mirror of
https://github.com/facebookresearch/pytorch3d.git
synced 2025-08-02 03:42:50 +08:00
Summary: ## Updates - Defined the world and camera coordinates according to this figure. The world coordinates are defined as having +Y up, +X left and +Z in. {F230888499} - Removed all flipping from blending functions. - Updated the rasterizer to return images with +Y up and +X left. - Updated all the mesh rasterizer tests - The expected values are now defined in terms of the default +Y up, +X left - Added tests where the triangles in the meshes are non symmetrical so that it is clear which direction +X and +Y are ## Questions: - Should we have **scene settings** instead of raster settings? - To be more correct we should be [z clipping in the rasterizer based on the far/near clipping planes](https://github.com/ShichenLiu/SoftRas/blob/master/soft_renderer/cuda/soft_rasterize_cuda_kernel.cu#L400) - these values are also required in the blending functions so should we make these scene level parameters and have a scene settings tuple which is available to the rasterizer and shader? Reviewed By: gkioxari Differential Revision: D20208604 fbshipit-source-id: 55787301b1bffa0afa9618f0a0886cc681da51f3
674 lines
26 KiB
Python
674 lines
26 KiB
Python
#!/usr/bin/env python3
|
|
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
|
|
|
|
|
|
# Some of the code below is adapted from Soft Rasterizer (SoftRas)
|
|
#
|
|
# Copyright (c) 2017 Hiroharu Kato
|
|
# Copyright (c) 2018 Nikos Kolotouros
|
|
# Copyright (c) 2019 Shichen Liu
|
|
#
|
|
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
# of this software and associated documentation files (the "Software"), to deal
|
|
# in the Software without restriction, including without limitation the rights
|
|
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
# copies of the Software, and to permit persons to whom the Software is
|
|
# furnished to do so, subject to the following conditions:
|
|
#
|
|
# The above copyright notice and this permission notice shall be included in all
|
|
# copies or substantial portions of the Software.
|
|
#
|
|
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
# SOFTWARE.
|
|
|
|
import math
|
|
import numpy as np
|
|
import unittest
|
|
import torch
|
|
|
|
from pytorch3d.renderer.cameras import (
|
|
OpenGLOrthographicCameras,
|
|
OpenGLPerspectiveCameras,
|
|
SfMOrthographicCameras,
|
|
SfMPerspectiveCameras,
|
|
camera_position_from_spherical_angles,
|
|
get_world_to_view_transform,
|
|
look_at_rotation,
|
|
)
|
|
from pytorch3d.transforms import Transform3d
|
|
from pytorch3d.transforms.so3 import so3_exponential_map
|
|
|
|
from common_testing import TestCaseMixin
|
|
|
|
|
|
# Naive function adapted from SoftRasterizer for test purposes.
|
|
def perspective_project_naive(points, fov=60.0):
|
|
"""
|
|
Compute perspective projection from a given viewing angle.
|
|
Args:
|
|
points: (N, V, 3) representing the padded points.
|
|
viewing angle: degrees
|
|
Returns:
|
|
(N, V, 3) tensor of projected points preserving the view space z
|
|
coordinate (no z renormalization)
|
|
"""
|
|
device = points.device
|
|
halfFov = torch.tensor(
|
|
(fov / 2) / 180 * np.pi, dtype=torch.float32, device=device
|
|
)
|
|
scale = torch.tan(halfFov[None])
|
|
scale = scale[:, None]
|
|
z = points[:, :, 2]
|
|
x = points[:, :, 0] / z / scale
|
|
y = points[:, :, 1] / z / scale
|
|
points = torch.stack((x, y, z), dim=2)
|
|
return points
|
|
|
|
|
|
def sfm_perspective_project_naive(points, fx=1.0, fy=1.0, p0x=0.0, p0y=0.0):
|
|
"""
|
|
Compute perspective projection using focal length and principal point.
|
|
|
|
Args:
|
|
points: (N, V, 3) representing the padded points.
|
|
fx: world units
|
|
fy: world units
|
|
p0x: pixels
|
|
p0y: pixels
|
|
Returns:
|
|
(N, V, 3) tensor of projected points.
