg08/yml/Gz+9bi7tXr
cc+aDTFLlqgrNnACHg1uTvBgvv5Nv3mIYhsUKK/dRKYnAakU46zUPxqXL4tcKA2ElM3g/NSEPjKc
kOd3dwPje1J1ae9ox+fbd+DUhX+I7du3QwgRWPHXMAyMPfJYTL14nvMCl3UkSuQs11j8Qy9tWQwg
eAXjNaudeO9/+PJvvD2jRevVDaMvUh9jAKHHwkU9NNTGEN7Gj8BJfPLZ5/7LuVwOuVxOPUjwdqhk
GgKRo0Q7iEwZCo9WEvobWXxw9oxT9+dDEvXILd/8G/2qPhU+YIl8Nm3hOU3DCzTV4ves5O9K1eWt
d98DALy25VPI487DHmMo2vIS+XQ9jphxIaZdvgSHn3gahGlGzmGep0Q6xRRQKSVsacOybXiROcNN
EvWCCGHHfeky5TgieFjN72I7PHAYQOgxtYqoZqpBZPPQQMZbvUEI7GtrC2z6xa7doWOFC4gwykaD
V0NDA5Yujsk+QDnxtRLzEwKvC0w8/FDtJuyoqC8ZhpGwmk/lnX+xg33RjdL12ulEzEagvnX7P34T
tzb+TeQEPHjqGZh00XxMOncWhowaF7rRKSI3hhjwIip6dE1z5O9+IDFbCn9VBiGiBRYhgfoRY4Iv
BH7qn7LQ9YHB3Nxuiiw1IkUoSSCu3gGKG/nbCqzZ+HBgizmXX4KRI0cUt9XNfkisVkpUvbxlVC3b
hpQSKdN02oNX76CsuqRJ1RK9zASl7QmBVMpEoWD1xVci0qqrrUEul0PBCp93Eps23gsAaHRf6c95
n3+37GswU2bMu2qwLhREL7cAsZqNwPmt1Iv+/Z+/g3Q6jfq6OnRlswAE8vm887c+rt41Sq/A1bj8
Jv89nrM0WKm1DqSU/r/i1FKJYadfjT1P3gdTwJ/GYLnvT7/y2tARlUi6DD5Vny9dsoB1qg4AZiCU
yYto+Se/988PGnhbCmzb8QXuaG7BO++HT14R6YhmX3ZxYIuRI4YXtwWioTXGDmiwE8DP7luLu1rW
4f5Hn3Bf8zJ6nCrv6x9+DBIyeIdImTbk/Cy+dd+GB3FXy1p0dWWLgTvl/evmzzkgX3z1InkAACAA
SURBVI0IAO75yY+QSqVRU1PjBMk8En7wAO462cW1sg+8pdcuiQ8eyKQVUGT5fZmUKBQKaGpu4d1d
6lUjhg9HTSaDlGkinU4jZZowDMONWcniyCRSsK1UQk1xB2Yl0GDV2tXlDJXcxmK7N37UwHHBsnD0
pdfANjP+VAZIKIUTZXT6mwz9jHBeYyZC32IAoQeaVq5G08rVWLFqDaS0I6P6p555DgLAr5//Ld7d
8kFw59BFUyqVwqXnn4OUaWLk8GGa7AJGDIgQ0xlcddlFoVVLBB78+ZPYvWcvVqxcHWxPyrQhNbCw
d98+tHd0oGBZaF73QKTAj/dwxvST/OdOILEvviURkKnJIJUyUVuTQW1tDdJuIc+3H1+FjBnttuec
pJ9m05caly9Dw5GHx29Qdtel1vcJNyqnvd7dsg4A0NTc0rMPSxSy6n//C5lMGqZpwjRTTvDANGCa
hjN9SDdvSBVT61r702svHNDQIPHzdauw8Mu/4w/0bduG7RZQtO3gndSOziwmnjsbx168ECdcthjT
r7wWR0470303nImtXMcJFI8TuOmjBvC41GpfYQBhP0gpYVl25PVFs2f5mQS/eu7FuJ39h4dMGI8v
L5yLOTMvC20TeUA0KIUvvM445WRlCcfgBd6siy/wH3d0dCjvhNKp3UyGtQ8+Gtj/7fe2KHeZpL/9
8ZOOxbChQwEA5591Rm99NaKITDqDdDqNTCaDTDqNTDqNVMpEfdpEXdr5mQoVnDpQQYSGhgY0NDSg
qbkFu/fsdV+V2kFT8spBMvhYiGKWXugA6kschFFvSKdTMA3TDSAYMA0DpuFmIAQWpQ8HtqJ1qPxM
oNiaJc4xvNRqomonAUyePNk586WELaUbRLCVLUIPhShvinZgG+U4mv6mqXn1fnwLSsIaCPtJu8Sb
AFrb2r2H2P7FTowf6xYC8cYwkTujGiXnchNVv/AFVzFwgGCaKQRyuZy7FKpjb2sb6uvrohV8XVZk
fjkwfNjQmHnbwPxZl3cv/ZqoB2ZfeyPu/el/wras4p0bAJmUk17tVazOFmzklCD2nJMOxbrNn/bZ
53KWTw23P/h3id774EO88fa7uCo0NS/QYMJ1fOLq+gRqJBD1ng33rIBhmJASbgDBhGGaMAwBQxgw
hAEByz3zdH/snT7njUdWoUupl7Bp4z2YPvNazbVb8RhLlyzAlMmT8cabbx6Ab1oUmEYhJZpWruYc
ceoTj7Tcgxu++hfYtXuPk30gJaQt/dpVAoAM1JnyAtAi9Dc/Ou07KvrmvWvuDzxn/Zy+wQBCGRoa
GpyTPnSRc2NMJfh8Ph8YmBTyheKbIiEgEPd65GKrB1+CaIATQmjaXPBWTzqddtbudjMHxo0eXfKY
3rapVArXzb86WigVCBU1ZXEs6nu1NRnYtrPkle2eo2l3+oLwhzYCAkBWCSL0xcWSFzgIBg8QzBgQ
wL7WNuzcvQdrH3wEc2depu+wkmbpSRnpJD/7fLv283DwQz1lmqY/H9s0itMWvH/e+4VCIeF6q8SN
n7hNJLBk7lV9fg4XAwa6NiiwdMl8f5u7V69DPl9gm6JeYaZS2L7jCzy46i5kczknW9u2itkHIryC
iW6aQvRhgLZgtvMgm8sFNm1qbuH1Wh9gAKFM4UFF9EKqKJ1O4/qFc9HW1o7hw4dFByRxDSKp6m+p
fYmqkJd94LQ3XcqbWv8gJsigbUvOizcuno9CoYDHf/k0Lr/gvIRgnbLSQ+ADEPWNoUOGwHYvvLzi
vWnTwJFHHon3P/gQKAACNiQMWFKiYDvn5KaN9zirM0ig8db9u2jyBhhLFyv9XbgdCIGdu3YVC5oC
zlSfQGZBuL3EDb6UgKD78LGnnt6v70AUZpgmrlxyPdbf3eRkH1imP4UhlUoFKsZbdmiaqtsvbP3l
Gu269Zs23oPps66NdjxSnbfdu5Xi1VUfyufVHikWCfbaOwdb1FMP3PZ11B07A48++igKe7a7NQ9s
5PMFf5lGQwgg5YS/U6kUTMMNjAsByw3c5QsFZeU6zep26nQFEbMN9SkGEHogKXjgMU0TI/yiiCXS
BtSbLgh2MpHtwCACDQ7+4EVX6yAysE84UKSCdnA6QyqVigYPIvuF06zZCKlvXTJvCTbcswKZdBq5
XB62bTtLXQmBYUOHYM/eVtiGQEoaMA2Jgh2ajiO8NuSc890ZFFx1xeU47eSp+jdFceDhPR4zajSW
zLkSzesegGmauOjss0J3h+Ln4znZfQgMaILjLgbrqHfNXOgsD2cYArYtipkHKRMpacOWNkzbhmVb
wQCCe27u/s16pExnGpHhhvGionf9dee/LojQ/VUbSnSACUF0N5880L81Ll/WKwFIGlw2/PPXkUoZ
gBC44oorsOGeFYAbQJDSaU9Qpn6nUiYy6TTMVArCnVKayxeQy+eL/UYg00AXJFCmmzJD+4BiAKGE
8Pzr444+Sr9hYoQsbn6n9wc8VNxNuzE0aT5E1anx5mXIF/LR+dYyPIBJqCESoAYO9Cmdxd8RF8Ar
tvGnn3uhh9+MqHzDhg5BPp9HJp1GoVCAaQh8+snHGDt+Alrb2mBLAVtIpAyBgiFgKVkIzl1Q+AOI
yKBE6YPU4ELj8mXR4EGpbDghUVtbqw+uq/2b+9O2LNhS4i53dQXTNHH9wrnB4/KOEvWBh1ucZU9P
PvlkN3BgwxACpmki5U5dSNk2bNOGZZmwDTuShZAyBAwjhZRhIW0KZK1yg1zB8/mwgw/CJ1s/19QW
KZ+0bUAIJ9M13Gai8fJoP4qYPpRNj7rJcNvFxXMW4bv/+E3/fMwXCpASsG3pZPwIJ/OgpiaDTCYD
0zBQcKd9i3yhOFNUKsV1gdInpfu2aRjRzCHqdVyFoYQJY8cGnp952vTgBpGsALUUtVCe64QaReJc
O6EUGiGqcsKZChR5MXDRU+axvOI8cTsGlmRUiviE1x5W9nv0578o85cT9dwFsxcglU75c7KHnTkP
pgDa2lqRSaVguMUUU4ZA2ih254ah3htIytBx63ksX4blX/tzNDQ0wDQMP9U0cIxYXppp8u9Q37/z
vrV+8ADunaf3P/hIu1ucxpu5PBd1nyGcdjJ8+HAId+Dt1T3wCyoa7soMpuku6egSQH1dHUxDYPy4
sU7gwYie3+X6ZOvnwRdkcIWupGO+/NobaGpuwV2r12PFytW4o7klGFyHOi9cFa50H/dLZA8yIWiw
euhf/6+TPD3cGTOdevwUSEjU1dU7tXwsKzCdu6Ymg/r6egwfOhQ1NTXFpVMDl2re+Sxj+rFQW3Gf
Xr9onr/0cSmNy5dxqcceYgZCCVdcdB42PPI4du3Zi5NOmBJ6V60UGsogCD8PKzn4iRaTYgYCDQba
4k8yHKSLq1WAmLaTINxGvbszgUMUn9+zdgPniNIBU1tTg7a2Nie9M5eDYQh0dbQjZaZgigJsdxCT
NgUs20DBljh40onOznErHEAdXDgndm2mBkuXLIBl22hqbgndEdVPLwjc8RS6DVDsJ0OfI1yYePvO
nThq4hGR3zlm1Ch8sWuXppYQO0PqAQH84Ac/wGu/fc4NIHiFEw2kTBOWbcM0LViWCdO0igEE9zTe
/swGpITAjh07IIQzn9uAkwlU1MNcanUqD3SHKF5zTjthCl569XW/YPcJk44psV84aCCS/z74wcWb
0HjL7d3/LjSoOKsrCIih7k1X6byWyWScmgb5vJ8lk86k/WBdfX0dOju7kDdN5LxMGoT7lrjrvfi2
ct2COYAE9uzbh5EjhgEA/ulvl6NgWcVpcWoWnnfd6XeJEo238rxPwgyEUoTA5GOOBgBMP/H48Jua
iydZnJPdnZs4ke14cUSVy4na9vXdCREzC0jTmciY9zVP9ZQD6JIVlFjhW2+9Vc4BiXrFZfOvQS6X
x77WNkgA6emz3IGPs5yjIZx/XmsZN3ESxh81RRN009EHp5cuWYCm5hY0NbfoN/fbQzjzQBOMUwPs
6pZu32kaBoQQmHHyScEEPvfnpeefHbMyClH33PPf/4EPt2/HlClTsHCus+KO4WUgGM5Sjk4xRXdF
BqFk47jXdCkr6x/Pa3spM3x+lnG+emMYdzDjt7VwHAJqVoJyYSmddnrd/Ktxw6J5mDH9JEQPENrH
P26prNfg/sxEoFL8QXkqje996+8g4Sw9vHvPbliW5TyXzmuWZTkrnACoq61FKpXyl1H1r/pK3nwN
dxbhp844bOSI4f457EylUIMHSu258PGF8K9zef7riRIFigZ1wnwxIhW+gxJ3ZzROqY2c923bxmNP
PY2t25xlq2pqMrhm7uzIYQbh3c9qvXockO1L+8fUjRbv77nZePMyNy4n/BQ0KSVsacOykua0xbUx
GRr1aO7CJLbP4HtNzS3VuNQV21eF+6e/W458rrikXMORR+CL917Fm79+DJYEOvI2DjrxDIyccLiz
gUio5aEV3wai2QjdFJOUkC/kkTJNCGHom6XyvGlli5+xIKXE/CuvwPBhQwbKnVG2rwrx0Kq7MXPx
lwEAj65phrS9vsVCoWAhn88jl8sh6/3L5pDNZtHe2ekf44TJk/D/2TvvcLmqcv9/19ptZk5LgSQQ
ei8qKkWaFOkQICRAAqJ4rVz774qKopeDFyuKV68FFK9yBQOBNBKagPQOBhClh5ZGenLOtF3W+v2x
1q6zZ+acwElOkvfzPPOcKbvNnPXutdZ3veWp636Oqheg6gWoewFqvkDNj5OYxvlH0LIPEoHAn2+a
Fb3OtbNoJTbpNZDdJnkKmQ5laD/0bPvevQ89iqMOO1iFNQw/myP72sjc+YuL4QUBGABz5w+AgSEI
AhimgYWLFmPN2nVwPRee58M0DeU9Zxro6uzELjvugL7+Mvr6+1EuV1CpVlGuVHQVBk3bfDgDbegt
POSaLUwxYMHrb2KXHbePrmELm4M1/WEphGEgNMv6ibx+Iacxtp3AMNRqNdx4861RvW8AqNfdtJvn
5nqbJDYZer/5tRx7iG/u76QGfe9FSjwwOIdlWdqdNIAQEiIvSVVq0JQNOcijmR23mr2kD7oZigfE
MOdnl10Cz/MT/QvDa2+8AZjdGH/EpCZ7tRIPZHq75N+GUqUM3V2dTUSEFhOazKVE24d2mpvjpNn+
Ege+/3144uln1UvG0N3ZObB9CUIz6/+uRqlUil4zxiCZBJNhHgRdjcFI5kOIX4ehAv98/iXsdOiJ
eO6eedGKapK0eIAmY0EFNwbgBMwyNppagc0xvIY8Qc3GnU3sNvGe7/u49qY5YOxdEBKJzZbQClSE
glr5F1Jg3Nbb4K2Fi8A4i1b+PT9QCRWlwNp1ffjHv17AbrvshGKhAD9QVU+8qIyjJi+sIUWTDqht
EsZkGHpik8zm47cZi2umzwR0wt/IFtouIDf2kZuT+EAhDO+IPLfnvNiFcPN8d08hBG6ce1tKPAi5
9qbZqddhJ0YQG4UB3Lx7v7l+Ll+cc1imCdu2YFlm5EKKPKvKm+c3Xkq+LaZcRBPubE17AxW3t2r1
mkF/J4J4p9TrLgqOA9uy1Go9kDMhaENDv8Oidp2rJyB0c5Y44+QTgKSLderzpBtoOxKiRnb7vGuQ
cQjEPnvujl13VPkRJp18wpbqiUesJ9O+9yVYphH1X3fNVW05DAXijIMxroUEQ4c06LCGZFJR3V8s
rRvY9cTz4DMTkhkwbQfb7/X+HPFApvZrROLjZysRsOA46X0g0y8byAgFedtFIUTNjLw1182Yk+ry
r7lhBrlzEw2E4kCY61BKFa5gOzaEzo0gRLiNgOt58DyVF8H1PBQLBXR1dWLbbcbBti04tgU7KTCH
4zPWorORsvGzvPFqMztJDTLTGzmOg/POnAipRTUAqFSqabvLvaxGoa73oq/px6ZvR+SBMCBaTCwG
Q2pwFitpjzz5d4hEyZGk14EQImU88+78G/5rvb4DQbxzWs4VMjfh8AY5kIH+979zESzThGkYMEwT
6/rW5YcJSdl6dbVZGavEa9fz8PATT+GtxYshpUR3VxcmHH8MTMPI+TKIbG/uX+/GL9t+E4J49/jZ
ZZego1TUcaMCnHP4gY/ADxJ2OIB+KM8JLpxcpJxssquXmWMn92dI5Pt5B31h6lg53n2aww8+EId/
6ADyxCMGTcG2gfJqMGdbAABLLMRIxgDLQLlcRsEyY08EzsH0c8ZUZLZMtM+16/qw4+GntWmP4QQi
05dFq51KwMhNWNrKSyC6eBnbaZMh6n0PP4bX31qYWm3da7dd8KH9kxXFGks7XnvjrIbDEUQeau6u
7t+ReGA7WLJkCaQQkFKAc4YgkJHA4HoeeBDANAw8+fQz2HevPVEsltDT3Y1AeyK4nqdOkOqLmhjE
QEpx5+6et23jzoZh4BNnT86UJU4meszzPkfa6KPrUtv0XnQhlq1Yid9c/ccmFzu8IQ+EdoSDLK1W
hyWuGpM6ZRN5NFec9cGi7V5Z8DqSuSiyx162cmW0/eq1697R1yGId0KhUEi8yqq9+W1+IEloDMNA
3XVRrlaxrq8vZyKjuOuBh9u4SycGasgM1gC8sXARps26GW8sXAQhJKRUA8Hrbpqd6x2kjqWeU/gC
sSH51U9+gK7OThQKBRRsBwXHVqszlqqdHQteiYaba4Itwn9yHRmyfRmw7bixAIA/3XBT+jOWPUjy
GM1WihJPUgujAxFCWKNRE0QLbvz+V1WizvJKAMCdcxOeNDr56IkTz8aUT3xGVWRgqiJDLBwoESG3
fTbp84AmK5PJOVAzs2n1OvtZU/uL931r8eKGk77wygLIaNEqFOXj4zzzz+cRiFY5hwhC8eCVvbEH
AhDlFBm3zTgEgYAEYJgmTNOM8lmF2wstElSrNbz61hL09fdBSoFioYBSsYiOUrHFXKrFqv+AROZE
eEF0rJbuBBnxAG28e7LHSIsH4X5jthq9yXojkAdCKxJtxdB1gqE9BCSkWgVqiLFJ3tjzSL//9vKV
uhNrzu1/u0+5uUlJiy/ERqVULEAIgbrrNllGRCbuKzai3osubEi2OJAbpxQC/5dYDWlwpc5LPsXi
G3Q433jkqfl46dXmIsB9jzyGIw89KK1et41xI4h3nysu68XoUSPBOUcgBIQQ8HUGaZ9zMJ/rAggy
nVw0t61mxTiZErCjkqXNDsKA4448HNfcMEOL2wMwCsliEaGh/GLySYv47BYMw0RuxDDFNk3VxIXK