|
|
"""
|
|
z = points[:, :, 2]
|
|
x = (points[:, :, 0] * fx + p0x) / z
|
|
y = (points[:, :, 1] * fy + p0y) / z
|
|
points = torch.stack((x, y, 1.0 / z), dim=2)
|
|
return points
|
|
|
|
|
|
# Naive function adapted from SoftRasterizer for test purposes.
|
|
def orthographic_project_naive(points, scale_xyz=(1.0, 1.0, 1.0)):
|
|
"""
|
|
Compute orthographic projection from a given angle
|
|
Args:
|
|
points: (N, V, 3) representing the padded points.
|
|
scaled: (N, 3) scaling factors for each of xyz directions
|
|
Returns:
|
|
(N, V, 3) tensor of projected points preserving the view space z
|
|
coordinate (no z renormalization).
|
|
"""
|
|
if not torch.is_tensor(scale_xyz):
|
|
scale_xyz = torch.tensor(scale_xyz)
|
|
scale_xyz = scale_xyz.view(-1, 3)
|
|
z = points[:, :, 2]
|
|
x = points[:, :, 0] * scale_xyz[:, 0]
|
|
y = points[:, :, 1] * scale_xyz[:, 1]
|
|
points = torch.stack((x, y, z), dim=2)
|
|
return points
|
|
|
|
|
|
class TestCameraHelpers(unittest.TestCase):
|
|
def setUp(self) -> None:
|
|
super().setUp()
|
|
torch.manual_seed(42)
|
|
np.random.seed(42)
|
|
|
|
def test_camera_position_from_angles_python_scalar(self):
|
|
dist = 2.7
|
|
elev = 90.0
|
|
azim = 0.0
|
|
expected_position = torch.tensor(
|
|
[0.0, 2.7, 0.0], dtype=torch.float32
|
|
).view(1, 3)
|
|
position = camera_position_from_spherical_angles(dist, elev, azim)
|
|
self.assertTrue(torch.allclose(position, expected_position, atol=2e-7))
|
|
|
|
def test_camera_position_from_angles_python_scalar_radians(self):
|
|
dist = 2.7
|
|
elev = math.pi / 2
|
|
azim = 0.0
|
|
expected_position = torch.tensor([0.0, 2.7, 0.0], dtype=torch.float32)
|
|
expected_position = expected_position.view(1, 3)
|
|
position = camera_position_from_spherical_angles(
|
|
dist, elev, azim, degrees=False
|
|
)
|
|
self.assertTrue(torch.allclose(position, expected_position, atol=2e-7))
|
|
|
|
def test_camera_position_from_angles_torch_scalars(self):
|
|
dist = torch.tensor(2.7)
|
|
elev = torch.tensor(0.0)
|
|
azim = torch.tensor(90.0)
|
|
expected_position = torch.tensor(
|
|
[2.7, 0.0, 0.0], dtype=torch.float32
|
|
).view(1, 3)
|
|
position = camera_position_from_spherical_angles(dist, elev, azim)
|
|
self.assertTrue(torch.allclose(position, expected_position, atol=2e-7))
|
|
|
|
def test_camera_position_from_angles_mixed_scalars(self):
|
|
dist = 2.7
|
|
elev = torch.tensor(0.0)
|
|
azim = 90.0
|
|
expected_position = torch.tensor(
|
|
[2.7, 0.0, 0.0], dtype=torch.float32
|
|
).view(1, 3)
|
|
position = camera_position_from_spherical_angles(dist, elev, azim)
|
|
self.assertTrue(torch.allclose(position, expected_position, atol=2e-7))
|
|
|
|
def test_camera_position_from_angles_torch_scalar_grads(self):
|
|
dist = torch.tensor(2.7, requires_grad=True)
|
|
elev = torch.tensor(45.0, requires_grad=True)
|
|
azim = torch.tensor(45.0)
|
|