BA/fj9okA/DcggXRtsr7IPY64DqsIfJACDeUeZMJmW7T4efZZt5soRIJ+xyI90E7U9TvT55wEqbP
uaXh4zXr+jByRHfuAZ5+7l9NT3vPg4+gt8VlEVsWvhYJ1PxbQgoJwzDg2A76+vrAGY/EKs45Al/3
VwmPMyEFVi5/GyuXv4337r0XDMOAbVkoFAoQQqJaq7WxubzXMp0bCy1sLuuBF5ly0habnCuV4FTG
lYmyuUsazps24MF47A4XSEBohc4GzzlTWUMNA4BUSd2EgOAyoeJqkgJWqq3lJ/945Mm/t72MUK37
x/NUPo7YuJRKJQgpVdbqwG99R04Ja+mbbUPN3SSZqieMs0ggkKGIxhjeXLgI9zz0KBBlip/U6Fqm
VeXH5z/bUjwAgNffWogjcVCDwBxdJ0FsIMaO2RqWaULq/sYP/KgCAWMc4XRGuY76idXCRlfkmHBA
pT6bf+u06G2wRPK37GQnc6hrbpjZNJmaEAILFy/Bk888h77+fkB7Fx2w33uw1+675YQptBEhcyFj
JAbG3Mu/EQkAkBJwq0AxnYDzqxd+CwAwb948sPLquKSjDmEI7S5Fw2QCynuBc0BKZY9JITqvT2kg
zy2o1XYD+7xYKGC3nXfEK6+9gTFbjcayFcoTY2RPd0YsV7Yp2ngevLloccvPiS0LPwiisAUpASYF
urpHYNWqVahUKpHHgfL4lIlmnmMUEvjH8y9g7z12g2VZKDgOpB5vqnCGzAS+Xf+RtL+GbiM5VkRi
0StxbamwiKzZ5Vx/KpwhI0Ygbx7YaMfvJBH5hoYEhCZcdvE3YRpGFAtnmuo5dCwqAHAhIFIqV4tS
IzklIIMgwNq+vgFdz7U3zaYEisRGp6ujQzd1Cd/34Xk+fN/PcXdk8QQlgZqktBj85E1+EsozS9Sd
32G78dFERtWsV1ly1XvxCs7j85/F8y+/MrAvmFlECun98aZxQyc2Dzo7Siq/oVRitUro5oMB4NxX
9bK1ezVjgHQ9nYQ3HDRlllxCu2JA4Nbxyn1z4JgcdV9Em8y/dRo+cNI5TSc750+ZhGtvmoNzJ53W
cL1r1q7DbXffG8esJgiCAI/9/Rk89tQzmHrGBDiOPYBJUqvlVXIJIgaGaSgPnmj+sGwB5A7vhUyK
ChrLshAw5X1gWRyu5+rxn2pv3OCQOvcI02K4Y9sAwoUmHtmr9Ly2E/FGsv1e2lPI83309Zfh+T44
5+gsFVEsFtITn9Rx4jcPO+gAHHbQAYn3kb43IF4RfWvxkkFeN7ElE4sHEkJKGIxh3LhxmD//abiu
G40PG0S49FFSXjvPvxSP18aPG6f2LVcy/Us795zM8TPjSiEEPM+DlIBtWeBG0hNPZuwq2a/mCAPZ
9/M8j5p85Tw2FRGBBIQmGLq8DueJcj6cKyFKSkjJdOmSPJV5AH5liWyeA4HEA2I4cPYnP4fr/3Al
PF8JB4bhwfMM+Pp1WElk/i3Tck0gFBWUkNDKvTn7Hmu5zflTJkehDdlyU8nOqC1UMpUYBnBugDFA
CBmvoOrXIalBmyEgAz8xH0o04GSiNSnx5oNzUbAMeIGAH0gEiUok82+bFttmgxEwnHfm6ZmBlcTC
xUtx9wMPt/9SDLh+9jycf/bk9OAq11sPDef/v+kzo4z1BDEQXn31Feyyy65xUxMBIIL4Pq8Xhbq6
uuJQBcZhOxZq9Rqg7YxzDhboco96O8Mw4Di2CnPgyiYCEcD3A/DA17bapiNJiQTZRU0GKQT+et+D
WLpsedND7LHrzjhk/w/k2mv+OTOTocyqqm3StIAYOOHikRK8gZ7uLixduhSVahWBEEo8CL0P0KxZ
sqYLsIuWLo1fNJu0hy+TnqdNVv3XrluHO+55QIVFZHYtFGy8Z889sO9eu2uRMOc6c55CAvPu+hsO
O3B/jBzR08S2cnZq8b03BSiJYhO+9b0fwjAMmKZ+GGkhQZXTSpZlVI1h7h13DcD1Uv3Nlm2MO7C8
JI0EMTzo7CihUHBg2zYc24Hj2PrhwDQMPHf7DW3vh0pIyPE0yCUvjiCc9MTv7bHLTtHzKE9CS9W7
PTfefOsmoQQTmxeqn1H9TfgwDVNVKkk9wj7KhGmYcbm5iEQokQRevXc2bNOAZfDoEZHrnikzf1nD
xwMSD1JXlBlIZt1LGYtLROr3r7lhBj521hnAJhYjSmxcXn355cxYSkKuXhzFbLvau6Cvrw+//OUv
dcJEhmKhAMd2IsfS0AshHhOacBwbBcdBoeCgYDuq/LCuJGQaZtyGW9Gi6ojv+5g2a25L8QAAXnr1
NVw3cw6kaNXXJT6L7C1n8gWgu7ur9TVTBBGRoFIuR95ytm1jRNHCwoWLEPi+8sYRAiLhpZCeMyXb
ZZvxYKKNRu031W80WwCKO5jnXngRs2+7MyUeJHet11089exz+L/ps/D4/Kcbz99kPHnvw49h5arV
uPmOu/CnG2bg2htnY9rMmxs3ZDnfN1U1LP58U0isSAJCCx6f/4zuDLR4wNWgTiXW0V4BGbexU48/
Nj6AVAOfJ59+Nnqd3Dau+xtXXiARgRjuTJj6cXQUSygVi3BsWz9iIaHDMdDpWChZBgp6ssIbBito
DHFoldFabRDvL7M3X4lDDvxgwx7+O/Dcueu+B1GpVtd7f4JYH+Zc96fIdZpbFtbW65GYYJpmYpKi
+qVQWLAsJSqEnnINkwQGlEzANhhMzmBwBks/bw9rGO8BwDqd52AwZAdvcQxq+nQhf56uQpOoPyQG
S+D7UQLEcLFPlldFbfneu+6Jtp03b55aNGQMjuPAisITYk8gQ9tcwXGiTPGlYhG2o6qimKYJQ4t6
oRdrauKTR5OPbr79Lng6cWo7fD/ADXPmtThBNlwhs0lCEOwoFpueh3OO86fm5z8htkzCxLqMc4wY
ORIr3nwVtVpNVWAQykNO6hAG1ZYTjbCVyJbrjcrS/UWrLiHySFAbvvHWQjz1zHMD/l7Pv/wq/vni
y/HBQpUhFEES32XbcWNSlx2WoLx+1twBfKns94vp/ebwFhFIQGjB0889H3UYRiIfwuq1a9FfruTv
pF3DrrlhBq6ZrlZB//niy/r1TLUyqjsExoBtxiYaXo6IkIVKyRHDge6uzqjMjmM7sC0LtmXBNE0U
LQMdtoGibaJkG+iwDJRsJSYYmYzvsYiQM0jKGzeF+RByXcOYco/WVKpVmAl3zMGIcytWrcKipW8P
7McgiHeRZPb3kyefg4/92+fwzIsvxeF0oceBfliWfpjxCig3eMZGlDFZBodpcJicwTY4HNOAYxrN
LiW9ysMaxz8vvPzq4L9f4noQ5hDKEnoeTJ8BIWVk1+R9QAwG27ai8J8IIbUXjMQdd8cCwm677BT1
DbbjwNDhDWFte5V3RCVLtG0LxUIBXV1dKJVKcGwblmWlhb2w72EY9ETprUWLsa5c1qcfmHBWd128
8tobrU+Qe6iEgevJltnknhB6ARFESKnUAegwIG4YWPrma/A9F4EIEIggFhFCAaGF100+CY+1rCje
ap9MGNx9jzwx6MXZJ59+Fv395fSlhPeTREnhPXbdJXd/Va1MpvdH1pMhPdBdu3Yd1q5dp14Mc82c
BIQWMMYw/7l/Rd4HBjewdFk4qchZjgFw7Y2zomRuzbhGr6hAMhx5yEEN50w2blp1IYYjx08+Bx2l
IgqFAorFQrT6aRomdj/hPDiWgVFdHXBMA7bJ4ZgcBUv9tY30baeyZmU8O0m6iSVj2EJyYqNTMJUP
oaNURKkQr6RkxTk0sa0gCAAJ3HKnGliSYEdsaFQbBZ5KlFL77qXfT4QzxG7Uy2NnHAAAIABJREFU
VvSwlA1qMSFMAJw4KgDA5MrjwDQ4ujpKKFiGFhJaDAXyzE2b5OtvLUpc88AGZoVCIR2/wLJurert
P+kwpJ22327YD6SI4ck+e+8NztL3eglAuhVIAHvvuUf0/i//+6dgepW9UCjA873YeSBMUCoByzTB
GEMgBHbYYXuMHDEiCuGzbTv2Ekok3m4Q85pOINTzh554KraQQYwBH37iqfQbDcPUPFWeNbw8/sgP
N2w15fQJLY5BbKkozxwTI0eNwoqVq+C6dQQr3kDgeQgCLSKEAsL6nSH9NNlXNPXOiYVvzhgWLl6i
xT+WOxZsxdw7784J3cuEUug8XGedejLev+8+0b5jthrdKMIjG7YA3PfwYzoR+AzMvv1OzL79zigM
dziHMpCA0ALOOR587ElcN2MOFi5ZioVLlmQCN+NG8MCjT+CaG2bkZKPPJ/RQcBwn6pDyGne7CQ9B
bCyOn3wOtho9CqVSEZ0dHSg4jip1yoCCycGEj/HbjIVjKRHBMjgKlqHEhNAbATlxoA2JFQff7s88
9eTIPM+fMrnBnsI631mumzEHf7rhpgG5jRLEu811v/u1irdmDBf3XgYAuPzyyzF37tzIE85MhC3Y
tq0ejh0/t8K/ZmagA5gGi3IfBJ4Lg6n3bIPH9jiQpq83rbtug22166dYw3kak03dNPdWMG27xx+l
JjPkfUAMlk/+fJryHk0KCFJCvr0AUkp88vzzAEB58Pgq3C0s21ir1VS1ocBXSRJ1k/UDH/W6C8/z
sHTJUnDO0NnRiY5SCYVCAY62w9AjKNoxms2zTJ+Wft7X1w/X9SKPVwxispN2Ec/zGmoMJcx7vfVW
o3Hw/h+IXp935kQUCirktvdHP2t7HcSWA+cMW229NWr1Ovr6+hD4AYJaFcGqRaoCQxCosvdCZPIY
tOlommlsybDxFjbBuKqSUiwWcN8jj6+XeAAAruth2fIVmYNnBQX1KJWK2O89e+P8KZPx8bMn4aRj
jsoP0dNf6K77H8Q102fi9bcW5p57uIsIlG61BbvstANee+MtHH3YwVrtSsdcJ1vFgjfebNg/XZde
ESV306xesxbnTj4d1940u22jXrBgwTv+TgTxbnL4Safj4dtvxopVqyGkQLlSUXGUB0xA5albsHbV
SphhTDYkGAQADsYkOAPqkqPUPXL9LyAqXZeJ82RIZXNPdhytxAEpZbQteR8QG5LffP1TGL33QXHM
tub973+/mvS4/bpUHGAYEoDZ0GdInQpbQq34GKavyg7rTY7+7Hfx8P/+QFVvAADEWeURVUdBbESy
oQtLIXOE7fB1WxEu2i15EnXOk485GqVSESN6utFfLpN4QKw3BufwdcnTqGsIfEghAM/DVz7/OUw4
4VggLM/NOeq1OnxPbaMmP6o8YzihF0KgWqvh1ddfR1dXF3bfeSeVRNGy9KqrgGkasCwTQRDoXDz5
Y8cIqZKn3vvIY5FdJ/ujgYvamX4wcfyGS5CJFyy9zZ677YKdt98OtmOT0wHRFM5U4lHX1WKBlKr6
gleGCCREcUQifAGJ1fwmHUvYBvM0tgFWLLAtC7ZtweBGVMFuMPaU3A46DH3M1lulry9Jg4cR05eZ
2VjGVSKkFFi0pH2Y7IuvLMCeu+2C3ou+NuzEOxIQWnDWhJPw5qLF+lVmlUSma4aeP2UyXNeD73so
FUtNB13JcnMAcPMdd+H8KZNx3pkTAUjMu/MelCvVhrKN5H1ADFcOPfE03Dt3BjxPrZoI7apW3P8U
1J66RacF0RN48EhIkJJhr0NPyjlijhjQjLy4uKSbmM6ZcN6ZE3HdjDn67bgjaScoEMSGomf73WGa
hmqTiffL5TLK5TK2LuqVVM4hpREJY6k2rP9KAFJImIaJIHCjQc0T858GDAvCc+ELAU8IVc4RHO87
aSqinZuVM80M4BqrPqDlIG2v3Xdt/OJRfLiM4ktLpSLGbDUan7/wW4P+HQkiiWFwMD+2k9BC5OrF
YKPG45Rjj4YMAoQ9FGMc5XI/hC6RGpZOlVKqUsVCaC825cm2atVqPLF6DQ74wH4YM2YMCsUCli5d
qvMmqKTb1VoNXlS2O79D45zBcWz09fU3eJ3KKG9W6/7KNMLcBW1KJCcdaVvkSLB1IkkKISKaYZoG
li9fAcYNlThRr7UKKSAq6yDqVYjiSAjw/EoLTSfjOR9mKqrEybTVtgbnyqvbMqO8daYwBi3GZedb
/eVEHoRQGJCNolu0QdauUtevbHPuHXe3vIaQR5+ajz133WVYlnokAaEF5qDq4UrYtlK9mn0etrbz
p0wGpMQ102dmGirD5z5+LvrLZVx5zV/Se9MkhxjGHHXqZMy+7o9wXQ+u60bvF/Y/BfWnboGQ8aRI
QsILAFnohl3syDlaVjxopSKw1tskbuTZTqGVTZH3AbEh+f1Fn0V3VweM0WMzpa6AiRMnAgDunHUD
wBgYBwyoSkDhJCaaFukJkpQSwhQwfQOBYagVUD12sd53HMZvNRor31qAmuvC6h4NsEw5x2YmlzOI
yXpAtJrkfPC9+yZeZVc+4+OQxwHxbnH45y7B3/7nOxCMAVIAYGqS07cCYuS20WKn1OKVaZool8sq
HwJTCQWTfZof+FHJxMgDiAH3Pvgwjjj0YARCYPvttsMbb76lQ+X0CapJEaGRUrGoJj2GAZlYQBrM
xOfwgw/Uz5r1l+0U+cw2mU3JLoksR/z7pZj302+g5lX16C5MmKhFhHoVol4HOkcDViGnfclMp5P1
9s6Q9GRgcQ4GFdKnwobi8B8GGBKlYjGqqJUU4zDAudW248Zm3kksIA96Xq92WL127WB3GXaQgNCC
hrCEjKdl/H5jDGcjmR0ZU0JChkWLl6Kzs0NvEqtmr7zyyvp+DYLYIFQqFbiuCz8aJCmD2W/Kl/HU
tF/ANA1UKjXUpIGdDj8FhmXHO0dJZpp1LjmkPmqibCe24ZyrODyCGGYUCzY4JLjwIaWFvHRTTMd8
Mt2W1URIgnMJxlR8clJAkFIisAIIqUpoBUJE9rVsxUqg2AOrecW2JsQG1dPdFblsYwDiARpEeXWc
NWvXwTJNdHSUAJqkEEOAYXD4QqgwhoSXDuoVwClFnYVhGJBSolqtRZ50yYAiKSVkVMWBqTCIxETn
3ocewYcP+RDWrl0LR5fpDu3V4Abq9ToqURnTdN9m2zYMg2PbcWOwcPHS6HwD9ZKTAHYcv23ijTx3
74HMRFopiATRiG2ZqNbd2Msn+RASUnrA2reBjpFAoatxxT75t8V86vCDD8KKlatQqVTRXylHXkPQ
8yVVPtXIeOUBB+z3Xtz/6OMtv0M2bCH5/j577p63RyY8ISeUoeE7qo2yHuYDY/gtIm+2AkLvNy8c
wP2v3U1SDkwcyPt8ILE62W305fSXyynxgLwPiE2Bcz/zBfzwP7+duM2ptv3Cy6+g40CVwbkr+izT
prOhCGFsZjLh2qBc3bLbAF/5zCdw/ex5WPL2snizQceXEsS7y58v+QKssGrCsgXAdvsAEhjR04M1
epXiv779Db3oEU9nOA8jFriqP2/EuUagcyGECawCISBcAYmcjNBIe/twbiRqdmeJ7XHtuj5MOe0U
TJs9d8B9VblSQWepBCEkXlrwGh6f/wyklOju6sIZJx9P4gExJIRJc5NtVEoJrF4MjN01Kp1aKpVQ
rVbh+R6Erl3POYNpmnBdV5ejQ7wCmTPGe+CRxwAA++/3PjAtXkQJUE0DjHNUq1WIhKmMHjkClqW8
V0859iP4/bXXR6ESA+2b9tl910TYHtLP1TfOEdqb9bGs4fNrbphB9knkcvxXfoCZP/wPnb8nKSIo
n4QwlBTlVYBbBbq2Ani2VGjCIy35OiEqP3TbHIwaOQKFgoNisQDP81KCOWNM5wCK8wEJKbH7rjs3
CAhZu2oWJt7Z0YGiFgPTZDrQrB3JTG6ucB8JeJ7fVLBoxnDLf4DNVUDo/WY2Y2VTf8zGz1ODK9bw
vx84A9hYN/a8eNNkw/r0R6cM5sQEsVH42WWXwPN9cMYgpExoAllbaCLMZW0tV8CVmH/b9bnnjxPA
ZU+nbMy2bZx8zFH432k3Jj5qHJxR+AKxIXEslQzR4AwIfMhF/4Lc4X2Y/r9X4Zvf+z6OPOwQHHrQ
AWpjFmYRUZlEpC6BaFkWisUibMdB37o+AGqVM4gSwKmVIM/3Gwc1OhEp5xyWLj0npYTnB4mVkoxL
T0KgmzJxAm6YPW9AE50Z827PfX/iScfR5IQYMj58QS/u+fV3VU365KS8XobhVmB1jYJj2ygUi1i5
apVKPAqpc3wwnSiOgwVBnLIjJBrDpe3qqWeeTW226047qnLghgHLNFGt1dDd1RW5XANq9+6uTpxw
1Idx+z33D1g84JzjoA++PzpGRO5Kb/KtpOCg3gqCAGvX9WHUiJ5os1vvupf6RaIlk751Bf5y6ZdU
zpHIKyD0nEu0Y68KrHpLhc11jgbsjtycHXkT5sNOOh33zp0BKSQMbsD1XGXTQiAQgerntJgQVn5g
AIqFQu41J+0rb0JvGAYmTzgxd6E3DWt82mwKyFTVl+GY02CwbJYCQsM/rq0XQeNNtDmtXKplo+qb
917q1DkNU4YfMUw47iP4xiX/1e6iCGKj43k+TNMApIrNljoBVZiZV5FVmbMkQxgaN3r+gdua7jL/
1mlaRMgYmz4O5xx/vmlWw+5JLwQaJBEbGlXqTUax1BABZL0fstiFn1xycdMqB4AEnAImnnkujj7i
cFz8ta+gUCjC4AbE6lWqCoPvR6UfA8OA7/vKCyF5fstSLtZ6OwCRvUopdBK5vFGRjCZXXV2dWLeu
b71/A0oSTAw1pmHA9wNwBgSJMZbZtwwd47ZDqdSBSqUCz/UgRKATwkkwBu15kJnMN6z0NxnL6bdf
ff11AAwjurthmgZGaa+DbA4RKQT22HUX3HHvAwMWEMJSp21D/pDvyRcEAZ6Y/yxefDWu9HX+lElR
krqTjzlqQNdBbNmce8n/4Jrvfh6macALK49kF4NCpAD6lgNYrkQERwkJvT//bctzhJ48QgoAFnw/
iKdwLCEchGWFpcSyFStyj5W0r7w+aNLJJ2SGoU08y/PydbXI42AYPPf9PGzLGrbi+uYpIDRMIFp/
nLvN+pCXubqVeNDiOqecdgpuuPkW7L7LTu/ChRHE0COlhG3Z4Dx2FRVCIAhEdFMPHzLeKfb2AVob
opRArR8F04CERCAkfJGosSuTIkIjb7y1UHU2CZIuouef3ZiThCCGGsuMQwaipvz2q5Db7gnplKLt
0ouJysYmTJqKer2O2+/6G846cxI+uO/eKBQKEEJgZbAKnuchMA34Po9WUUP7Y1pUsywrylptaO+D
QAjdnTF1jFTukEa1fcIxR+Mvs25er+9//pTJw3aARGw+mDqxmhLE1D2fcw7bYOgo2Ojq6cayZcvg
B6r0aSDihxL4kgs8mYlE0u1aNhkL6hejRo7InawIIVRpVcbUCuUgYp7HbjW68c0c7+nsB2vWrsOt
d98Lz/NSu8b5uSKlZcDXQmzZnP9fv8HvLvoMgsBUttMs3D/RPnt/c82Ajx968RiBgDTSwl7ogRDa
lx8EWLh4CW6+/S51ykx+hlZsPXoUSqViYozaZCLXLBdXm0XrUqGAapQPpTnnTDqt7TYbi81UQMiZ
tDcJFWggT0nKHhutPh8geW5vmXHZJRd+GVM/9e/rfw6C2ED88D+/jVKpCFuvqCTdyMI62GEt7SAI
olrZkcDW1jMBqJf7ULSMKFFcICXqvipDB8R2ky8iqONPnTgB02bNbTj25AknovfHNIkhNjxF20bd
8xLx1Xqgs+QlyO3eA6YTD8ow47sWGqqui3q9DgA48sgj8dkvfAWP3HkLRo0aBQCo1qpwXRdBEKjE
UpypJHEAIETkSm1bFhzHiSo6CCHAAxHFszIAbkpEyOlfGXDupNOiUqkDhcQDYkNxyGf/E/f95hIE
gdCatcodYjsOCrXVqFU7sK5vXZQ3RGjhW4o4nrvBrSBJKBw06cPes/eeENquhBA6uan6LCoNCSBg
DE8/9y8M0PlAef1FE/x2E5j42h99cn7K4yDk/LMnJV6RcEAMns/+6PcAgP/+6vmABGqu15gYmAG9
V9806GNzwwAPAnCDg0sOrnMpSCkhWYC7738I/3zpZVQqVbieNyCxIIvj2DjpI0fGF9o2YWLmvXaf
A/jI4YfglrvuyT3/uDFb49gjDoNhZPNEDC82SwGhmKfsDFRB1Ztd+uMrUm9f8o2vZdrRQI7XYlIU
JdxoXg7khZdfHdg1E8RGplQqolQsqkRQOnFNJCD4AYzAj7wRfL0SxINAuVQn7Sn3xqve9N0aTINF
E5hASoTRdm6QV12hQUUEwHDOGacCAP4y82Z9eInLf/mbIfplCKI1x3z5Msz98X/AtGy18h/mOJAS
cvHzkNvvCzADLBwEaRHhjsTg41vf+hZqtRoqlSo6OlyMHDkSq9esRl9fv07gxqPSVkwIcO0GatkW
CgUHBceJBiue54FzoTyJwhMwluhTm4flfXTy6bj2ptkD+t4fP+sMEg+IDUq1Usaavn709IwA4xyW
bcNxHHh9q7FsdRlu3Y28D6SuXhIlgwsnIgNJkJ3hQ/t/IBbOAwHGGZhQWVCFEADn8H0f/3rpFdz7
8KNYO4hwIN8PsOTtZdhmzJiMPbZ2tX3l9TfiLfWqbaoy2Hp8T4JI8tX/HrhnwUA5+LhT8OBtc3Rl
Ex55IdTdKn79xz9j9Zq1A/YyaMaJRx8BxnmL+V4iRinX87yF4KATSm41elTuuc8+7WQUi8XhWHSh
gc1SQPhm72X43re+noi7TiLzV1AyXPLNr+V/MJj7qcxpWIM8Xu9FF9Igixj2dHV2wtFlqNQYS0T5
DwLDAPc5giDQExOOgHP4XDX+VI6Ehqy1iES4Ys9o9HGub9sSXDLwRHKeSESQif2Q91yd49xJpwFy
cPFoBDEUzJ0zG4cdcSTGjBmbyD8gIYUPsegF8O32VkmngEhIeHL+06ljFAoF+G4/+vrWwXEc9HT3
YOnSt9WKjS4jJwwB3w/jSE0UCwUUCgUUHAelYhFBEKBaq8H3fXi+rzwQGAfjatW0XnfbevKdd+ZE
/PnGxlwjST521hm49CdXtNyGIN5ttho1EjNnzsSks6bANA04joNSqYhVq9dg1dKl8EfspPoj3Scp
b7f4b8tJdU6IAAAccejBCHw/iskGC8AEA2Oqj6xWKrhhzi14c9HiVDb5ZLWIdpOhv977AEaPGolt
xm6NrUeNQqlYVLbtOKp/y0lkfMyHD8XfHngYfhDghKOPwDZjxzT7QjQGJYYVqmoKg9CCuBACv7z6
T+jrLzdsm7WjdpSKBfR0d+sTNdPhMnlPZHbsmpljJr3aE4LE1Imn4q/3PgAhBD74vn2xfbIMaxje
MYxtb7MUEKDjzKq1Gmq1eiZ+s5mPSawozb/1+vxNNB84eWrz0VO7UIlWoRUNG6qD9F70tYaDDedG
RWxZXP6972L78ePh2DaAuGxPWD4uCAL4hpFagfGDAEagJja+H8QZdLVrZ8ojQcMNDs4AKxIpJAIu
YXIG02CouAHqfpglu5VCmHbzDIQgoY7YqPzu4QX49ME74awpKvQmHOgICXC/DvHmP8C3ew9gGAAY
GFNlHkNefvllXHHFFfj1FT9CrVrDqlUrUSgUUCwU4PseDM7BDQ7pKZdnVTNbVX+QQqCovRC22XYb
SCnx5ptvoVwpo153YXgeTF95JzDGUK/XtTtqa/W7WYlUClsgNhYHfPJi/P73V8P3XDiFAkaOHAXP
87Fy5SrUajX4qxbBL/TAl0z1S0EyhCHrhJ1YjEImDlp/dNyRH468ilgisVsQBHCFwNXX3YCFi5c0
XOf6rKCuXLUaK1auasivsNWokTjluI9ktmbYZuwYfPTMifkHI+8DYhhz2Imn4f5bZoFr76Af/vK3
KFcqTbfPVltoZVfpPAptBMNU2HlmbplXwjH5uQ6VOPWEY5pc9PCPINpsl96++I2L0dPdja6uTnRo
NdaxbVimShYVlc2JUP+p+bdkSsTltLP5t16v62znnDhUppq2T4nUBk1v0omOKWcy1XvRhej95oXo
vShbspIgNiwFpwDHtmCaJizLhGWaME0jem3bFmzbjh6WrZK22ZYFy7JgWxZsy4ZtWTAtE6Zp6vJZ
msTA7ANnXgCTM1gGg2VyFCwDBx+4P4qWiaJloGAZOv9Buztvo/32XkT2RGw8DMbQ37dO9U1J70cJ
SCEgF/8rsSIKHH7YIdE2n//85/HKK6/AYAye76FWraFarcJ2bHBuRO6eYWJESOX6XK/XUXddvP7m
QvzzhRexZvVqrFi+HPvssw+22247lEpFFBxH5UmwbZSKBXR0dMCxnXiAlUNekrjtt92GxANio9NR
KmL5smUwOEeh4GDN2rWo1qoqR0/fKohlCyDWLYPwvUgEl4n8JDGJCUGO01zvj36qRG8dOmRoL6Dw
9V9m3oxFS5a+qxVI8o6VtyqbnxU/2dWS9wExvAnFuH++8BIq1eq7dtxavY7H5z+TERlk6k98EclN
Wn2YPM7Aw+mHu+1tth4IAKIau5VqTbtUC/h+AKHdq0M3awmJwA/w5Lzr0gdo8X9e/NKz2HbP/dpX
dMiWcYyeD0BZznYG2ZXV0MUlMekZ7g2O2Ly4/NLvYuSIEeA6zho6J4GQEpwLCMEhuABnHIHBEQQc
3Ofa88AHAAScq3r1gYAQBgIRIOBx8sUki5YsgZmo8iAB/PMfz8I2GFyDYa+jz462TbqBNq6oNPNN
o7AhYuNw1SOv4bdfmISeESMgJdeeOAopJYTvg699G6xnLCRDXPc9ie9DgKn62LokXFTDnjFIIcE5
QxAIGFLC833UXTVRcl0Xd9//IADAtEy4rodxY8di+YoVME0ThmnC933Yng/Xc2G5HjzPhef5cQiS
lLhuZmM1hvPPngQwRnZFbHSuuPtfuPKLZ8LzPPT396NSLsP3/GjlUQSBEhLMCkRxVMoDAchJtJ0T
HhDWsD/k+FPx8O03Q+oFKwmAS4677n8ILy94Pd1HDRHv3WfP1LWl83JJvQCgvAddz0PddVVeBhpP
EsMcBuDVN99814/7wssLsHrNWhx7xGEqr1dmzpVbpzWZyDT7cZgoPFmCuV2WxU2AzdYDAQCmfuoC
jBo5At1dnSgWiyrWs1BAwSlol00VI6ZWTLWWMsD/39q3F+Vsn+N6kApnUJ+98eyjeOb2G9O7IU/B
yiOTmCMDraISGxLLMlEoOAAAxrhO1sbAHRvfv+KXmDZzNswwYZtlwbEdOLatvQ60B4JtKw8E21be
Cpb6G3onxC1e3WC3+ci5MJ0iDK7i4DoPnIARB5+G7Y6YpK+DwTLN6NHcDY01UZalDhsiiA3Le/bd
F7ZlRhURkMhdLSEh1yyFrKxVfYVIJw6dOvmMaMvA91GtVVXCNhYLbmAsqm9fd11UazVUqlXU6rWE
YCHxt/sfwoOPPg7P9VB0CujsKKGzVEKpWESpVERnqYSeri6M6OnBiJ5u9HR3YdqsufhLpsLJUYd+
SCVmI/GAGEbYlglIgVUrV6JWq0WePVHeAyEgqv0QK9+AWPs2hFeHFOlqP2mX5PhPKB6EHHriaZEN
cp2M9O4HHt5A3xTYd889Eq/ifvCQA/bHe/fZG9uMHYNisQDG0yFHZK/EcObDJ08EYwz77rH7gLx4
skJdK+GOMWDZipWYfvOteOqZf0TVjvSe8R/Z5LzJ3AdhGci215i4n8hNw/5YG/VzE8gD2Z7bbrwO
/f1l+EEA13Xh+X5UpicQAr7v4Z5pV8XV5BCLtOEkJfxMSFUPuDhiDHY7OBtXpmkiJAWei2f/OiM/
r8JJUzPKcDMSF9hU1ZINndgmzqYlyw2cTdq+Lv/iR1EatzNGjt0WHaUiHMdRWXEBnHL2eSnvgXnX
/18cQyoBP/Dhui5c19PeB0HkhRAIlSvB9wP4gQ/fD+DpMncxCSPL2Jtlmlo1Vni+h8APmiRVTZL8
fIua8JB9DSMeu/oylGv1uPSpLtuIRPIotu3eYJYNMIbjzpiCsVtvjet+/2sgYWNCCLieF4kE/f39
qFRVgsTQNVuIbPWSTB37cMGScxyw33uVTfo+fF1B5fv//euG2trh49+mnglPexltQbaUB9nXMOT+
3/aiXKuh7ikvHM/z4fo+PD+IHr72gvMCAWHYgOkAVkH9ZWxQrv4P3DobQggsX7kK/3XF/zS1m2YP
DCIRXEiqqkLiOk899VTtkevjwP32xdjRo1GpVnHL3+5DtVrDE088MajfciND9rWFcv8ts+D7Pv7f
f16mSq4mqn+1s6GB2lE4vBy79WgcdtAB6OroyIgBsmHyX63V0V8uRw7nnMVhTMViQS9stZ7vDaM+
s+lVbhECQsi86/8M13Phez5cz1M1soWA5/koV8r4+5xrEpEGDJwhisWWCcUqEBLbH3QMSj2jGhpO
04YlJV586K+orF3VstF84KSpg0teIzMCQuIahlEDfKdQBzEM+dXX/g12Rze6tt8TxaISEEzTABwH
x5+iVkO7u7tx1VVXYYQpEjdtBsM0IKVEpVyB63nwfT9KuBg+YgFBPVw3ISLIpLqrmgfTrte2ZcOy
zMi/INADwUBPeloLCZutCNcKsq9hxoNX9qLu+QgCEa2KIhH3yThXIoJhNYxDwr5KCAHP81Cr11Gp
VNFfLqNcqWhbk1EIUWrHnMieow47BLV6HRdd9pOmA7PwfQA4+7RT0FEqRkL9ZtQPrS9kX8OUu//n
OyhX63A9H3XPQ91T1UdiEUE/z4TSgakSjDBMIPAGXM/+/ltmwQ8CXPrTXzSUmxuogJD824xRI0fg
1OM/0mDQWVs8+uijAV269cEHHxz4Dze8IPvagrl37gzc98jjmDHvNrUw3KSPWl8BIcuuO+2Awz90
QG6zk1LiLzPnwPeD3H1DRo3owanHH9M419Pj2WtumIHXXnttva5vCGie9EYWAAAgAElEQVRqX5t1
CEOWCVM/hkkf+xQ6Okro7OhAV2cnSsWiSvhmmOgpWuhyLHQWLHQVbBQtE45pwDG5fhhwdAbrUs/o
xgybDRP/ZJIdhsq61W1vdVEFiIGSXCkakAcDQbw7mAaHjQCMc0gpohAclrgxH3nkkRg9ejR+/Itf
q0zwOhabASgVS9h2/LYYP348Ro8apbwYwmSLlkq0aOkwB8tS9bot08yUx4kbvOOoTPIFJwyJUMnf
bMeG49hwdM3vVFhE08RYZEjExqPg2LBMQ4UyhOXfQrT9sLdfBmNSZR1hjf2PFBJCxMID50aUQDi3
dec0/d4f/RSGYaBYKOCnvd/GsUceHttw4rp6urtx8jFH4fOfOA/dXZ3ae4LEA2J4c8yXLoOjQ4YM
g0eadG7VhZQDnFAi81XTBiweAMARp5wBzjku/uoXGmyoFQN10bYsE+dOOk1NThIG3fujn+ba4j33
3IN77rlnUxYPiC0cwzBw2EH761X9gbO+yUtfff1NJRA0jB0lyuVKW/EAAEaPGpU/xtTiwabCFuWB
kMfNf/kT+stlLF+5CuVyBasenqXcRiEhopQG6rmQEn2uwK5HnxEru7LZpL0xjuGFO6er0FWp3FJ9
0fznVZnkWx+v1Ueb2cBtc53NbdL2dfW3P4eibcEeNQ7W6PFRLhHOOY6fNDXabtq0aTjnnHNw58zr
dfESNTjjnKOjowPd3d3o6OwEA7Bs2XIsffttlMtluJ6HIHKXDuD7ys207tbheX7ix5PgjKOjo4SO
UgmmacI0DEggUqSFEGo1V6jSXJ4+luu6uf+Ezcx+2kH2NUy5/7e98LR3jhAqlpIzDkOH6XDGIbfZ
A5KbmbauvG3CNl6r11GrqYoLdddV4UOep07SomRbaAeP330rXNfTNqlXZrUXX7VeR71WR61eQ931
tH16W1oYUCvIvoY5t11xEfqrNVTrLmquh1rdi8IX/EDA8/3Ulx2MaJDHvfNmwvd8zLrtr7j/kcda
ul1nV085Zxg1YgT22WN3bLftuDh/V4YtyPbIvrZw7pk7A269jt/9+Xq88MqrAwphwAA8efKQAD46
6bRUmKw+GMAYHnvqabzwyqtN9z/njFNh21Zjs5USM265HbZt46m/zx/0dQ0hTe1rs67CMBBOO/cT
mP7Hq1RN+SBA54ET1AcSqP/9FggpEUgJNwC2OvhUjEnt3UY8yOQocEzl8CEkothWNxC5QgIDolKT
gRD5/8Ns0gb90rK3+H8rsQEw9Uok+lYAtgM5YqzKWJ2pMHLOOUoMY4yl8xYKiXJ/WU1wajV0d/dg
3Lhx6O7pxpIlS7F82TK4nIMHAQzuRyXohBSQEvD1oI4xDtNUoQsFx0GhUIBpmlFG7SASDXwEemXU
8A2Yhg/HsZUt6omXZZn42ncu3Qi/JkE0UnJsVCAhPQnwcIyivBJM00TBcSDXLQLG7wNPT94jESHh
zomwKgnCGteJkzTJDJ2agEjAtm0wxuDCi/rL0JtBQmo7CuB7PiAZen+8xUxgiE2ck/7jR7jtiovg
ej5Mw4BtqaSKfpDOEfJOhYMQ27IghcDpJx6LE446HH+cdhNeWvBaw4Sm4DjYevQo7LrTDhg/bhwM
04htusma0hYkHBAEoPNe+Z6HT0w9E7+95lq88dYiBNmwo/UUDLIwIF+00wkPDvrgfvB8H6++/kbq