position = camera_position_from_spherical_angles(dist, elev, azim)
|
|
position.sum().backward()
|
|
self.assertTrue(hasattr(elev, "grad"))
|
|
self.assertTrue(hasattr(dist, "grad"))
|
|
elev_grad = elev.grad.clone()
|
|
dist_grad = dist.grad.clone()
|
|
elev = math.pi / 180.0 * elev.detach()
|
|
azim = math.pi / 180.0 * azim
|
|
grad_dist = (
|
|
torch.cos(elev) * torch.sin(azim)
|
|
+ torch.sin(elev)
|
|
+ torch.cos(elev) * torch.cos(azim)
|
|
)
|
|
grad_elev = (
|
|
-torch.sin(elev) * torch.sin(azim)
|
|
+ torch.cos(elev)
|
|
- torch.sin(elev) * torch.cos(azim)
|
|
)
|
|
grad_elev = dist * (math.pi / 180.0) * grad_elev
|
|
self.assertTrue(torch.allclose(elev_grad, grad_elev))
|
|
self.assertTrue(torch.allclose(dist_grad, grad_dist))
|
|
|
|
def test_camera_position_from_angles_vectors(self):
|
|
dist = torch.tensor([2.0, 2.0])
|
|
elev = torch.tensor([0.0, 90.0])
|
|
azim = torch.tensor([90.0, 0.0])
|
|
expected_position = torch.tensor(
|
|
[[2.0, 0.0, 0.0], [0.0, 2.0, 0.0]], dtype=torch.float32
|
|
)
|
|
position = camera_position_from_spherical_angles(dist, elev, azim)
|
|
self.assertTrue(torch.allclose(position, expected_position, atol=2e-7))
|
|
|
|
def test_camera_position_from_angles_vectors_broadcast(self):
|
|
dist = torch.tensor([2.0, 3.0, 5.0])
|
|
elev = torch.tensor([0.0])
|
|
azim = torch.tensor([90.0])
|
|
expected_position = torch.tensor(
|
|
[[2.0, 0.0, 0.0], [3.0, 0.0, 0.0], [5.0, 0.0, 0.0]],
|
|
dtype=torch.float32,
|
|
)
|
|
position = camera_position_from_spherical_angles(dist, elev, azim)
|
|
self.assertTrue(torch.allclose(position, expected_position, atol=3e-7))
|
|
|
|
def test_camera_position_from_angles_vectors_mixed_broadcast(self):
|
|
dist = torch.tensor([2.0, 3.0, 5.0])
|
|
elev = 0.0
|
|
azim = torch.tensor(90.0)
|
|
expected_position = torch.tensor(
|
|
[[2.0, 0.0, 0.0], [3.0, 0.0, 0.0], [5.0, 0.0, 0.0]],
|
|
dtype=torch.float32,
|
|
)
|
|
position = camera_position_from_spherical_angles(dist, elev, azim)
|
|
self.assertTrue(torch.allclose(position, expected_position, atol=3e-7))
|
|
|
|
def test_camera_position_from_angles_vectors_mixed_broadcast_grads(self):
|
|
dist = torch.tensor([2.0, 3.0, 5.0], requires_grad=True)
|
|
elev = torch.tensor(45.0, requires_grad=True)
|
|
azim = 45.0
|
|
position = camera_position_from_spherical_angles(dist, elev, azim)
|
|
position.sum().backward()
|
|
self.assertTrue(hasattr(elev, "grad"))
|
|
self.assertTrue(hasattr(dist, "grad"))
|
|
elev_grad = elev.grad.clone()
|
|
dist_grad = dist.grad.clone()
|
|
azim = torch.tensor(azim)
|
|
elev = math.pi / 180.0 * elev.detach()
|
|
azim = math.pi / 180.0 * azim
|
|
grad_dist = (
|
|
torch.cos(elev) * torch.sin(azim)
|
|
+ torch.sin(elev)
|
|
+ torch.cos(elev) * torch.cos(azim)
|
|
)
|
|
grad_elev = (
|
|
-torch.sin(elev) * torch.sin(azim)
|
|
+ torch.cos(elev)
|
|
- torch.sin(elev) * torch.cos(azim)
|
|
)
|
|