42M+fBi222ZcTlWGMNEQw+QJJw15VZZ3E5ppAvjXiy9hRE9P+k0GOPufAuiV0sa46czdOxmTjTCR
AlLbcKsAS3qqXJChPBFMg6PuBXADkZIbTdNULnWMx+Umw3hTrVZnjw8ApVIB37jksnfrpyGIppiG
odyrwYC1b0N6FYixu4IJhr/OvD7lhdB70YWRyxgDIMMyjFLCdV2sWbMGlUoFnZ1dKJVKGDtGSXWr
V69CrVaHz1hkVKEgAEBNYgwO0zBQKDgqVMFRIRBh8ppAT2pCrwPf95W7W0F1KIFOJGeZJv7ti/9v
o/yWBJHHAZ/8Nh7/w/chJeD6frTKEdaSt2wbhUIBqK9EuTRGJyf1lFCmkwQLGXsmSO1Wlz9EaZ4Q
TkLC0EKdsluBQBjwfR5VeAg9HyRA4gGxyXHSf/wo9fq3X/8UAOAbP7+uyR7rz6EnnBolVbQtG5+Y
eib6yv2o1+qoVFXSU8exIQKVCDW0LREEUTWVbL4SEg6ILZXDTzodd8+eDs4Zzj97Mvr6+/HSqwvw
1DPPYW1fHzzfR6VSBd4FEWHH7cc3D39gqpD54QcdgH322A19/WVsO26M9lbIJAFPln1MHmI9Qys2
Blu8gNB70YWAZCpuJZV5OlaFVHmrvPwGibt3Tkx2lh0PPwXLHpoDcBaFMphcwuQMViDgBQKBUOES
hmHAMk0YhqEuKZu0SsarpkyvRpmGgf938SVD8jsRRBbbMiEh47FMtR9y0fMQ4/cGY8BfZ16PBx97
Av3lCj588EFApKklhIRE0rdX33wLf//70zhr0uko2A5KxSKCoBucl1Gr1SIPBiGCKHu8lBIGN8AN
rgZbrocXI/cxhuOPOgJ1z0OtVoMVmPBtFbumhIMAgR9gyqcu2Fg/IUG05aBPXYzHrlaisOspEYEl
RATbtsHgo75mEZg1IuV9ENqK0EICIJXGLRs1cEC9lzf5/+Gvfo/vfPkCVZnIMKJHsvRbIIS6PoLY
DPj3y/8wpMe3LEtVAQuCqPSwsCUK2kPI94PIhgMtBgLxSicJBwQRww0DAANjgGPb2GOXnbHD+PHR
AlKtXkcQCNTdOirVKpavXI1Vq1dj+cpVWNvXr8PuoD308udx++65Ow7Y732NH2T7UqYSmY4a2ZOf
XCjhibspB+Bs8QICoP6BQRCosAHGIKASU0V6UTLPgcy4nbQi8kZg0X47H3cOFv7tBjCEuRCAUV1d
qNU99JfLEFJit2OnwLYt2JYNw+CJw0nE4pmMxAPLsmAYBj79ZapdT2w4io6lslMnhFXhe2Bv/QNi
qx3AOkfh8A8dqF2nG+6vceI3xvCxz3weS5ctBwD8+uo/4osXfAZnnHwCOGNwHDuuwa29Dnx93kAP
vpiur71k2bLUmQ498bQN8lsQxFDyoU9/B4/87nuqUolejeScR0kRgyBAUF6HwO+DZ3RBBHHej7iS
Q2iqOgY01X2Fgnn++WfPno0n/nabisxLrOAwMF0KWeVckFLShIYgBoChPecC09SJ19Q4UYq4skkQ
2nCq3KoaS5KdEUSMwbmqApZYlJLQ9qSFb8YYDKOIguNgZE8PhNwxql4nhETdrWPZipV4+bU3sHKV
SnrfUSxh1512wF677QLGk3UHchaQG8jmOUh4pkce6yzz2aYDCQiaMKlbmHcgVKDyyn2kSlelP8mo
TNnnEuVyFdt9ZCqW3z8dDEAgJbxqGVwCXY6J0YedoV2wbdi2FXkghJm4o3KS+lS2ZcE0TUylVVRi
A3Pq1y/H3Mu/oZOMxpYgpARWvAm+ahHENruDO6XoMxaKBjoGjAFYu3ZdJB4AwK233or+/n649bra
B4BpGgiEul35vg/fNOMYbKZKNfbVyvHFyU3wbkwQLTjks/+JB6+8FK7O5VGv19DT3Q3GOILAhed5
qK9ZA99dhGDk9ggkiyYhMhE3nRShs6sjrSYlP/if3+Giz386EiDCRI2+LsPqui5NaghigDBoLyLG
o7wmYZ6SMEdWaL8xkpKTEkQOhmHoIFclxImU17ZIeeIpUSHhAsAAbjAUi0XsuN147Lj9+OZ55/JT
BjX5LONmkFx7ltk5Ija58uEkIOiENoypMnCMQd/UWfRfjupwJzLIJxOvhUltIrfq8MDZMkC6EZUr
FZQOmJB7LQbnsC0bnR0lFIsF2JadKPeDqLFbpomTzvrokP4uBNGOU7/+E9z5y4uVu6W2k9B7R4gA
bPGLAOfg2+wJ2AUdHSSjUnQAsGj58tQxTdNET08P7rp9Hj5yyMGADumxLYBzplZbdVZ63/f1KmvW
dZqSuBGbH4dfcAmu/upUvPbaazjw4ENgmia2MgxVbUGH6viui2Dh8wgK3QhKo6NKJkHgIxBBQhQP
Vz4kUF2H3l/+vuW5Z82aBQA4/fTT8aV/+yh8XY3htbcW4bLLr9gQX58gNivC8pGGwSPvnmQ+Ed/X
/Vpi5ZLEA4JoxDQMFcaQXPwVMvbi0Qm0k/5zesN4Rp+TWyRG5iwKJ2hwsU0qBeEhEsdoEB82vUWv
LV5ACN1eLMuCrUMBDG7oT2W04p9MYhgnkUqoWkKm4rKzf4VescmNfUm0GxXTasFxHHR2dOKUKedt
2B+EIAbJcV/+Pr52wn74wP4HYtRWW8UeO4kbuVjyIphpg43bHTDi2w5jDPvuvlv6eMcdh9GjR+PA
978Xxxx2iLpvC6bDeQxYlgnfN1FnLgAW2VeKTes+TBAD5tP/fT0+d8jOmDdnNo474SQwxlAsllCp
VFQSw3AS0r8KwdoVEJJBMAvSLEJKBul5EG4NqFeBWj8gg0Fll58zZ86Qfj+C2BKQkKm5RSip53of
UH9GEC2Jp1EyWuhNeh+kPXkSO0WhewlvvIbwvvYhBllh767Z07Fo8RKsWbcOruvB87xUaFKjmLDp
GfkWLyCYpgHTNFEqFKOQAc6zeQe0t4GUkNFfmREQRBRzE/ULMt2Qk3XoU5OeSDzQajQ3okRwJCAQ
mwI/u+MZfObgnTBh4iQ4jpNo2/FNUfousOifkMURYFvtADAOHXwWZXIPWblyJfY/4IPK8wYAOFd2
xVXSRJXEjceVHZqUoiOIzZGrHnkNnzt0Z9x5x20457yPo1arw3Nd3Q+FQyio0IUggPSrkMFqSD+I
HuHA6N0qTUcQxMBReQ8SY8zMolQQ5hdKdGfkfUAQ+cjI45slFpZie0psGOexC/PTpSrqJT0N4tXe
wXq01l0Xo0eNgh8E8CwPnu+j7tbhuqqqimSZc26CXrNbvIBgQMA0TRUuYNs6CUeY9DCZuFAnoUpU
P4jcp3Wm69jjIL19LCAEukGnwx98ncDR4AYggb5yuc1VE8Tw4/ePvo7PHbYLJp81NSUIhCE4UdhC
bS3w1j8gu7cGRmwDALhz5vU49owpqeMddcjBgL7RMgCMM3DwKFeJaZiwLBOMAfW6CzUcax/LTRCb
A1c9/BouOHRnLHj5Jeyw8y5RQlGZ6HuQyOUb9V8yjv8k8YAgNg4/+e0f8PULPhl5p4aP5Ngw6dZM
fRpBtEHqhdvEQm8yvDy/fGLz8sXvhKuunY5xW4/GUQcfoOd5PhhYVE0MIumBwFLeSJsKW7yAYK5b
CqNrBEzTRMFxtJt0rD4JEXsVgAGcGyrkwbTAOEe9XkelUkGtVou9EBKlFlOvo1wJcYxbIASY6+py
eKpkZLmvbyP/KgSxflz10AJc/ZUp2HX3PeAHAUTkiBALCIwpDx/ZvwKyshYYtwfAOe6ceT2EBO64
734cfcThyWxvETJxPMZV+VLf8zep2rkE8W5x5cOv4befPwOWaehycIDBOASTidw5CS+gaH2G4ZKr
b9yo104QWzKzZs3CxIkT8eVPnpfwUI0XpISUgGRYvW4tfvHb1vlJCIJAwosnFhGC0JaAjKdB1BkO
iTh388034+STT8Z1s27BxBM+Ep82SoIfX4sfBLjs8p+/69cw1GzxAoLBAF5bB85GgDHANMy4AgMA
cIYlK1bCsS30FIuQUmV8l0KgUChizJit0dnZCSklfM9H3XVR7u9HtVZDtVqF67pqIhUEqTCIIEqS
E0QlHX3f10qZbtnlVRv75yGIQfPpX9yAJ//3B6jUXXi6TUspwJiRmtRwbqoB0+J/QRa6gFHbgzGO
E488AgAghURSlg3j2aIkcOEqayZ6gVZqiC2Jf//NLDx01aVAmLJJ+lHonM+CTG4nZXskHhDExmf2
7Nk49dRT8dlzzwQQe7iG3gh33v8wHn3ssY19mQQx/JFJz+5A560TehyZwwZYcwpLG183ax6CIIBt
mhjR04Xx48bCdT0sfvttLFm2Ak888cTQX8wQwLIlCjNsgk4Vg+PXF34StmmitMt+sG0LxUJBV2VQ
WXGPnzQ12vaOO+7AJz/5SfzhF5dnEioijsdOuKKoGqQJscDzoxi30FUtCAJUa3X4vodqtabEBh3W
QBOhiM11eXmzty8AeODKXrier715dP1rbWM8sULqeR58ISG22hHSLDRUPgkC5QbmeR5cV9lL3a2j
Vnfhui5czwVWvEFu2YOH7Gsz4s5fXIya66Lmeqi7PuqeB88P4AcBvvizP27sy9sSIfsi2nL00UfD
81SytcdINBgMZF8EAOCOGdOwYuVKlMtVlKsV1PXYsCHJdoINMc869NBDASDObQJsSqJBU/siDwRd
R55VVgP2WKX8cgOGwXQpxxjXdfGnP/0JJ510Em6dfm1qcoNQTNBJrIBYXAAkOFPu1kayTI8WExhj
cD1VisswDdTrLqAbGUFs6nz4gl48dNWl0SRGBAKucGHZFkxdphSMweYcRhDAXfE6fAmI0TtDcjOu
O68TkPp+EHnqRLYHCax4k8QDYovnuK98f2NfAkEQg+See+7Z2JdAEJs0alzIovx1IhW+kEB7qz7z
zxc2yHU9/PDDG+Q8G5ot3gMBAP548QVwbAuWacDaZg+YpU5wrqohcIOnvBAAwDJN3DbzekCIsNxC
LBpAudL89FdX4a/33Bvtc/jBB+Hb//HlTE4E1cDrrotavY5qtRqvqi5ZgN7fXb+hf4rhCinMmwkP
XNkL3w/g66Q2pmmhVCoBjClvnUDA9z24nqeUY9MBRu8AwUwEQoX8uK4Lz/NQq9eV50G9Bnfpa/B8
jwSE9YPsiyCGDrIvghg6yL4IAMCECRNwzmknor9cQX+5rKoT+X7DdrVaHXc/9Oim5AWwMWlqXyQg
APjLpV8CAJgGh2kYMA0DvNgJNnoHGLYDzjkY51i09G2MHDUSXY7T9FgSwEWX/gBPzn8aADBixAhM
nz4dAPCvJx/FXnuomvfJpIqup9yx+8tlVGs11Go1fLOXVpESUAexmfHAlb3wfJ1ElHFYloVCsYgg
COC5HuquC89zVWIpKSEkIOwS/OIIuDBRX7EIXq0Mr15DvVaF63r4zu+mb+yvtalC9kUQQwfZF0EM
HWRfRMSxxx4Lz/Ow4/ht0NVRQrVWg8ENLFr6NpavWh1tR+LBgCEBoR3TL/uqymDNucpnAAbGoErG
OSWw7jHgpR4wbqjkmWFJurAOfXQkhkVLl+LjF3yp4Ryf+fhHcfbEU3Wlkbi0Y73uolKtolKtolyp
wF34Ar7x679syK8/3KEOYjPk8T98H9W6C88PdBUSDsNUSUxDLwMlIAhdLlXADwRcz4cXBPB8H54X
wPV9uL6Pi6+8YWN/pU0Vsi+CGDrIvghi6CD7Iho49NBDoySGSUg4GDQkIAyEOT+5MPrGKlM8UmWw
ePQeB7NsYOR4sEJXrpgQcI4TTj8rOnaxUMDN067R8dqIxAPP81CtKVfsct86uG8vQL1Ww9d/dd1G
+Q2GKdRBbMY8dNWlWL58BSRnKBSK4IYRJU0MdFiDEAK+fh4KCH4QqOdegAt/de3G/hqbMmRfBDF0
kH0RxNBB9kUQQwcJCIPh9p9/K1Ktkgk4QpEg+2uypBcCA2A6YN1bA4VOgFuQYVnIhvwHahW1XndR
X/Qi3GoFfhDgCz/93w32XTcRqIPYQvjsITtDSIn3vf8D2GPPPRGIsPpCoB8i+uv5Pj7346s39iVv
DpB9EcTQQfZFEEMH2RdBDB0kIKwPnz54Jxx59DEYM3ZMorLCwPdPbRp5HgCSMQjDRlCvwvc8uL6v
EssFAp/+4VXv/hfZ9KEOYgvj3w/bBZPOmgLGOeqeDz8IonwIoYBwXu+vNvZlbi6QfRHE0EH2RRBD
B9kXQQwdJCC8E75y9F6YOPlMAExlj9flGWVCUJCqpmOKsCKD1h6iko8yTAqnSzm6ng8hJBhnNCnK
hzqILZy//eq7EELg2C9TctEhgOyLIIYOsi+CGDrIvghi6CAB4d3moasuha9jswMhIkEBMg57kFKm
RIQ4hEHnQNA1SoWQMDjD5G//fGN/reEKdRAEMXSQfRHE0EH2RRBDB9kXQQwdJCBsKB688lIlDETC
ghII/CAAYwyc84QXggRjDKd87ccb+7KHO9RBEMTQQfZFEEMH2RdBDB1kXwQxdJCAQGzSUAdBEEMH
2RdBDB1kXwQxdJB9EcTQ0dS++Ia9DoIgCIIgCIIgCIIgNkVIQCAIgiAIgiAIgiAIoi0kIBAEQRAE
QRAEQRAE0RYSEAiCIAiCIAiCIAiCaAsJCARBEARBEARBEARBtIUEBIIgCIIgCIIgCIIg2kICAkEQ
BEEQBEEQBEEQbSEBgSAIgiAIgiAIgiCItpCAQBAEQRAEQRAEQRBEW0hAIAiCIAiCIAiCIAiiLSQg
EARBEARBEARBEATRFhIQCIIgCIIgCIIgCIJoCwkIBEEQBEEQBEEQBEG0hQQEgiAIgiAIgiAIgiDa
QgICQRAEQRAEQRAEQRBtIQGBIAiCIAiCIAiCIIi2kIBAEARBEARBEARBEERbSEAgCIIgCIIgCIIg
CKItJCAQBEEQBEEQBEEQBNEWEhAIgiAIgiAIgiAIgmgLCQgEQRAEQRAEQRAEQbSFBASCIAiCIAiC
IAiCINpCAgJBEARBEARBEARBEG0hAYEgCIIgCIIgCIIgiLaQgEAQBEEQBEEQBEEQRFtIQCAIgiAI
giAIgiAIoi0kIBAEQRAEQRAEQRAE0RYSEAiCIAiCIAiCIAiCaAsJCARBEARBEARBEARBtIUEBIIg
CIIgCIIgCIIg2kICAkEQBEEQBEEQBPH/2XvzOCmOK9/3F1lr79BsTbPvCAnQwiIJCQES2pCEEJLx
zrz3/N59n5m3eSyPuM++M32v7bnII8+Mx5659oxHY+RNSAIZ7UIyaLEsAZKQACH2HZqt6b27uqoy
4/6RlVmRkZGZVb1BV53v5yN3ZWRmZBaOUxHxi3NOEEQgJCAQBEEQBEEQBEEQBBEICQgEQRAEQRAE
QRAEQQRCAgJBEARBEARBEARBEIGQgEAQBEEQBEEQBEEQRCAkIBAEQRAEQRAEQRAEEQgJCARBEARB
EARBEARBBEICAkEQBEEQBEEQBEEQgZCAQBAEQRAEQRAEQRBEICQgEARBEARBEARBEAQRCAkIBEEQ
BEEQBEEQBEEEQgICQRAEQRAEQRAEQRCBkIBAEARBEARBEARBEEQgJCAQBEEQBEEQBEEQBBEICQgE
QRAEQRAEQRAEQQRCAgJBEARBEARBEARBEIGQgEAQBEEQBEEQBEEQRCAkIBAEQRAEQRAEQRAEEQgJ
CARBEARBEARBEARBBEICAkEQBEEQBEEQBEEQgZCAQBAEQRAEQRAEQRBEICQgEARBEARBEARBEAQR
CAkIBEEQBEEQBEEQBEEEQgICQRAEQRAEQRAEQRCBkIBAEARBEARBEARBEEQgJCAQBEEQBEEQBEEQ
BBEICQgEQRAEQRAEQRAEQQRCAgJBEARBEARBEARBEIGQgEAQBEEQBEEQBEEQRCAkIBAEQRAEQRAE
QRAEEQgJCARBEARBEARBEARBBEICAkEQBEEQBEEQBEEQgZCAQBAEQRAEQRAEQRBEICQgEARBEARB
EARBEAQRCAkIBEEQBEEQBEEQBEEEQgICQRAEQRAEQRAEQRCBkIBAEARBEARBEARBEEQgJCDkyPJZ
o7B81qjL/RoEUVSQ3REEQRAEQRDElQMJCDnwpRvG2p9pMkMQ/cMj142xP5PdEQRBEARBEMTlJ3y5
X+BK5/9YMAmMscv9GgRRdCR143K/AkEMOJbPHAVkuqxNu05f7tchCIIgCKLAIAEhAM45DM4dZctn
jaKBGUHkgexBEGQ/37h5Yh+/EUEUHstnZcUDdLOvEm2V+jmCIAiCIGQohCEAzgHwHC4kCELJitmj
swcZW1o+0z8kIZkWvA/I/gii2wTZmgvB3ih0iCAIgiAIGRIQAjAAGDSDIYhu4/DgYdm/fpOTlBi+
QBFEBNF98rCfLwh5RwiCCMZK9EtiG0EQxQQJCD785ZJp4JyTFwJB9IB85/9/futk6JwMjiC6jWQ+
uU5uunTDNFgyP4IIRLarnogIJEIQBDGQIAHBB+XKKUEQeRHWtLwmJCndQFrnNIkhiDxhrg89rYgg
iHzojggg3kMiAkEQAwFKoujxg71p12kYBofBM3kQJH7w3TVIpdPuE5yj7vEf9dGbEsTAo7qqAuca
m01BQFzdzIQxXHfvlxzXj1r4EGpSKXQ0N+D0vk/Q2dxIExqCyIFxI0fgWP25bAHPigFBCRUduUqk
ewmCyBGeX/JSV44gsjmCIAYARS8gfGXuOGX58lmjMLQshq60Dh0MsbIK6Mkk0qkuAEAqnXL/0nMA
tOUjQTiYNGEczjXucpqL+FkxaApFIqgYWoPpt9wtXEQQhB8/fv3jrCCusKu6NY8q76tb+wQGjRyH
dKoLLRfqzULqyggiGNnO8rQbw+BkawRBDDgY9481LvhR+5duGIuOlG4eSB3Bdfd+KVOWjyxsXlu3
9ok+ed8ipVC714K3LwD4i4WTcaqp0/P8dfd80fzAmMcKTKYw493jngRxgDOAgeyue5B9FRArZo02
w+8c/68yXHfvKsEFSCV+O4vqD+zCzzdu7o9XLnTIvgoYr5CDXD0QvDxgiZwh+yoyRJF80+7u2cry
mdktj8nefPG0r6LOgfD/LpoKJnoMyP9M9qBKHmyZdv1fXaEK5H9GEDLDbn4Q0ZD6pyYSKzGFA8sO
WabPdHSdzPbuYUoPH2abXd2ab/Xy2xPEwGLy+NG2TnDdvV8y/7tnVdaOHGQKLLMSFhRGTp3Vb+9M
EMUI5TsgiB4QsJuXF8tnjaKpWi9Q1B4I31w8Fedbu9CWFHIZcOciTTY+WxYHPMSCTDGthPYqhWrq
BW1fEFymj7y1Ec0dXY5zcu4DTxvz0+U8zpH95QXZV4FQt+ZRtCU1fRgAACAASURBVJ48gIrRUySP
HsFQuLcjAuAuJ1vqMWRfBYy4kgkOxMoqMGPRfdkLOHeI3BZ1a5/Amr/433F89zZ0NDY4ztOKaF6Q
fRURveGxs3zWKFc/Rzbniad9FW0OhCd/8g/QGEM4pCHEmHvbONc/mTTi4sxdTA4IBGHzvf//r+zP
0UgUQBcY03DtPas87hCMR7SlnGwqewNNeIhixBLrKkZPVehwCk87WViAVJ65z6zXTzDnqFtLiYOJ
4mTT7tNYOWciZt7xkBDyKmDZnh1WlOmnHvsW4hVVmHbTnbZp7XzldzSRIYh8yDNpqS1A0FytxxSl
B8Iv//kf0djcjNbWNpx+9/do6uhCIq0rrzVXSfNTBmgC0+sUqqkXpH0hIx7ohpEtsAZWXFyJkY/F
a4OeIF7kvIHsL2/IvgYIdY9lQnTyTdYr5vJxeSV42KF9L8/5eWR7Ssi+ChxnXh7JznLpz4RryIby
huyryOhu3pGe5ispUsgDweK5X/4bWtva0dHRCcPgYOAIaUG/P0LsqN+l5IFAEFj7N9+BoRIPXG6c
QeIBd3r6OFClvSYDJAqT73/3MaTTusdEPustIBa5TUS0JcnFx89s5HphCQruTrFuzaM0ASIGNF47
lbiQ+yovl7lcuiQxZIhsiCDyQtNCGDNzHgCg7rFHPcNax86cj/oDu5Dq8k7qTeRO0QkIl5qa0JlI
IJVOAwwIaUA4SEDIaQWGxEKC+PHa7yGdToMxhpCmIa2nM7aTZxIDILsqqjIthwNC1j5p4EUUIul0
2icfiGUnQj8VKHR75+/J/lX0e0w1USLhjihQbI1MauMu21C0/+6YROZ5dWsezcmsqL8jipVrlixH
JF7q9N5ZoxYPrHNDxkzAkDETHeU7X/5dP7xtYVJ0uzAkEl1IJpP2saZpCGlMKSLYSd4cHYWXUGAN
4mggRRQviUQX0roOg3OkdUVYkCtkSsoML4/JvAZRYpwpkyc0BFFgeHri2Be48x7I5y286rBsKnN+
3TMbzdvkHVHcN9p2TRMaoqBgzrwF2XLmtg3uKnD8ye95PCviWZXY9WQrrFvzqLniShBFxKZdpxGJ
lZoHoo6NIHtz91/d3QaSKDIPhHX/8mMkuhKO2OyaWx7CwTfXQ3O4ZPpliPf19XQn0CGIIsGV9wDw
9zywPAyYVC7e53H7uvUbsXrVSkcZTV6IQqXu8SeyrtVy+g8oPApUXgrWqqnnhkJuY1v3zAaXnSlF
PdLuiEKEM7f3gYVY7vLqEdx5ZJvL7MqgGzp+/dzvASBjY7J3D3eK43b13QiRIIgBiG84ERNszLYP
P29xxU5E8jMcnkWUHDiIohIQ2to7kE7r4EZ2tSaVTmP8bQ/h/MFP0dJ4CZPm3gamhRR3+7h8wn8Q
RhCFzt//oM4tHqgSt6mywdvXK1Z7RHdqoZOYM3sm1q1XTG4IokDRNM3MLSLmMHCJb4JQIM/0vRx1
FF3WpcZG+3PWzuRnOgdwJOARhUDd2idQt+ZbQltn7pAFaaLhzj8iGZvDs848sMQD2Db2kPQmeSZi
JIgBiksoEO3LM4Q8l1A6jt88twlfWblcMfZU7UDEHOPWbCiRaIggYSFD0YQwrPuXHyOZTJqxpA7X
MLPRDJ96LSbPX+IhHlgo3NPsOrIfJ0yY0HsvThADgHgsnvkku0qrPAkU8aSAOleC2EfYv98Mx0+Z
bmfr1m8AyPuAKAL++m9/KBxlJjUqhzd58sIFAc7Gx1OOAy9u3qKqWLo3+xyyP6KwUEws4OXx4+MR
4GFmVr/lulER4RcMeb0SAxd7m2BHKCtTfwZySIplHnODY936jUjruhmO58LDuByh6MKiFoc9EM05
0WqBUxTbOD7/qydRf+4cWlrb0JVMwvWdHQqTjDBYCkymmK1j3foNOHr0aO99ieKmULX3grAvAPjT
m69i85t/6MaKiSwmSPd71CMOwFZ/4SHUPU6KcA8g+xpA1D32LeeExpXgTfX/qP81yWQSb7+/HafP
nlM2hknjx+GW+XMUZ8jNMwfIvgYo9goklIubHn2U2wCff+V1tLS2+T7L9ECQbdSvIyXPnwxkXwMc
7wm5T7/lYx9qgQ5Zj1UvPV0Z2ud+pyLr8zztqyhCGNra25FMpgBwMAYwZjpeRMJhpNNpaJoG3TCc
W8/ZqJQwjyBSKdHVhAkTSEQgioKTJ04gFo2iK9nljEcLCv3x8zhQnAaAiw2XHMcbXn4NYDSQIoqD
usd/JA24AmKibZdqwfCEa8TBlt3DcQ4miOVu8aDoBlFEEWKGMyhyj8Cvj8q6XqfSOn67cVPgc778
0APZAzHdlq8QT30eUcC48oqo7C9rJJxzrHtmo6e5hMNh571WyCyXw/IyFzCu7jspUb5NUYQwtHd0
IJVOQ9cNhMNhRMJhVJSXobSkBBUV5WCMwVBljFdi7U3P3bKV7YHNMWTwoD76NgRx5XH0+AlUVw92
/8JzOIX0oAUV+7NbfP/o091Yt34DXn5zq6O8rb2jh29PEAOLurVPmBN8W6gTcGRuF3dncBvex7v2
KOtnXp529m4LJB4QxYE5Sec+E3kLOayV5SQeAEAkEhHGkc7wWtc6dGboSeIBUSgo27Kvs7fQx2VE
8Kd8xIPVq1aaeRAc9bPsYhcX53KCMqjoO+seJ7uzKHgBYf2TP4Ou60in0wiFQhnxoBxVFZWIRMLo
7EwgmUq5k+DA3R/YMTC28uXVXBmqMwIC5UMgCp2Nv/p3aBrDhQsX3RMPMQ8CAjoFh/bgtMd16zdg
z74DPjdziksjioaf/f0PwQ3Dw8VTHABlV0Md12SYPnlSfg/2DeEjiMKkbu2PTG8E30m72zZumnN9
YN3XTJ+WPbDjrL2rrXv8CZrEEAVH1ra4YvIFZ5ngFbBuvSq/QZavPfyg/4NVng4ecUsk2jkpeAGh
K5lCoisJxhgYA8pKSzGoqhLpdBrtHR3oSiazF3Ppg+jWYo/TuDvhh4Ijx0/an2liQxQy7R2dCIcj
MAwDI0cM97nSw2i8ksFlaGppzuEtaGJDFA+RSMSZdDQjEIQjGTdNVzI2pujXgNLSktwe6BDVSawj
CAce/dfUScELSDfMvsajTu4Q/oIFDIIY2Jjt22txVirjCu8cicqKcmihkH86CVf4gt+7ESIFLyB0
dnZC1/WMgKAhFotB0zS0d3agvaMze6G4kKPaz9fhyiJvn+XkuRdfhS6EROzc/VnvfimCuJLgHLqu
wzAMnDl7DsOGVAvnxAs9kpRartgev9/xWCznV6GJDVEMtLW3K1ZkYO4yBC89Td1pBW2FGo/FpHhv
EusIAvBcqHSwetVKhEPq3b0evGeps0DsB1nWg4gmL0Sx4BTKfBaXmLmYW15WqjwdCoWw4t67rIuz
J1QbB7g8f7LCPAl33hR0EsXnf/0kOjo6YRgGDG4gEg5j6JBqXLzYkBloCWl0xYGRI7tnTmk5bX75
9HMuN+5de/ehbs2j1AiJgqSyqgonz5yxBzsXxCSHLnPxykQlevg4b4rH45g8fhwOHTvu/yKBu6QQ
RGHQ2tqqzrKW8+4nTlavWolEIoH1m152lC+55SaMqa3thTcmiALEjp/2W1Ti+IroRu3Y4x5uo6Uu
jCAc8yVzNxTVPI1h5X33AADOnjuPRFcXxo8Z47sgpUQOE6K5Wk4UtIAwbPgIHD563MwoDQbGGDRb
1ZWSZQBObwMxZIGLeQ+sY/dILZlM+iSf6stvShCXh1/9/Ke41NgIbvAcJy8ekx37s1qwWzB/DpKp
FE6cPuOq0TYtEg+IIuDJn/4j0npa7eoZKNgBjmVT4XQ8HsfqVSvtbY6VfZl9K0fdmm9RMkWiqFB6
uPn1O6qtHpksFph22NDYiHg8hrJSaUXVf6t1gih8bNFNGGdKdlcjh88Kp5taWpBOpTF0SLVHvgOF
GE8EUtACQnNTMzg3wDkXtmhkmD1rFj7Ytg2JRAK6Y+tG8YddVLkyZVx0t3YrzvXnL3i+y7pnNlDi
G6LgqB5cjbNnz5mTjlx/ey0Pn8CBl/P84ltuQiLRhfWbXnKU/5nggv3Ca28C/Fuoe5wmNkRh0tTc
nMdAxzvRbxbnwImpMr9L2z2GNA1ffWRFrq9MEAWMaCwqgVxelJLuNgw89ezzrhrNfo286gjC3Lr4
W8p5l4kgAgjXnD1/Aa9vfcd19ZSJ43Hz3BsyR8JCMqddFvKhYHMgbPrNL9HQ0OAQb1OpFD7btx9H
jx5FZWUl4vF4cEUe3taqRZ1xo5yunlx4+IhhQyk+mygonvof/4SOzg7ohiEIdH6ISdwUK6eWvXgJ
wRyIx2NYvWollt52C+5avNCM387c9sqbW9HY3EziAVHQtLW1OQt6skCpskVFfR9+sstxrBsGXtvi
HpgRRFHgSHAoebRysZ8T8OjTZPHAunTd+g3kuUoQtuePKleWIgmJMJZUiQcAcPDIMYcgLt5L87Tc
KVgBweAGupJdCIVCMDJeCBwcqVTK3FrXMFASj3kmt8kiKsryqo10GWNYetst2SJBOb57yUIcOHyk
x9+LIK4UYvE46s+ehW7oMFxulqqRj5crtXjepx7h9tqaEagZPsxR7si9QBAFyL/++EeCrcm7AwWQ
jfVxu0XLi6iSqX62/6CrunMXvD3uCKKgERIcKs/Z+NhZxrXaj3XP+G9RRxBFh6O/81DpGMPmt94N
rMopIpBaly8FKyDEYnHouo6QpkFjWkZEAHTdwJ7P9yMajSIWi6GkxPJC4NJfGdlFWx0fWlszAmNH
qZJOMbz/4c4efiuCuDJ46q//HPF4CTo7EzD0PLwPRPtybPcrJMhh8j3CcS46BUEUKBcbGoQjeXcg
gSD9zpHEzSvSwTxp7+xAEEVM91Ym/XOUvPzm1j58NkEUIJx7dVgOzp47L9ziPVDM9m8UKpQvBZkD
4eWnf4VRY8fiTH09dL0DgORtBmD/wcOYPHE8DMNAOq2jM5FwXiAjJk70yvaeKVq84KbMZRzpdNrc
s5smOkQBMWTYCOw/fBi6rkM39Bz8NeWEpdJKjXIio8hD4lGtXwdBEIXAs3/3n5FMpswDZQJSZAvk
/sl2q/ZIYioXCDlIfrNhk/J9jh492rMvRBADCcfuXFaZlBk+14oycdq5iXOckpUShJw8MUBHcDjV
+eQR+c2GTcJWxpRIMR8K0gMhlU7hfGZLD3MLRyG22oIBh44eQ/2586goL4fzAsVkROwk/FzUHJcx
RMJhu4wGXEQh8Pzav8Tp+rNIppLQdd09oEKOngGiuTHmnBCJMB6oOq97ZiOJCERBc6GhEVDlGnFF
BqnEbYXLtd99NIYiCJu6x76ltglrRy/PrkfyuJMmKKHAEFqQMRKEavgnJreH+/P8669VVyWNEzWt
IKfB/ULB/ctt+ucfgIPh9OnTSKfT4ODqpDb2jznH+YsXMaiqMjuAUnUG3PUB7koV5ymDLlFghONl
aGtvh97WJO1iIrR3h61Jwpxsj3IMtyumO2iQZgnTjEQ6omBpbmkBOprMA79uRWl7XqhyjPjfs+yO
xcKKDUEUAczRWalFblW5nRle7TH04N1LXY/inGP21Vfh6194CKtXPURxekRRU7fmUcU0S+y3hNxZ
LGtk06dMUtbHGMPgqiosunk+KsrL8DXFbkJ1j1HIUC4UVAjDS0/8FVJDJmHsqFE4d/48DN2AYXD1
z6/kdtbU3CJsteOz546dgMprOxGPVLukIhMFQs3IWnx24DD0RAMwqMQs9BXK5PiDIFtQ2Iss/smu
pARR4KTTOsBbgfJqs0C1xTAEcdz2OvCxFWvLK2VYnulqfeuNc/HuBzsAwBYO6tbSVldEEeMyJ4Vw
Lp5jqs9AeXkZvvrwg3jpjS24b+kSySPBCpnt3VcniIGFajxox66an+XtHTPHDqFbUc240aPVMbKM
jC4XCkpASKbSGFQ9BBcvXkQ6bcZm88wODEqs+DWumgAxRbuyhANFwirPuQxNdIjC4vSZM0jrOoy0
DiQ7gFhZ5ozc1j22bQwS3gJNRm3PtCpKFDJmrhEA6SQQjnonRRTtTSV2q3KKMOa+N3PfxHFjMHHc
WKkCgigijDSghfxzYOVFNg9CKBTCcoUngjU4pW2JieLGZ2yo8nh1HYt9oOQKZIUgOS7vDfsuDgpG
QHjhh9+GbnCEGHDh4kVzazmDmx4IrrhRSQhQJaNSxKsJakPmGu6O3WZcUsPMD8o9RxXQyg5xpXOm
/mxWlGu9CERL1T/Erh9mjx92r07B6z7Fj7u9MrrmUYADdY+THRGFhbWbEJrqgaHj1J44ASZol6mS
lno5z9nnSAwnipTGM8AQS0RjattzEGQrzDmcdFzulzWYIIoM0dZyNgenDX20aw/2fL4fyOQ8MMMW
PCoj8SBnWEDisQGz1PDsD76JYSNG4PT5BjRHqtHZlUAymUI6nXZniVf9tit/yGUk8QD5NDbV6mxu
yheJCgXbiw4Y+xL5529/A5eaW7L5D6KlQOUwycaE7NSBiq6c/d03xbx/BnrXsySRgsQFFWRfA4B/
/Mv/BU0treYB04QJDRQ25C5WXZrjCf8OMmOzlCneE7KvAU7dNx4Ghozz6MeC7UZcQPJ1q7bNjMaC
eUD2VcCIW5iue3oDVn8xD09Tyb42vfYGmppbwAB8fdVK3/El2ZqNp30VhIDw4t99G5F4KXQOnDx9
Bl2VtUikdKT1NNJpPY/s7LlO6rupQHhNbnJ5j+LuPKiDuIL42WPfwIVGQUDgAMoGA6WVzpmLHJdm
T+YlO/DcCsvDQyHvCZC3TRaxTYmQfQ0Q6r7xcPYgWgpUDldcpXIvUCHFWOfUCnK3MbItG7KvAY5t
d0PHe1yhMCLOsWnzFjQ1NdlFX1n5AMLhiMf9fqqfc/xItuWA7KuAsbxK1z2zQQpT7abg7bqM5lsB
eP4DFkQIQyqto3b4cOz9fD9SqRTS7U0wwmXgBneLB6rBEpdiYcQJjlJxlmYz1u4N4iRI5ZLG5A7C
YyDm0eYtJY4aNnE5CVvb3ojNuKMRiJcBmvCT4nLR9LIpr98n63oPN22XnXipDN4DM7IpYsCS7DBd
qwfXSieEPgiKfkjOdZD5c/jYcfxx24eOmirLy/HgvXdmLg9wyZYg2yIKjovHzfAhF+72/9If3naI
B9defZUpHji0ApV47hxDbnjxVbR1dAAA7rl9EYYPHZKxLfL6IYoBcz7mLR6oJkyKsZ+4oCWHn8vP