grad_elev = (dist * (math.pi / 180.0) * grad_elev).sum()
|
|
self.assertTrue(torch.allclose(elev_grad, grad_elev))
|
|
self.assertTrue(torch.allclose(dist_grad, grad_dist))
|
|
|
|
def test_camera_position_from_angles_vectors_bad_broadcast(self):
|
|
# Batch dim for broadcast must be N or 1
|
|
dist = torch.tensor([2.0, 3.0, 5.0])
|
|
elev = torch.tensor([0.0, 90.0])
|
|
azim = torch.tensor([90.0])
|
|
with self.assertRaises(ValueError):
|
|
camera_position_from_spherical_angles(dist, elev, azim)
|
|
|
|
def test_look_at_rotation_python_list(self):
|
|
camera_position = [[0.0, 0.0, -1.0]] # camera pointing along negative z
|
|
rot_mat = look_at_rotation(camera_position)
|
|
self.assertTrue(torch.allclose(rot_mat, torch.eye(3)[None], atol=2e-7))
|
|
|
|
def test_look_at_rotation_input_fail(self):
|
|
camera_position = [-1.0] # expected to have xyz positions
|
|
with self.assertRaises(ValueError):
|
|
look_at_rotation(camera_position)
|
|
|
|
def test_look_at_rotation_list_broadcast(self):
|
|
# fmt: off
|
|
camera_positions = [[0.0, 0.0, -1.0], [0.0, 0.0, 1.0]]
|
|
rot_mats_expected = torch.tensor(
|
|
[
|
|
[
|
|
[1.0, 0.0, 0.0],
|
|
[0.0, 1.0, 0.0],
|
|
[0.0, 0.0, 1.0]
|
|
],
|
|
[
|
|
[-1.0, 0.0, 0.0], # noqa: E241, E201
|
|
[ 0.0, 1.0, 0.0], # noqa: E241, E201
|
|
[ 0.0, 0.0, -1.0] # noqa: E241, E201
|
|
],
|
|
],
|
|
dtype=torch.float32
|
|
)
|
|
# fmt: on
|
|
rot_mats = look_at_rotation(camera_positions)
|
|
self.assertTrue(torch.allclose(rot_mats, rot_mats_expected, atol=2e-7))
|
|
|
|
def test_look_at_rotation_tensor_broadcast(self):
|
|
# fmt: off
|
|
camera_positions = torch.tensor([
|
|
[0.0, 0.0, -1.0],
|
|
[0.0, 0.0, 1.0] # noqa: E241, E201
|
|
], dtype=torch.float32)
|
|
rot_mats_expected = torch.tensor(
|
|
[
|
|
[
|
|
[1.0, 0.0, 0.0],
|
|
[0.0, 1.0, 0.0],
|
|
[0.0, 0.0, 1.0]
|
|
],
|
|
[
|
|
[-1.0, 0.0, 0.0], # noqa: E241, E201
|
|
[ 0.0, 1.0, 0.0], # noqa: E241, E201
|
|
[ 0.0, 0.0, -1.0] # noqa: E241, E201
|
|
],
|
|
],
|
|
dtype=torch.float32
|
|
)
|
|
# fmt: on
|
|
rot_mats = look_at_rotation(camera_positions)
|
|
self.assertTrue(torch.allclose(rot_mats, rot_mats_expected, atol=2e-7))
|
|
|
|
def test_look_at_rotation_tensor_grad(self):
|
|
camera_position = torch.tensor([[0.0, 0.0, -1.0]], requires_grad=True)
|
|
rot_mat = look_at_rotation(camera_position)
|
|
rot_mat.sum().backward()
|
|
self.assertTrue(hasattr(camera_position, "grad"))
|
|
self.assertTrue(
|
|
torch.allclose(
|
|
camera_position.grad,
|
|
torch.zeros_like(camera_position),
|
|
atol=2e-7,
|
|
)
|
|
)
|
|
|
|
def test_view_transform(self):
|
|
T = torch.tensor([0.0, 0.0, -1.0], requires_grad=True).view(1, -1)
|
|
R = look_at_rotation(T)
|
|
RT = get_world_to_view_transform(R=R, T=T)
|
|
self.assertTrue(isinstance(RT, Transform3d))
|
|
|
|
def test_view_transform_class_method(self):
|
|
T = torch.tensor([0.0, 0.0, -1.0], requires_grad=True).view(1, -1)