U22FTLgoiG0cGWNI6zo6Ep3QDQNGawMMXYdhGO5trOx5OxcGWFKmW083NeXTM3UyV7HHgTCjEqsV
9rr3GKjpuo6Dh486XHoIor/5xn//V0TDYXezvnRaOMi0ccvWHJOYzB/b/gTbUnoLefyY+4nPcjgF
4OwUpMfUPfYo2RVxxVP3i+ecBXoSuHRKfTFzdjVOQS5bzgA89cxGvLf9I1cVLW1t+M2GTYK55NM3
Zt6Z7IoY4GTtjnvbm0RDQ4P9ORaNYvY1M8wDh1bAnF5AIplQhpX332MXvfqHt7LnaZJDFAOSbaxb
vwHr1m9EsxXOF2QHjkTCfsl/OI4cP2EeN5/ttdcvZApCQADTcPbsOehpM3GirhswWi+aAoItDnCp
IUrqU+C2HTn8WHNZFHBdIPxRuGYHDM5CmoY/ffgx1q3fgLo1NOEhLh8l8aiilAMNJwURQNjy1DWJ
EYQ8h3dB7oOig0eO4fevvI5nNr2MN97+Izo7E45HWK/kzDDvfA1byMjYP9kUcaXjEhGMNNB4Wt3x
uIq4wwaj0Qh+s/EFaJr3UEDX9exgTYnaZk+cOo3NW981V0rJrogBTt0vnjPNx0ibnggygq3JSbO/
+OB92c5GJZIrh35ZW129aqW9X/269Rtw6sxZM06b7IoocNo7OwFbOMja1e9f3YwPP90tLU5J8zzu
MaZkQGtrm12nWS/DxLFjzc+Davr4WxUGBZED4bm//SYSKR2Nza3oSqWQTKWRSuvgFUOFLeYy5BMm
HRA+4xc/4w/3ntj4PgswDAO/evZ5u3jI4EH48OOdeT5/wFGoUvuAsC8/HDHZNgyoHp3Z9iqDKqTH
4zCo/I/bduDwsROe73T7rQswutajA/B4D8t9e9qkCbhxzvXF5nZN9jVAqfvfHnb+v1c9FtA0t2u0
3dSzbb6stAQvbN6ChkuNSCaTMAzvLY+X370Ug6oqpboEFGXvbf8Ih44eA8RdUorLrizIvgoIR583
dLwrp8+O3Z9j79699vGSW27CmNpapzdQTmM+j+TDnOO3G1/AqJE1uO3m+eY7FaddWZB9FTB1ax71
3cXuSyvuRzSqWtDygQPvvL8NR0+6vYlWr1qJdes34OjRo9153ULE074KQkB49gf/H1o7utDa0YGu
ZBrJdBppPbNndsUwYZu5DMKKYzYuJudMbQGokumYh6lUCq1t7QiHQojHY0KjD+hVlPl5OPZ8vh+N
zS2Yf/21iEUjAGOF2pFQB3EFoxQROIDyaqCkMrdK7FwJ3js2aMzcjmd3ZjseZOxARXlZKVbed4/y
nNczrE4qEg7jyyuXF6otqSD7GuC4bDBSAlSN8Lw+Hovh2mtn42//4adoaGhAZ2enb7Lhrz78IEKh
kLPQ8uyThXAh78mm182s15xz/NkXzXcsIruyIPsqMBz2Ztua2fDFyU48FsWqB+/PIZkbx6bX30R7
RwdmTp+OmTOm+TxdURfnqHu8aPMhkH0VKEHiAQBUVpRjxb135Vkzx/pNLyOR6PK9ikQEoOAFBAB4
8jv/J1raO5BM6U4BAQBKBwOlVebnXHQCv996z3OCV4HE9p2fYu/+Q57e2VdNmYx518/O52F5UQAD
NuogBghKMSEcAwaN9L4poJlHImFEwhG88uZWnKo/a090OFckSRUIhUL46srl7nAl+6FQPvgP775n
uohm1OgCsJ8gyL6KhLV/8x1omoZ5c+fiJ//2H7jQ0ID6+nqk02nXtZxzMMZQPagK9991h7pCz1VS
uZ/leOrZ58E5LxabEiH7KmDEPm/dH7J5RGZeNQ3Xz7rGfYNkG9s+/gT7Dh52nF500zyMHztGuF5I
Auexm1dnZwKP//invf31BgJkXwXKhAkTcrrOmWAxN5594RV0ZMIjvCABASgKAeGpv/5ztLR3oiOR
dAsIAFBSBZQOym2wozoXKDyoVeGNr7yO1rb24C/AOW67eb7ZaeTl5tYNAQRA3eMDagBHHcQARRxc
uWK3rXIrjlOytUg4jGgkglA4DE1j+Ocnf+USD4K2aL1z8a0YOWy4t+gXsCp0qv4cRtfWFPqEh+yr
iPj3n/w9Kisr8ctnnsepU6fQ2trqsCsm9ZF3LV6ImuHDhBIPu/EK6fOY8BS4TYmQfRUBy5Yts0MX
GGP4+hcecl4g2oFkJr/dsAmpjIi3eMGNGDt6lOIJ8mBUyC8kHBaRXVmQfRUguYoHSluDtEak6IN0
3cCvn/u9b92DKiux89NP83ntQqTwBQQA+Plj30BLeye6UgoBATDzIVQMU93qQZ6uCEJROBTC86+8
jsbmFuclAROeWVdNw3WWap1nfoTcTzjLB0CHQx1EEbD2b74DzjkMw0AoFEIsFkUoFEIoFEJnZyf+
9VdPO4SDXASEyRPGYcG8G7qXpwRCAtbC3n+b7KuIWPcvP0YkEsG/P70BJ06cUHofWDDG8PVHVnhO
fBz4hB9lb7bCBotKRCD7KgKsCY/p+fagR2isG845Nrz4Kh5+4F7VWadIYB8He/4UiW2B7KvwyFU8
AIB771iMYUOqc7tYYY6n689i1959OH+xQXlLEXrMyRSHgAAAP/nLP0NrRwJJr0FR6WDTG8HLm0D8
oXa4jCGn3ymNMUSjURw+ehxb//SBY4IjrvJ4wQE8cOftqB48KDcvh1xRuJTKHdAVbCTUQRQJP/3h
38IwdHAOxGIxxGJRgAPv7fgI736w3U70lquAUFszAktvu0UoydfdSH39FWwr3YHsq4j49c9/il8/
/xJOnjwZmPtgyS03YcyoWo+zHnbCeSaaz8+7p6gmOmRfBc7ixYtx7NgxhDQNX83sluAmH9dSxeWy
iJBjHQPM27Q7kH0VEPmIB2AMq1XeBy4km1GaEEdbewc2vPSao7QkHscXli8rhn7Ki+IREADg7/+f
r6Glo9Pn95oBg2uBUMT7R92xd6iMrAqbWyxGImGEw2FoWgi/+PXTSKXTynjtoElPSTyOLzywLOBn
MSh2wctDwv3uA8AjgTqIIuG3//YvSCQS0A0DI2tqYBgcia4E/uXJp1B/7rxDQDAMI7C+saNqsfiW
m7IFrj2Bma9radBg7Qq0le5A9lVE/OpnP8HG17fg008/tW1JNdkfM2okltxys7sC216ctsENA08J
OwQBMAd3XkKCZFoFYksqyL4KHGvS44rFVobA5rkQxBWJSgOvh+tisq8BR9HZV17igWhv8tQHfq0i
QEzgwItvvIlLjc0AgKHV1Vi2dDFQ2Dbkh+e/ZLh/36N/+Mt/+hV++BdfRkdX0ixQTQoaT5uFVSOA
SFxRC3Motz9e+z00NjU7r9AYQqEQIuEQwuEwQloIWkiDxpgdQsEYcwzQfL0PMtd1JhLQDd2d9Rri
4C1rLc+9+CraOzozW9BdJ3hOSPE/Yqdie1m4Ve26NY8Wq6EQl5mSuGmL8ZI4RtTUIJVK4Wx9PS40
XMo5eaJIZUV59sAeWFkw6a+EuYzqE/Pt3N+ebIYYCDy/eSsOHz5s25BKPBg7uhaLFwjCmzgqY2q7
ef8j93bC2z7+FPNvuFaqR+yDspAtEQORpUuXAp6J3ETPHCgm9s6+5ejxE9jxyW6k0iloWggjhw/D
osxWjdkhH1fsKiZ+VosNdWu+hbq1RbtTA1FgrF71kNAtSQ1e4V0QON4TLrv/zjuQTqdx5PgJTBo/
LnOu6PScQArSA0GFer9678RuKt7Y+DTOnD2H1vZ2cMOArhvQNIZQKAxNM4UDc0GT4x9+/qTL6yBX
t2sAWHTzfIwbM9rH0wAAmL1/vXhm4tgxmHvtTJSUlHi6IZkGXwAAIABJREFU6rg7NevUFRnvTQpz
kfDas79FW0cHysvLMWbMGDQ1NeHoseP4/t//E3Rdtz0PchHiAODh++9BWWlpTs/mnGPdMxvtxnbt
NTMw++qrpHAmn/HfwF1RJfsqEhYsWADDMHD+/HkPDx6Gr6x8AOGwsLbg4XGgIpHowvpNLzlrZAxf
f+Qh75VY5SptlgFkR16QfRUwEyZMMPeij0QDJi7e9hO0VR0HcNWUSZh//bUeVWUWgzy8Zi9euoSX
39gKFGZmebKvAmDihIkYO7oWJ0+fgeEzvisrLcHD92fyhXgk6PU6zA+xY0J2gXXg90f5UlwhDH3J
73/9H+jo7EQymURa1+2EbwwwGz3nMDjHP/78SaQzEx50Q0C47poZmHX1dPOAe4RScCCtp/GbDZuU
dTj37pYHa0EJr0yuEGOhDqJIeH3D79DW3o6SklKMGzcO5y9cwLf/+ntoyWSKNwwjp9AFACgvK8XK
ZXfn1M7BgcbmJrzw+h8cxXOvm4UZUyabB7nUo6h4AKz6kH0VCY888gh27dqFZDLpOldZXo777lyC
SCSSLVSPoZyILtMc2Pz2u6g/d9683CtDdi4MXEFOhuyrQJk7dy4uXrzos42c9/be5mlTtM6HL624
H9Fo1PkMz0lT9kAUKQpMRCD7GuD8l29/056rfPDhx9h/2N0+Y7Eovvjg/d1/iCxU55SShCvnXwO4
L+oOxRXC0JeUlpaAw1zhjGRWQg3DgME5mCUQ6DqYpgGKnSBydb02B3EqV89Mg86Uh8NhPHDXHXjz
nT+iozPhqOPYydOYNH4s7IsdXjyWB4IoJEjGwimcgehfGGOmbUUiOHbyFH7x1G/Q3tGRl/hmce/t
i4In/ZZNMHPLHpkdO3dhx85duGXeHEyaMM55j2/uhKw7qeWaTXZEXE4WL16M9vZ2pFIp1zn1nvVC
+/YzI9HGGHDHwgXoSiZREovltnuD+Dwf926yI+JK4+LFi84CVzv3yqNljgWfylM8AIDfPf8i7l5y
G0YMG6oWJ5g8UzIpKytFe3sHkPGaKDARgRjAiOHa866/Fqfqz6KtvQOMMVw1ZTLmXT/bvwJLxBZ2
+PEcn+WUk0QYGBaqPNULaJf7BQYaoVAI0UgEsWgUkUgEoZCGUDiEcCiEkKYJYWrZiY5X8kS/ydBY
O/O1fA2z27XF4EFVeOSBZa6VnonjxohPUxuCo/NRG4sYm0oQfQljDMlUCmt/8jP8fN1vcPT4CTt0
IVfxQNM03H/n7WYIT+ADM385B9M0rF61EsvvXuq67OKlRvc95o3ZMoWpipAdEZeTsrIyNDU1uco9
xQMxzE0sdhU60TTNzGVixWJDoQvIj+KqQZwgcgsXkx0RVxKOELmcRDKT7ogHFq9tedv08mFWfaKN
qGO9Vy6723Gcb8I6gugzhOaraRoevu8e/NkXV2L1qpU5iAeQJvuW6O2TE4Gp7AUBZZQHQYYEhDyJ
hM18B6GQKRrEojGUxEuyClomgaIueR+oJj9i8irxfFlZKcrKrE7JK/+B/BlgYFh2x2IsmDcHq7/w
UMZ+hNg49y3iC7rLHAodQfQ96XQa//3H/wNVVVVoampCIpHIayvUeDyGh5bdZW6Dmr0r+1c1eYGz
sxlUVYmKsjLHZfOVnRjLKt22QOdvK3WPPUoDN6LfWbRoEerr620xzkJjDNfPvNpf/ZJDuK3+RLRB
DnXbVwkHKp1A5SkkestlwgPtOFQSEYjLzI033ggA2bGel7jmOHSHEwTh1edtfutd7+QhAeNNC+qL
iMtN3ZpHHQs5gNUfWG2b+4+rmPd836wT/v0bVOdV5UJ+OOp/ABIQ8kfTmLnbgqYhGo2irLwcmmb+
M7LMisvLb2xRehv4raBaP+6MMdy9aKF4o9QZ+CTkYcDQIYMxefzYrAFy5pzYMMkgsi/g860ZGQzR
L/zDz59ELBZDKBRCU1OTY9tG0X7kwRAHMHnCOHzhgWXqpIl2gikuHKs6HvPEQ/fdjXtuX4Qvr3jA
jG+1k8gJOIrUqz6uuhmw+gsraeBG9CvhcBitmTwiIqNrR0q7+vggN3HXCo/Xqo10n12eozBtuWlL
mefJhojLyblz5wBRQLCbp+Q5w4RJDAdOnTmb13PEsaHM6fqzCvEgaDwnXMo52RFx+XEIB5A6DblM
db9znciN4A2nWkjyROxzKJZBhpIodoM3f/8MkskkNC2ElvZ2/Ptv1uP8hYtIJrug684JTz7JE6PR
KB65/x6Ew1Y8UKCslsM13udTqRRe3fJ2dntKzsE0hrLSUsy7bjbGjKp1x6FenvjTQrVcsi+Ja665
BjU1NUin06ivr7cFBCtxosqGIuEw7l5ym+R14IGXSfiWc+egMKfBmUeFQvG69RuulDhUsq8CZubM
meCco7Oz05WAdOrECbhpzvWKsJw8moScE8TjdkPX8clnn+PQ0eMwuIFIOIzRI2sw++qrEI/H/W3L
rpM7BpTr1ptu4FeIHXlB9lWAiBNvRxLFAPPJx/sgF/J5Njhw8OhRHDp6HA2NTbb4cYXbTxBkXwMU
c2HSp9H6jrdUnjc+rcF30ci73/Krv0jy8Xj+q1ASxW5gJnrTcOjYcTz74qvozOzKYBhZV7N8k76V
lZZi+T1LndtneeGrMIt+ph5GwTk2vf4mmppb5C8GzoG29g5s+eP7AIA7F92KkcOHZ87n9FUIotsw
xmAYBhobG1025CUerFh2lxlzLZKLvuZ4sHAfE5KJ+q2s+vY4smspF2L0TLwzdxNE7xEOh9GRSUQq
c+7CRacnjW97F+BSgkX5WMDQdTy96WVX8sauriT2HTqCfYeOAACGDB6M++5con6evLqbsaevrFyO
32zYREnhiH7luuuusz+7rMoR+tmPgyauOJAzyDNgysTxmDIxK36sW78BU6ZMwcGDB/vtVQkii4+N
SF5nzkulRIkIWNxhHvbI3XnlPB/qErGLGwph6AamgAD88unnoOs6UqmUr2AQJCSMGDYUK+69ExGH
eCDHl4ovAPV1qosU4sHvnn/RLR54sPmtd/G7379gGw6FMhB9xaxZs8AYQ1tbG5LJZE7i2/WzrnaL
B/DwfHPEcHvApIm+fa/gYucKW5DCIiCfV1yb4ab5c31ehiB6TiqVcuU+sGhpa0NXV9Js90G24UAO
n7M8dJzFyWQSv3ru98qdH2QaGhuxbv0GvLf9Q0XonroTDIfCee3MQhC9gZiMlAGCZ48q3DRbnEh0
9d1LOSZBzCVY2+8huWKvXrUSs6+eTmM74vLg+vn2iEVQzdllQcG3XkUH59l1CIq6q38h8cCCPBC6
AQOw7+BhGIaBZDLpSpiYDyXxOO5atBBMk92lRdXLz8VH3LZEHMip3Ul3fLILyRwGcyLJZCoTN0SG
Q/QdnJvbo1qu1rl48dTWjBBrUNuJLLjJq6xWfKoqFpwJwoGjPg5dN/CnHR/h+Kkz9m8AYwzVg6pw
05zrMaR6sOKNnTZ51+LbMHHiRBw5csTzOxJEd5kxY4avDXHOsWffftwwe2aOLpwZO3GMxUTvA2cl
v3v+xbzf+dDR4zh09Djuu3MJhgwepPa4E7rJP/viw1i3fgN5IRCXDY1Za3EecXCZ9tva3tarzzUT
oOaK9R5uQ79m+rRi8JgnrkRcJsOy843AKYd4Ac9O+JnXvfL4Dh6inzjeY9LcjDwQLMgDoTswhv94
+jkYhoF0Om1PdixyDWFgjOGuRbeCaaJa7CezKZQ5+5S0TaOHO+neA4cc75kr69ZvtAdspFQTfQHn
HLquI51O57zlaXt7p3DkYScu92zm7jNcyXssrwOW7ZQE3nl/O3793O9x5PhJh4DIOUdDYxNeemML
1q3fkE2oyhU2m+Hrj6zw/kchiB5gGEagwL33wCHTQ8A1mBKwbUgS0lx9VvbzvoOH0BNe2rwFL23e
4rNDA7cTYllbFlNCOOKy4OW9w+GwicGVlWZxL3nNzJwx3eOMyitOMTly3ELJsonLiNxWmWQjXNWm
pXsgi83WPb5up8Hv5ejnhEXaIocEhG5gNSNZQMg154F1zZDBg1BVVWGVZldCA58srp5aLtcqV5vM
+UxxZyLhrC3HTL0E0V8YhuES5PzY64rbFLxx4JMYx7PpC67YjslSVnR4afMfcPTEKc93Et/94qVG
PPXMRvx6wybFhdm6aeBG9AW59Eu6YWDHzl2Zoxz7BA9P7cxDwTnHto8/zf+FJRoam/CrZ5/3eAFm
DzRvvXEeGGN44K47evxMgugWVi4Qh1jstLtwJIIvrbgf9y1dgoU3zsOc2TMxcdxYlJaU5P24SePG
qk+IYQoeDhEeBwRx+VB6ImTgHBxAe3sHUum0RwWqtiyJCl7NnXskQfBNc0XzJwph6CZWZnjV4Czo
2Jq4p9Jpp7rlF6pgCQzySqk8yYGc0Cp7vuFSY3e+qpK6NY8WSwZSop/IJ+moxcnT9fhs3wFcPX1q
pkTlomY9INf5kXxhNi/CW+99gIbGJp97ncKcFZah6zrWrd8ABuDrVvJE0ZRltZ0gegGNMegBNsUA
HDh6DNOnTMrsZCKKcIqQn8BkVcDHn+7pra8AwzCw6bU3sPzupU7hwPENgK9/4SGA+iainwmFQo7j
dc9sxF2LF6Jm2FBpvGZ+jkajGDqkGkOHVDvue+f97Th64mROz/zyigcQiUSkUil/j+IUIPeBcmge
2Q/Rj3B5HGT+3jc2NePIiZP4/MAhGJwrm/TqVQ9lPlnzHiu0zn83IOXzPUWCoJcubsgDoRtoWvaf
zUssyGUi1NzSisbmZqFEEecpnmPyoMnjeo/BnZnLoPegVVOiN5FtJxdBgTGGj3ftwaXGpszKD/ee
kFudi+Oh8ktAMQjLHhw/dTqv7yR7+XDVNl6ZCRrZE9Hb3HHbLbldyDneeX+7ELaTwcoL4tCtvVyg
7Ztw6Ojxnry2i6bmFhi6kcOzTciWiL5kiLBl8HXXzMh84riU2RJ781vvSk0yeMJx641zMWxIta9T
wD1LbsPqVSsRiYb9V2xzSUCngnRsoj8R2mU6nca+g4exftNLeOmNLdi7/6C5AONx6979h5QCWPBO
DOrnB+OIhSVjIQGheyxctkLp/p9r3LbIm+/8CVzam9u8WYrzhNBeXdVa3gjcWcad5ysrygPfJ6d3
93wPgug+jLFuxYYanON1e8Am5xIRXErlsATrMjF0yKdD6c1s7x/v2kP2Q/Q5k8aNxZ2Lbg30tmSM
obm1FYmuTJZ4OaeOfaHwWd4lwbIlzvNK1JurXT3zwsvO54kffeZOBNHb3HP7IvvztEkTM58Yjp00
Q9s459i5+7NMeW4DJsYY7r1jMZbcehNGDBtqL1SNGz0KX1m5HKtXrcTwYUPtZ/lXmZvQli0L7v8I
oq84XX8Wz770KrZ9/EnOC50f7fLzcuPOeb4gbncbVxJ5MhYSELrJoptvtD93x/XaoqOzE1veex9p
Oa6HiR+keDZP5VnM5CNmyjY/DKqqzPm9fPMjBOTiIYjucMv8OfbnfO0pmUzig492ZhIW2pU4PXfs
9qqafDCfwVVmUpRM5vVOfuz+fL8idrzXqicIAIBu6BhTOxJLbl2Q0/WNTS1qoc0Fd4bMSVnkutsf
+t3XZdmf0KcJBVmoXyL6kO9/dw1CoZA9LwlHspHAza2t9udde/dlPqnGZ96MGVWLu5fchq89sgKr
v/AQFi2Yj7AUJmGTb1tXLZ66QpQIop/gHOlUGm++8549vsq17zDEhVfXLcwxFfIM6/F7lCiswUNQ
L3JIQOgmy+5Y3Gt1nTpzFpteewOdnZmM8pLnQJagY6hjwDMDrnA4hKgrbi43rPhS8dEUJ0f0Jgvm
zcFVUyZ3O7nngcNHsHvvPnV+EAfC6o09oOLu8Z0jbpShvaNTrqiXyHhJME6u10SvYiUlHVs70iHQ
edGV7BI83/xw5yDI5vEBwuHc0yuJ9h5o+w5vA3eeH4Loa6xdTWZfNQ21w4c5zo0bNcr+bG5JnJDu
VrRVx0RF+myHEPVyG1d67JCCTfQzDHj5za3Oohzbupx7xF13QHtmXC2oCe/mv1pK9kICQjfRNA0h
rff++draO/D8K5tx5PgJd8P0c7/x63ysY2HAtWjBjegOolHXrX0CdY+TeED0PrffejMevHspaoSB
We6rmQw79+zFyTP1mRvh/Ou+XP05+2Tn5Vpwxxb0rurzLDtQJIhe4ul//xl03Uz0a3COSePH2dsd
ehG2BeYgF+kMcqgDN9ty0HO6A2PMw6hpIEf0H9Zv+HUzr8btty7IjsE4UDtyhOM3/lJTkzvvDiCJ
BHIMTj/3A7IgRxD9BkNTS0v37pS3FFbUHfTs7Ee/kG0v+yV7IQGhm2gaw1cfWWGv6KsmBn5Kmur6
VDqNdz/YgT99+DG44VgedfzJHsjx3vJnuOoYOWI4pkwYr3ynaDSCmVdNw6KbbzQz/HIgpGlYbWWN
J68Dog8xDANgQM3wYbhv6RJcc9U034SlXrzz/nZ0Jbry/H1XbIMq2W9pPB5cS4B67jgfMK4kiJ7Q
3tEhbYvKccv8uSgr9d4yrrqqSjiyvHI4OjsT9sqreYo7wxjgbLtzZs9Eqc9z/PCy83tuXyRspyr3
edxlO+TNQ/QJtms0M1dBrTEY44jHYo7f+KqKCo+JhseYzfP3n6snMr5leXQmroUogugPut/mQqFc
pq/uXHBqRBvkzjmXPKZz9T/FC23j2E2WLH8El5qa8M3/9L/i088+x9b3PkBHZ4fj99xvwuM30Th4
5BiOnTyF+5fejoqKcncOBCC7ZYkIV225ZZVnt+W6ed4NuHnu9ebAEqZIIO5zD8YxbkytKy6cvA6I
vkRP6+CZCQ8AzL9uNm6YeTV27d2HTz773DmB8SGt63hvx0dYcuvNZoHsrukZ2cDUF2SKYtFYt76X
Jx7jStpGi+gN2traoes6DLsfYmDgePj+e/Hci6+ivaPDcX0sGkVpiSWScbuPaWlrw/OvbAYATJk4
HvOvvxYhLZS9TtE/hcMhPHL/vUgkEjhx+gwuNFxCW3sHOjo70dWVRFcy6WmKqr4xHA6ZGeqhuMnq
3xyhFzTAI/oIz6blPlFeVqq4Tl4ckldSVZbB1OdU48i8wh28FqIIoj9g3U6eXTtihLOAi205W7+n
h413BySEwSK3e4oUEhB6AjdDGaZPmYTRtTW4cPESDhw+gj37D7qTIuZJKpXGu9s+xL13LJIarEd8
t1fiK6tcTBaXuV+TY4iEfAn29WQsRD+wYd0vwLkBwzDdra2VU8YYZs6YjgnjxuCNt/7oSFLlx4WG
S+YWQPLAyK89e9mQNXBjwJjakdkQiR4QccWIU89E9C4GN6DLiaYy7Xv53XfgtxtfcJyaNnmiU0TL
uHWKfdmBw8dw5ux53H7rzRg8qMpnUGbWE4/HMXXiREy1M9Wb6LqOXXv3CYnm/PnKygfVJ1w2Kycy
IYg+xG562d/vUCgEXddRWV6eu2s1F0MZ/PoBD+HB/+V8hDWaIRGXl6umTMbeAwdd5eb4zbstxqJR
Z0G+whmT7MOeK8nnxHvgnB8VORTC0EN4pqGHw2EMHzYEN829Hl9ecT/uXHQLamtGOFyw8+ViQ4PC
RS3rFaDrOs6ev4DzFy4irSsEC0cSuBwHVcqcIdy9dz1B9CKcc+gZV2tLPDAysducc5SVluKBu27H
pPFjc6rL3I1BEQbkh2MwKH7MDuwWL7gRI+yttLrPl1culx7lnPiQ+zXRU8wwOAHhNz0SieCuxQtR
UV6OUCiE4UOrcc30qcKFWdspLcmuojJmhka8uPkP2PP5fvFp0l/hgYqBVkgL4bqZV+OWecGJHVdb
CXy55LLtNYjjmT6SdASir3C1rWxDvPf2RWCM4Z7bb3P2P8r2KNqIlHfE/svV7Vk873o/xbhRFeqj
+h69uF0xQQQx86ppyvKgcNBwWFgA9Wqznk3ZsjVBWLN36/J0Uc3aEIkHAHkg9BxrwsM5BzfMz9Fo
FGNqazFqZA0SiS4cOnocn+0/gNa29rwyzDOX+MCzDZ1zbHrtDbS2tWfmOBwlJXFMHj8Ok8aPQ1VF
uXS/x0qRNUGSY1klN6CjR4/m889CEHlhcG67W3Nu2ZPh+P3XQiHcMn8uUqk0jp867WlLjDEMHlQl
nXeqzfsOHkH9ufOYedU0DKke7H2t5MHANA13L16IZCqFM2fP43xDAzjniEYippAYCqOlrQ3HTp7y
DLn42sMPWq/hnKtxpkioRRDdw+CG98Ij56gZNhTL774DHZ2dKC0pyWa1dnitMcRiUblqcM7x0a49
OHvhIu5YuMAlOjgvVrhmZ/5MmjAONcOH4bWtb6OtvcNe/AmHw1h+1x0oLy+TvoOPbUjflcKAiD7D
JyyuevAg3Hv7IsQdOXNUIac5Ohso+znmGg86rvObBHl1i35lBNFHRCLOaWiQ54FFPCaElHpdrxSY
hVAHT69tvyeTgViQgNAL2OIB56YLtiUocI5IJILpUyZh2uSJOHriJLbv3IWurq6c6i0vKxX22nYP
wqy4IXNcxZBIdGHPvgPYs+8AGGOoqqzAnNkzMapmhHvw5fA0kHpDyajWrd9AgzGiT8kKcUbWhpwX
2O7Vi2+5CZ/s3otP937uWd+Esd5Z4HXdwLaPPwEAnDh9BpUV5Zh//bUYOXwYGNOyduYZ0sAQjUYx
fuxojB87StmhLJh3A17f+g7OXbjoKP/aIyuyXkmidxCX41BpFYjoGYbBnYIUd09KQqEQKsrLnecl
LzQGoKqyAs0t7vCh0/Vn0dLahsryMiEPgfQwl2u2c4RWVlaKlffd4xDjzX3vvT0YXOWebqcE0Yc4
PNSsMo6hVr4Oz/tU7VUVwy3dkxHbDcNwbpWaU9v3mRk53ofsiOg/GHPmQch1kbWivNynSXv0e5Bt
RVGB5+NpcUeGBIQewIFM0jfudL0WBATLO4ABmDhuLMaPGY2Tp89g+85P0d7R6WksHMCMqZOzBfYK
ZbZg6qSJ+HjXHvX9nKOpuQVvvPMeYpEIvrji/hz6GLkjBNY9s4G8D4g+xwphUIoHEH70MzZw7cwZ
qK4ehPe2f4RkMpmtB8CgygpBQHB3JBpj0DTNTtbY0tqGzW/9EaUlccy7bjbGjal1CgnS4NBz4Od4
XYa7l9yGtrZ2dCQ6UVVRgVjMJwnj5d7Kiyg4ODfUorEXnhN1hrnXzsKb77ynPP361rfxyAP3uiuT
8+4EPIhZWe1lRC85z1Bushein7GTUzPnMfPoLxwCnqrCbKGh6+hMdKG9swPvf7gTzS2tMAzuauYP
3rMUVZWV7vqVeCoTZD/EZUNjDPFYDJ2JhPK8yiOBc47y0hKFJq3KI6IyDLkj8bpGHpNxdQL7IoUE
hB5hCQc6DG6tnhrZCZDdRrMDH41pGDdmNMaNGY1UKoVPP9uH/YePIJ1O2Y21orwcC2+ch6FDBns/
mgEzp0/FhYYGnDztndSNAUimUuhMJFBaUmK9tpATwduASDwg+ous8JbdhcFE8gQQmujYUbUYu6IW
nYkETp2px6XGZtQMH4YxtTXZBKHiPvVWFZqG0bU1OHHqjF0XY0BnIoG3398GvA9cM30arp85w+y4
VOq15+TISXlZmdMNW+XOnemQyMuH6E0MgwfMKnxWaaSCUSNrPJ/TmeiCoRtCUl5xJVU14/d7rgLR
zlQeDgRxOZBDB5g0lrL7LcEeHOFq5nFaT6P+/AUcOHQEjc3NaO/oVE6aVHP837/6hpkjROyn8vbG
ITsi+h87zxNjKC8r9RQQVIusmqaZ4yr7IvEDd9hXdsym8LLxHcd52IVQXOw7ZpGA0BMycxsrdEHX
LfFAdkUTO5nswCcSiWDOtTMx59qZSKVSSKd1RCJh031T7ozEOqxJEWNYeOM8PPviq45VWJlBVZWC
eKBS6OAWDyhpItGPGHYCRZ7Zdk6ceMhZn5y2URKLY8rECeqKRTsSlOP5113rEBBk9uzbj6MnT2Ll
vXd7h6Aq38njOmsy5bHLQzF3QkTfYCYS7e5qifum8rJStLV3uMoHVVU6kwU7cnv4GY9PtmuH3TP3
KbGAe4ROEERf4zVRVwnFcApgjU0t2HvgIE6erkeXNH7LJ1eWbhhOzx3Xc3MUEYXDYp8YEf3LmFG1
ON9wKedf7kFVlZkwNxFLuBNySYm24LnDllQFFKYjCg3UxdjQLgw9gCOT6M0KV+DW5Eee9Ahql+Nz
tqZIJIKSkrgZ16ZK6Ca6yQkCQDgcxoN3L0U0GnG9XyQcxsIb52H5XXcI1VnKHJfew/yQSCRs8YC8
D4j+QhfsyER0V1bYgyIhm40c/8DdF5WWxDF65Ejfd2pv78Bb73+QzYLtwsOf2nWtaiVYtGeC6H24
6H0jNkq7PYurMMHt8J7bFynLF8y9Qb3K47JL7rYlX1tlkr3LK02QhHrVQwmij+Cq33pIbdLdHlOp
NP64/SO89MYWHDp63CUe5EvIlWybZXcisY+93lW+lfojop8QmtrokTWIRSM5NdHSkhJcNWVSxuNN
Mc9yCcziA6UnyA9UrqtyhZ5NdgLyQOgZ1mqpUzywUKyaeArCTFWYvRYqN7nsLSUlcXzxwfvR3NKK
puYWlJbEMbS6GlpI827n4iAvc83GV15Da1t7N/4lCKJnmEJcNjGo9+qlhYcxqcxIpUYDuHX+HPz2
+Rd8V3saLjU6X4WrJjEer+b3PTjw1vsfYNHNN9JKD9EncPt/mbOPkdsj8/FUEFZSS0tKsOLeO/Hu
BzvQ2t6B0ngMM2dMx5DBg5x1q1yolXageKanZ4/PCqrq3UmYI/oa1Y45fnvIZ649cfoMDh873sfv
Jj1b2Qdx99DTWqgiHY7oa4Q2VllRjlE1NTh99iySyZTycg6gNB7HjKmTMW70KHclyptEkTwHDwRA
Ed6tsgkyEJCA0DPEhImGYYA7YrcFxFUg11ZtXiEFQfE5YhVmvNygqkoMqqp0q2OqFVqhrLWtDRtf
eT1TVW5bqBBEbyJ68QCqSbgsFFiDInkyJNwDxTVlrzwRAAAZc0lEQVTWZIMB0VgU1YOq0Njc4vle
M6ZOydqDSpwIcmdTTGyOnTyNt9/fhoeW3U3iAdGHyJNrr4YaEOYgTIoqKyqw7I7F0A0DmqZluifJ
4y7XgZr4nuqRnP+l1qBQeSv1YURfo3Bn9t1D3qRm2NBeewPTY9Wrj/QZP1q24/BSonkRcXnQNA1T
J46HxhhOnz2HRFeXw7RCmoaK8nJcM30qxo8ZjVDYI3xB/NydUAMu9We+dZBITQJCDzCU4QseOAY7
Hq7M3R30qFZ2eGYLrxwGc9t2fiJURT0I0f8wTZNCGDLIgyBbb5M7C3kfbJ+HCWr0sqVL8NqWt3HR
8jTIXBKLRnHD7JmYMmFc9h7ViwkinvdgLftuv3xmo31FhZgEiCB6GSYLAz7RdT6VKCYl1m4JAR4C
rvhRL+8ilTCYPW5tb8fGl02B+46FC7IJHamrIi43Ki+EAMpKSzBj2hTs3X+wx4+fNH6sWwD0iKxz
4OPQQ3ZF9B/c6qlQPXgQxus6ODguNFwyk2kzhrKSEgytHozxY8egelCVkO9DTpZo1ZmrF42isavq
8LQJMhQSEHqItYWja+IjEzhQUwyimPBZDmUA/HsKeVXItRqVtYo7br0FYBxdyRSee+EVpHWd8h8Q
/YoZxynakdheRUXZI5eAmO1a5dWjdPThCIVCWLZ0CcDNJKgcHCEtBKax7DtAZWJyx6PyUjAPTtaf
xZZ3/6S4ixRsoq/h7gEV8zifC8zzwFkfVzxXNbCTHt/c2objp07hkz2fK/vUN995D6tXrVQ8j8Zz
RD8hZ3O32rpibKUksy1qZXk5PvhoZ49eZfL4cc5cB/YYMccEqq5wJhIRiP4kO36LRiIYOWI4hlZX
I5lKmuMwZnrZRCMRhaecmCzRR4R24FK1c35FtwLPij5UjgSEHsAYy3iBid4Hqrg4q91lG7af63Ld
mm8JDxH/eoy8lBMrSOESskrNnHVzc9V11ozp+Hj3Z/n9QxBED3F7vohtW5x4KEQB+bPyAV6F2Q7I
7RbnsYLrhXS+qyuFpze9pOxknJMgguh9WtraUBKPmwdy23V49ng17FwmIbLbtBUi5GGnjn6LI63r
aGxuwad79uLMufOBQnxZaak6FJAmPEQ/seVP27Dk5vnZiborQU5ujXHapAnY/fk+tHd0dvtdBlVV
KkQ9aZIUNKGSV3Ezoj3txED0K4whpGkIxWOIx6IKwUDVVXktnnrcZC8IdafDEEVDuPu5IoQEhB7A
MvHV5q5zft4A9g2ZD/6DpLq1P3Ier3lUYTnMIYR5P1c1w1J0KJnjaZMnIpVO+74fQfQ2X/1P/xf+
7r/9F2dh0MRFWPWve/yJ7L7Cuc4mOJc8F6T6lQMreE+4MkUdHR14+c2t6OhU72tsbXlHgzOiL3n8
H3+K//LtbyKkhdzN1e4KvBIeQj2Ac6ESCiT7kOY0qXQax06exJ59B9Da2paXH85dixfmKOwV98oQ
0Xd0JrrwytZ3MWXCOEwZP87tYaMKZ1PZGWO49pqr8d72D7v9LuFQKHhSFTTJUWgOpMgRfY5iQd8z
CS9Uv/MBKzpebVnZV+TZ3sk8ABIQesamzVtw2/wbTNdrQLEao25ou/flF/vm763wqOc5V4xqDp1D
NBLFC6+8ltf7EURv8M62j3DDNVcJEwS/H3bm+mjZidImVFXZoUGKcCExOZtX2IRQOefAiVNnsH3n