|
|
R = look_at_rotation(T)
|
|
RT = get_world_to_view_transform(R=R, T=T)
|
|
for cam_type in (
|
|
OpenGLPerspectiveCameras,
|
|
OpenGLOrthographicCameras,
|
|
SfMOrthographicCameras,
|
|
SfMPerspectiveCameras,
|
|
):
|
|
cam = cam_type(R=R, T=T)
|
|
RT_class = cam.get_world_to_view_transform()
|
|
self.assertTrue(
|
|
torch.allclose(RT.get_matrix(), RT_class.get_matrix())
|
|
)
|
|
|
|
self.assertTrue(isinstance(RT, Transform3d))
|
|
|
|
def test_get_camera_center(self, batch_size=10):
|
|
T = torch.randn(batch_size, 3)
|
|
R = so3_exponential_map(torch.randn(batch_size, 3) * 3.0)
|
|
for cam_type in (
|
|
OpenGLPerspectiveCameras,
|
|
OpenGLOrthographicCameras,
|
|
SfMOrthographicCameras,
|
|
SfMPerspectiveCameras,
|
|
):
|
|
cam = cam_type(R=R, T=T)
|
|
C = cam.get_camera_center()
|
|
C_ = -torch.bmm(R, T[:, :, None])[:, :, 0]
|
|
self.assertTrue(torch.allclose(C, C_, atol=1e-05))
|
|
|
|
|
|
class TestPerspectiveProjection(TestCaseMixin, unittest.TestCase):
|
|
def test_perspective(self):
|
|
far = 10.0
|
|
near = 1.0
|
|
cameras = OpenGLPerspectiveCameras(znear=near, zfar=far, fov=60.0)
|
|
P = cameras.get_projection_transform()
|
|
# vertices are at the far clipping plane so z gets mapped to 1.
|
|
vertices = torch.tensor([1, 2, far], dtype=torch.float32)
|
|
projected_verts = torch.tensor(
|
|
[np.sqrt(3) / far, 2 * np.sqrt(3) / far, 1.0], dtype=torch.float32
|
|
)
|
|
vertices = vertices[None, None, :]
|
|
v1 = P.transform_points(vertices)
|
|
v2 = perspective_project_naive(vertices, fov=60.0)
|
|
self.assertTrue(torch.allclose(v1[..., :2], v2[..., :2]))
|
|
self.assertTrue(torch.allclose(far * v1[..., 2], v2[..., 2]))
|
|
self.assertTrue(torch.allclose(v1.squeeze(), projected_verts))
|
|
|
|
# vertices are at the near clipping plane so z gets mapped to 0.0.
|
|
vertices[..., 2] = near
|
|
projected_verts = torch.tensor(
|
|
[np.sqrt(3) / near, 2 * np.sqrt(3) / near, 0.0], dtype=torch.float32
|
|
)
|
|
v1 = P.transform_points(vertices)
|
|
v2 = perspective_project_naive(vertices, fov=60.0)
|
|
self.assertTrue(torch.allclose(v1[..., :2], v2[..., :2]))
|
|
self.assertTrue(torch.allclose(v1.squeeze(), projected_verts))
|
|
|
|
def test_perspective_kwargs(self):
|
|
cameras = OpenGLPerspectiveCameras(znear=5.0, zfar=100.0, fov=0.0)
|
|
# Override defaults by passing in values to get_projection_transform
|
|
far = 10.0
|
|
P = cameras.get_projection_transform(znear=1.0, zfar=far, fov=60.0)
|
|
vertices = torch.tensor([1, 2, far], dtype=torch.float32)
|
|
projected_verts = torch.tensor(
|
|
[np.sqrt(3) / far, 2 * np.sqrt(3) / far, 1.0], dtype=torch.float32
|
|
)
|
|
vertices = vertices[None, None, :]
|
|
v1 = P.transform_points(vertices)
|
|
self.assertTrue(torch.allclose(v1.squeeze(), projected_verts))
|
|
|
|
def test_perspective_mixed_inputs_broadcast(self):
|
|