p+jo9F9R+tojK3zPE0Rv8frb72HGlEkYP7rWIx+O1F/BTAisiXGmKhvkTgHP4TqtuC+t6zh99iz2
HTyMi5cuIZ3Wu/V9nHlDZO8DIZyBIPqIHTt2YO7cuThw5BgOHDmGaDSCsSNrMHXieLS0taMjkUAs
aiboBeScH067GFUzAkOqB+Niw6W880+VxOM+nj4eZV5iAxMPKYaB6Adcu2PB9gbNIpbDPafxrV+6
H3JfYRXk0ta9+sEcbi1gSEDoAeuffQ633XYbFtxwLcLhkLmy6LcPNjhe2fJucL6EPJDFhe9/57Hs
rhBgedlbztcQRB/Q0taOV7a+i5nTp2BM7cjcGiPnOH76jKNIKSS4BlFy3Cp87NbH/RMMTc2teOXN
rTl57lDoAtGfcM7x2YFD+PzgYcyZfQ2GDB5ke8DI1yWTKTQ2t6CppQVPP7cxYz/qiU9WaJNWkRzX
Z+ve+t77qD973pbau8PI4cMCQlhF+6WOjOhbrB2rkskUDh0/icMnTkFj5gQoEjaH1rffcqPvyn4s
FsXYUbVouNSY9/OnTprgLJAnWHnvhgISD4h+RDAMzpzFnuFAXmpY5vPFY/6PHDpeEvRkFGF7XOzv
pJw7RW4qJCD0EE3TsPX97Uin02CMYcKYURhcVYVwOITy0hJomobPDx3Bqfpz9j07duzos/f57g8e
x8//4Ydoa2tHVzKJdDrtvzuECPUdxGXk7bffxrx587Dr8wPYf/gYxtTWYOLY0YhEwpIHTZY/vLcN
ia4uZX22kPDYo9Levrm6vskHqjAijne37cgz7IcMjehfdMPA9k9228fTJ03A2QsNGFUzHNWDqrBn
/0Gk0jqSySSSKXMfbqcQJ3gbODxzoFg1guNaBmS25eqZcL7k1pt7x/2UIPoAzjn0zFhL13VwAC//
4W0su32hU3AzrwbAoDGGEUOHIBqJ2HaXC/FYDNMmT1S8hORN5zzpthVrUmRPmlSrvwTRVwhjK3ln
HtU4zBaQFdcDqPvFc75Pq1vzqEcfIryLHCahysHFeIAQURyQgNBDtm7dCgCYN28eOOc4cuIUgFP2
eUultuhL8cBi5IjhqMd5RFNRpJIpJFMpdCWTPd8pgiD6mO3bt2Pu3LnoSiZx6NgJHDp2AlDYUT7U
Pe700rE9E7xyIKhcPO3P0hIoY7j/ztux/9ARbN/5qbn1kAdZ7wOG1976I+q69W0IIncsd2vZdvYd
NnfZaWppCazDISR42oZCXGPZ1Zv7ly7BoWPH8d72j7r1PWqGDTP3vHc92lu4IIi+wrIrGbGfyjZB
psiRlfUSGDqkGhPGjcG+Q0cCmy3nQEk8hkULbswmSBWxq1cIfioh3JoUyZMmWl4l+hPPPDxwCllC
n+Iib71L1c79PB7EW3PJD1T4uH0ZiW6xfft23/Oc834RDwAgFo0hHjP/i0QiCIW0zDZ59st43kuJ
3YjLjcrFWp4AiWJYvnZVt/YJ87/HrWSlbrdrZWckbk0nTZ6mTZ6IVcuXIRaNKp/59UceAgDsO3QE
r2x5Bx988EFe70wQ3WXHjh0Oe5GFZPnYy56cfYNsIJlJEhfOS5OXyRPG4947FuckBFrvZP29c/Gt
qquy78GlQSZBXAasti3aVNjKJyJvNZchpGmYPH4cwprmOwfiAGKxCG6eewNGDB2S4wv5FXo9jQyI
6Acc/Y7UFl1CtdcCj9uBIPfn90CEIBMByAOhd+kvgSCIn677Lb54/91IpVKZrSY156DNlaREUKsJ
4jKzbds2AHCt8DhWdzJ/e2pzSjdtCO7ZXEje4+kRap6IRqNYcutNeH3ruy5PhFe2vuP4HgTRn4i/
/9315EFQolLZpVSxsDNsSDVunnM93tvh74kg2rn1n+IqxbNz2XqSIHrOjh07MGfOHEBhU+Lxps1b
sOz22zJHWc81+5gxDB5UhdqaETh3sQHJZFL5vPLSUtx641wMHzokK9gx5m+TKpT5GMhth+hvVO2t
G+0wc3kui591a4XdulRhqsoI18BMpEULeSAUKNs/2Z0ZeGUSyivj4eCv7BHEZUQWB+Q23JuCneWV
IDxNEtYULp12DHhWEBgyeDDGjqp1iOt3LV7oEA0+/LD723YRRHfYsWOHr73kK2qZttI9IWzcmFF2
krlc+OKD97mfxaUD3oOVKILoJrn8ljvtTu0iHQqFMGPqZEwYMxqlJSUOL7xIJIIxo0Zi8YIbMWLo
ELMfZG43bvcEysM+GXeu/tr9G0H0I8pwOK+QAa9KemExRvZEcDno+IU1FPdiEHkgFCAvvvgi7rzz
TuzedwAP3rkEzJbVRFTuO8VtDMSVR3979dStfQJr/+Y76Orqco6r/LK+CydCmoapkybg9NlzSGWS
Yn20e2+veUwQRE+w2p/o3dPdHD11a3+E73/3MaTT6eAJiGA/kXAY06dMwu7P9wc+Y8bUyYjaYUGC
d4E8+GQ0ESIuD5aIoMqJ4GlPiiSHQ6oHIxwOIxaP4mJDI0Kahmg0gtG1IzFy+DDEYjFXNbJoUFlR
jpbWNiFzvPwc1e5Dindz5UUgiD7Cd2edDEqPACmxYreeK9mHK0mwnJtB3Oq7G88sMEhAKFCsQeFz
r2xGSNOw6CZ35yaTjQkniOJlzX/9Af7uv/01OhOJbCiCsrNQ9CIMqBk2FNMmTcCZs+ewaMGNeGeb
6a5N4gFxpdBbbfG7338cP/juGsUuJNZkXz3SGjuqFoeOHkdHZ8IzkXVJPI65181yFlrhRCqDpAEd
cRnJy6YUjT4SDmPwoCqUlZZCn6AjFAohHAqZ3jo5Tlpszx57EiRPjixRQUxGJycRDprNEUQvIOcw
dIkEQiEXf/shnOPZNp3vg+0wHqmtK0N8rEcy6V2K20ZIQChQXn/9dQDAwoUL0ZVM4uU/vA3DMBDS
NJSVlmLUyOEYM3Ikdn72ORqbm/HBB9su9ysTxBVDWWkJwqEQOhMJ6IYOPa0rBn2quDgGpjFce80M
XD1tCuLxOAkHREHzne+vxfe/85i9dZ2JtC2cY8WTYcjgQbh6+hTs3P0Z0rohDcM4hlZXY9nSJR5P
lFeFin4cR1zhMMbUYULcOdkPhUIoiYcy8xppdTSHMOz/+7Hv4nsZW3S/hJTBXvUMuOduBNEnMD/v
A0k4YLLakL1u557Pcebc+Zx3tWpuaUNFeZkZJiSLaErB22+XruKGciAUOO+88469isoYg8E5Wtvb
se/QUbzx7p9w8VIjiQcEIfHnj/5nxGJRxOMxhENh06OHw2t7hqwrXeZ8SNMQjym22SKIAqS0pASh
cCjn65mmYeLYMRg2ZAiiEec6xrAhQ3DP7YuyBa4t8BQLURK0mxBxJREKWUNtv2zzEsq8VVyd0Fd8
lmIXI/u5rvmXwqa8Vl8Jojfx3NQqYEcdbubsSaZS+OOOj3H63Lm8Hrtt5y588PGnOFV/1pwbcTGH
jiBc2LsKMfWwDwzcZ9vuYoA8EIoAa8u4OXPmdDvelSCKjVg0Cl03kEqlEQqFkNZ1oYMRV27EVVbr
Mw3AiOIhFosimUohnRZWPgNiW+PxOGZffRVOnj6D0/Xn0JVMYuK4Mbh+1jV2ErmPdn+GSWPHYFBV
pbteEaGspbWtT74jQXSXaCSKdLozOGabe5xUhBt4iWTObZCFSVCuXRJ59BD9wNFTpzB+VC04AI2Z
3gXcmskb5viKcw5d12EYBtJpHbqho/78RZw5dx6diS5zZ648G2sqnUZjUzMuNTXjs/2HEI1GMGLo
UIwYWg2WsZ1oJIJwKIRQSIOReYammR5C1rtomobjp8700b/OwIAEhCKCsr8TRO5omgZNY5nOTUi6
A+YjEDhHX7QSShQDsVgMXV1JpNJp6HraOWHxyB/CGMOwIdWoKC9D9eDBqKwox7DqwY4t7s5daMCF
hksYWzsS0ydPNG1RuQ0xRyKRxMVLjfg0h+SMBNGf/NXffE/YPk7sI3Jwj3YkbgueLJ05dwHVVRWZ
a5nno1zHVlw3id9EP7D3wGGEQyGk0zoqyssQi0bQmehCMpWCYXBoGsOlpma0tXcg0ZWEYehI64Y6
PCcPrO3AGYC0riPdqePoyVM4fvoMGGMIaRo0TUNJPIbyslLohgGNaf+zvXvpbeM6wzj+DEcSJFGR
a8WBk1hB2gK9IUaSAqIUA172ixTorkBRoMuu2gItsijQAl11VfQbdFMELpwEshSnphK4qOvWl1RW
dDFl15FMUhJJceZ0Qc5oZjSjoWRS4uX/Awx7SGpI2/PynPPOOefVyPCQsmNj2qlUVC7vaGRkROuF
Qtv+PXoRCQQAiGHbdqOhaTYospyEu0MxsxGAAfKjn/xMv//Nr5pXf9Id1OBx48DOZJQdG9M333yj
cSfJK43ajCnLsuQ4rpZX1/X4ydPGMjzX6MLU1/T16UtaK2xqyB7Ss+1tPS+Wjl2OEjhdMaP2UD7B
OhjIK1JFIbRmPPk6/8e//6P33n1bY2MpS+hi13vTfuF05PN5zc3OyhijjG1rfGxU1VpNjuP6132r
yYLjzKZeWlpSLpfzEwkeb6m3956ValXbxZL/vGVZzYRHXW4z/gZ9FjcJBACIsfq4oKlz5xpJhGbG
2sRNyw7NUGAKKAaTl3ALzdQ5VDYucBwYHFkmMqCxLP3txk3/3MYYVao1/3jt8abWC08OdQJFpw7d
KjSDIHitB15jRf4QnQ0QbXNi1OuOPrtzV29/99uanMgevP7QjxzRSBmjvWo17W8EvBDXNBYtuPW6
SuUd/3F/0k3M97uU/PhxBH/eO1/0vMGEtDFGtQHf8yCKTRQBIMbPf/lrbRdL/hIGy4pMy/YbF2+d
qdfymfBjwACwbW+mjhJ2x4ocRxNvMQMarwPnde6Cx4p0AhXp8AFdJW6X+Vgm8vsx38ay9LxY0s3P
b+vefx/p4cqqdvf2Ys4vb0e6xp+a681rtZqefrWl93/3hxO9P3AcVsz3uD/pJiFJ8KLJg6Tztfu8
/Y4ZCACQ4Nr8oqbOTSr3zuXmI+G7pP5dpeAUVI/FYAaDY3R0VHY5ZgPD0IycmOk5Cc8tLi5qdna2
8UwkcZCEfX7Q9VJnqEWSb8ec0bawsKBcLqd63dHDR19Kku59sSzbtmVcVyMjw7pw/rzGx0ZV3t2T
4zoaHhrSXqWq8s6ujDGq7u+f/O8HnJJ2zEQ46TlIVjMDAQASZTIZbf7vmf5y7cPmeri4wU9M2SEj
/fXDG6f5UYEz9cMf/7SxW7U/syChdFzSDVZzuBN369atximay4iOwtIFdLPGgCNQgjE6AEkaj1iH
X7B/ggG+4zhym0uB1gqbur+8oo3NJ9p8+kxrjzf1bGtblVpNtf19VuDhVES/s48zKPcG/if53g/+
TFK7kvZZSFaTQACARNevX/fLYi3kP9fK2kZgY59AiawgY/TRzb/7gx9gUGTsTHD+aeP3UD8sugwo
/JQv8LjX2YuuRw0ieYBu94v3f5u8hEetzDJobKrouq6uzX/S1s/mz/BpHhNPOC2tDOaj2jHzIO6c
Qd754xIJxEcDCQQAOML8/LzfmNy590AffLygO/ceNHYL9uoWN5XKO7p1+4529ypn+ImBs7G6UYjf
q+3Iu6uBygtN1xc/Db0sn89raWnJ77h5d568X0AveLS6HjhKmKETxzQ3NqxU9cHHC8e+5tPuprL2
G90ieq3GXbve9foi3/3Rn03aPJHYSMYeCACQItqIraxtaGVtQ0O2rUwmo4sXXtZ6YZPyPhhon/3z
rubevayJbDZclsTyStIpXLouVKbuoKN2Y2Eh8T2ILfSqf91/qOlXL2poyA5XUgiVAg5zHUfPS2U9
/WpLD5ZXWnqffD6vmZmZ1OnZcc8TX+gG3iyDsxjAx1VkwGFWSmaSXSLQDfo1iomvHpLL5Vp6XQ92
wIgvtM3c3Jx+cPU9DQ8NR66sUMH78CZxOjjcKDzRH//059P8yJ1GfEFqtiET2XF9Y/qS3rj0mv94
I6/WXKLQrIbgOI72KlXdffCFiqUdueaghFwrbUxcrXtP0uM92HaJ+OofwaRX2gC+Xddqq/06Y8yg
7nuQ+J9AAgG9gAYCXeOoBocOWFchvs7AlStXVK/X9frFV/T9t76XWKLxMKNP8re1VSz2ahwlIb7g
m5mZkSSNDA9r8qUJua4r27b1ystTKpbKKpbLqlZrqjuO3IS6863GR9rgyBukvciGdF2A+Oojadds
p67Rs3rfHkACAT2NBgLoHOILbXP16lVVq1UZY/Tm9Ou6/J1vBXIIMZeakSrVilY3Crq/vNKPHTXi
C77oQCVtD8XondiTxEcrd1l7OO6Irz7lXbenfW2e1ft2KRII6Gk0EEDnEF9oq9nZWX+d9eREVhem
zmv6tVf1UnZcsqxAJRNp+cs1PVxZ9R/rw04b8QVfq1Omk5w0PpKWNPRBvBFfQOeQQEBPo4EAOof4
QtvFDZQmsuOanMhq63lR+/W6bNtWtVoLvaYPBjRRxBdCvNg47kZtfRgb7UB8AZ2TGF9UYQAAAB0R
HCSVd3ZV3tn1n6vXndBrGCBhkERLx7HrO4BekTnrDwAAAPqLlwzwNmnzHFXXGxgE+Xz+UBwcFQPG
GJJrALoKSxjQC/q1d0l8oRsQX+iYo8rJBfXxAIn4QqJWKiUMaPm4VhFfQOewBwJ6Gg0E0DnEF05F
3GCpjxMHHuILR0pKIgxAbLQD8QV0DgkE9DQaCKBziC+gc4gvoHOIL6BzEuOLPRAAAAAAAEAqEggA
AAAAACAVCQQAAAAAAJCKBAIAAAAAAEhFAgEAAAAAAKQigQAAAAAAAFKRQAAAAAAAAKlIIAAAAAAA
gFQkEAAAAAAAQCoSCAAAAAAAIBUJBAAAAAAAkIoEAgAAAAAASEUCAQAAAAAApCKBAAAAAAAAUpFA
AAAAAAAAqUggAAAAAACAVCQQAAAAAABAKhIIAAAAAAAgFQkEAAAAAACQyjLGnPVnAAAAAAAAXY4Z
CAAAAAAAIBUJBAAAAAAAkIoEAgAAAAAASEUCAQAAAAAApCKBAAAAAAAAUpFAAAAAAAAAqf4PU46S
paZ7s1oAAAAASUVORK5CYII=
"/>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<h2 id="7.-Conclusion">7. Conclusion<a class="anchor-link" href="#7.-Conclusion"></a></h2><p>In this tutorial we learnt how to <strong>load</strong> a textured mesh from an obj file, initialize a PyTorch3D datastructure called <strong>Meshes</strong>, set up an <strong>Renderer</strong> consisting of a <strong>Rasterizer</strong> and a <strong>Shader</strong>, and modify several components of the rendering pipeline.</p>
</div>
</div>
</div>
</div></div></div></div></div><footer class="nav-footer" id="footer"><section class="sitemap"><div class="footerSection"><div class="social"><a class="github-button" href="https://github.com/facebookresearch/pytorch3d" data-count-href="https://github.com/facebookresearch/pytorch3d/stargazers" data-show-count="true" data-count-aria-label="# stargazers on GitHub" aria-label="Star PyTorch3D on GitHub">pytorch3d</a></div></div></section><a href="https://opensource.facebook.com/" target="_blank" rel="noreferrer noopener" class="fbOpenSource"><img src="/img/oss_logo.png" alt="Facebook Open Source" width="170" height="45"/></a><section class="copyright">Copyright © 2020 Facebook Inc</section></footer></div></body></html>