far = torch.tensor([10.0, 20.0], dtype=torch.float32)
|
|
near = 1.0
|
|
fov = torch.tensor(60.0)
|
|
cameras = OpenGLPerspectiveCameras(znear=near, zfar=far, fov=fov)
|
|
P = cameras.get_projection_transform()
|
|
vertices = torch.tensor([1, 2, 10], dtype=torch.float32)
|
|
z1 = 1.0 # vertices at far clipping plane so z = 1.0
|
|
z2 = (20.0 / (20.0 - 1.0) * 10.0 + -(20.0) / (20.0 - 1.0)) / 10.0
|
|
projected_verts = torch.tensor(
|
|
[
|
|
[np.sqrt(3) / 10.0, 2 * np.sqrt(3) / 10.0, z1],
|
|
[np.sqrt(3) / 10.0, 2 * np.sqrt(3) / 10.0, z2],
|
|
],
|
|
dtype=torch.float32,
|
|
)
|
|
vertices = vertices[None, None, :]
|
|
v1 = P.transform_points(vertices)
|
|
v2 = perspective_project_naive(vertices, fov=60.0)
|
|
self.assertTrue(torch.allclose(v1[..., :2], v2[..., :2]))
|
|
self.assertTrue(torch.allclose(v1.squeeze(), projected_verts))
|
|
|
|
def test_perspective_mixed_inputs_grad(self):
|
|
far = torch.tensor([10.0])
|
|
near = 1.0
|
|
fov = torch.tensor(60.0, requires_grad=True)
|
|
cameras = OpenGLPerspectiveCameras(znear=near, zfar=far, fov=fov)
|
|
P = cameras.get_projection_transform()
|
|
vertices = torch.tensor([1, 2, 10], dtype=torch.float32)
|
|
vertices_batch = vertices[None, None, :]
|
|
v1 = P.transform_points(vertices_batch).squeeze()
|
|
v1.sum().backward()
|
|
self.assertTrue(hasattr(fov, "grad"))
|
|
fov_grad = fov.grad.clone()
|
|
half_fov_rad = (math.pi / 180.0) * fov.detach() / 2.0
|
|
grad_cotan = -(1.0 / (torch.sin(half_fov_rad) ** 2.0) * 1 / 2.0)
|
|
grad_fov = (math.pi / 180.0) * grad_cotan
|
|
grad_fov = (vertices[0] + vertices[1]) * grad_fov / 10.0
|
|
self.assertTrue(torch.allclose(fov_grad, grad_fov))
|
|
|
|
def test_camera_class_init(self):
|
|
device = torch.device("cuda:0")
|
|
cam = OpenGLPerspectiveCameras(znear=10.0, zfar=(100.0, 200.0))
|
|
|
|
# Check broadcasting
|
|
self.assertTrue(cam.znear.shape == (2,))
|
|
self.assertTrue(cam.zfar.shape == (2,))
|
|
|
|
# update znear element 1
|
|
cam[1].znear = 20.0
|
|
self.assertTrue(cam.znear[1] == 20.0)
|
|
|
|
# Get item and get value
|
|
c0 = cam[0]
|
|
self.assertTrue(c0.zfar == 100.0)
|
|
|
|
# Test to
|
|
new_cam = cam.to(device=device)
|
|
self.assertTrue(new_cam.device == device)
|
|
|
|
def test_get_full_transform(self):
|
|
cam = OpenGLPerspectiveCameras()
|
|
T = torch.tensor([0.0, 0.0, 1.0]).view(1, -1)
|
|
R = look_at_rotation(T)
|
|
P = cam.get_full_projection_transform(R=R, T=T)
|
|
self.assertTrue(isinstance(P, Transform3d))
|
|
self.assertTrue(torch.allclose(cam.R, R))
|
|
self.assertTrue(torch.allclose(cam.T, T))
|
|
|
|
def test_transform_points(self):
|
|
# Check transform_points methods works with default settings for
|
|
# RT and P
|
|
far = 10.0
|
|
cam = OpenGLPerspectiveCameras(znear=1.0, zfar=far, fov=60.0)
|
|
points = torch.tensor([1, 2, far], dtype=torch.float32)
|
|
points = points.view(1, 1, 3).expand(5, 10, -1)
|
|
projected_points = torch.tensor(
|
|
[np.sqrt(3) / far, 2 * np.sqrt(3) / far, 1.0], dtype=torch.float32
|
|
)
|
|
projected_points = projected_points.view(1, 1, 3).expand(5, 10, -1)
|
|
new_points = cam.transform_points(points)
|
|
self.assertTrue(torch.allclose(new_points, projected_points))
|
|
|
|
|
|
class TestOpenGLOrthographicProjection(TestCaseMixin, unittest.TestCase):
|
|
def test_orthographic(self):
|
|
far = 10.0
|
|
near = 1.0
|
|
cameras = OpenGLOrthographicCameras(znear=near, zfar=far)
|
|
P = cameras.get_projection_transform()
|
|
|
|
vertices = torch.tensor([1, 2, far], dtype=torch.float32)
|
|
projected_verts = torch.tensor([1, 2, 1], dtype=torch.float32)
|
|
vertices = vertices[None, None, :]
|
|
v1 = P.transform_points(vertices)
|
|
v2 = orthographic_project_naive(vertices)
|
|
self.assertTrue(torch.allclose(v1[..., :2], v2[..., :2]))
|
|
self.assertTrue(torch.allclose(v1.squeeze(), projected_verts))
|
|
|
|
vertices[..., 2] = near
|
|
projected_verts[2] = 0.0
|
|
v1 = P.transform_points(vertices)
|
|
v2 = orthographic_project_naive(vertices)
|
|
self.assertTrue(torch.allclose(v1[..., :2], v2[..., :2]))
|
|
self.assertTrue(torch.allclose(v1.squeeze(), projected_verts))
|
|
|
|
def test_orthographic_scaled(self):
|
|
vertices = torch.tensor([1, 2, 0.5], dtype=torch.float32)
|
|
vertices = vertices[None, None, :]
|
|
scale = torch.tensor([[2.0, 0.5, 20]])
|
|
# applying the scale puts the z coordinate at the far clipping plane
|
|
# so the z is mapped to 1.0
|
|
projected_verts = torch.tensor([2, 1, 1], dtype=torch.float32)
|
|
cameras = OpenGLOrthographicCameras(
|
|
znear=1.0, zfar=10.0, scale_xyz=scale
|
|
)
|
|
P = cameras.get_projection_transform()
|
|
v1 = P.transform_points(vertices)
|
|
v2 = orthographic_project_naive(vertices, scale)
|
|
self.assertTrue(torch.allclose(v1[..., :2], v2[..., :2]))
|
|
self.assertTrue(torch.allclose(v1, projected_verts))
|
|
|
|
def test_orthographic_kwargs(self):
|
|
cameras = OpenGLOrthographicCameras(znear=5.0, zfar=100.0)
|
|
far = 10.0
|
|
P = cameras.get_projection_transform(znear=1.0, zfar=far)
|
|
vertices = torch.tensor([1, 2, far], dtype=torch.float32)
|
|
projected_verts = torch.tensor([1, 2, 1], dtype=torch.float32)
|
|
vertices = vertices[None, None, :]
|
|
v1 = P.transform_points(vertices)
|
|
self.assertTrue(torch.allclose(v1.squeeze(), projected_verts))
|
|
|
|
def test_orthographic_mixed_inputs_broadcast(self):
|
|
far = torch.tensor([10.0, 20.0])
|
|
near = 1.0
|
|
cameras = OpenGLOrthographicCameras(znear=near, zfar=far)
|
|
P = cameras.get_projection_transform()
|
|
|
|
vertices = torch.tensor([1.0, 2.0, 10.0], dtype=torch.float32)
|
|
z2 = 1.0 / (20.0 - 1.0) * 10.0 + -(1.0) / (20.0 - 1.0)
|
|
projected_verts = torch.tensor(
|
|
[[1.0, 2.0, 1.0], [1.0, 2.0, z2]], dtype=torch.float32
|
|
)
|
|
vertices = vertices[None, None, :]
|
|
v1 = P.transform_points(vertices)
|
|
v2 = orthographic_project_naive(vertices)
|
|
self.assertTrue(torch.allclose(v1[..., :2], v2[..., :2]))
|
|
self.assertTrue(torch.allclose(v1.squeeze(), projected_verts))
|
|
|
|
def test_orthographic_mixed_inputs_grad(self):
|
|
far = torch.tensor([10.0])
|
|
near = 1.0
|
|
scale = torch.tensor([[1.0, 1.0, 1.0]], requires_grad=True)
|
|
cameras = OpenGLOrthographicCameras(
|
|
znear=near, zfar=far, scale_xyz=scale
|
|
)
|
|
P = cameras.get_projection_transform()
|
|
vertices = torch.tensor([1.0, 2.0, 10.0], dtype=torch.float32)
|
|
vertices_batch = vertices[None, None, :]
|
|
v1 = P.transform_points(vertices_batch)
|
|
v1.sum().backward()
|
|
self.assertTrue(hasattr(scale, "grad"))
|
|
scale_grad = scale.grad.clone()
|
|
grad_scale = torch.tensor(
|
|
[
|
|
[
|
|
vertices[0] * P._matrix[:, 0, 0],
|
|
vertices[1] * P._matrix[:, 1, 1],
|
|
vertices[2] * P._matrix[:, 2, 2],
|
|
]
|
|
]
|
|
)
|
|
self.assertTrue(torch.allclose(scale_grad, grad_scale))
|
|
|
|
|
|
class TestSfMOrthographicProjection(TestCaseMixin, unittest.TestCase):
|
|
def test_orthographic(self):
|
|
cameras = SfMOrthographicCameras()
|
|
P = cameras.get_projection_transform()
|
|
|
|
vertices = torch.randn([3, 4, 3], dtype=torch.float32)
|
|
projected_verts = vertices.clone()
|
|
v1 = P.transform_points(vertices)
|
|
v2 = orthographic_project_naive(vertices)
|
|
|
|
self.assertTrue(torch.allclose(v1[..., :2], v2[..., :2]))
|
|
self.assertTrue(torch.allclose(v1, projected_verts))
|
|
|
|
def test_orthographic_scaled(self):
|
|
focal_length_x = 10.0
|
|
focal_length_y = 15.0
|
|
|
|
cameras = SfMOrthographicCameras(
|
|
focal_length=((focal_length_x, focal_length_y),)
|
|
)
|
|
P = cameras.get_projection_transform()
|
|
|
|
vertices = torch.randn([3, 4, 3], dtype=torch.float32)
|
|
projected_verts = vertices.clone()
|
|
projected_verts[:, :, 0] *= focal_length_x
|
|
projected_verts[:, :, 1] *= focal_length_y
|
|
v1 = P.transform_points(vertices)
|
|
v2 = orthographic_project_naive(
|
|
vertices, scale_xyz=(focal_length_x, focal_length_y, 1.0)
|
|
)
|
|
v3 = cameras.transform_points(vertices)
|
|
self.assertTrue(torch.allclose(v1[..., :2], v2[..., :2]))
|
|
self.assertTrue(torch.allclose(v3[..., :2], v2[..., :2]))
|
|
self.assertTrue(torch.allclose(v1, projected_verts))
|
|
|
|
def test_orthographic_kwargs(self):
|
|
cameras = SfMOrthographicCameras(
|
|
focal_length=5.0, principal_point=((2.5, 2.5),)
|
|
)
|
|
P = cameras.get_projection_transform(
|
|
focal_length=2.0, principal_point=((2.5, 3.5),)
|
|
)
|
|
vertices = torch.randn([3, 4, 3], dtype=torch.float32)
|
|
projected_verts = vertices.clone()
|
|
projected_verts[:, :, :2] *= 2.0
|
|
projected_verts[:, :, 0] += 2.5
|
|
projected_verts[:, :, 1] += 3.5
|
|
v1 = P.transform_points(vertices)
|
|
self.assertTrue(torch.allclose(v1, projected_verts))
|
|
|
|
|
|
class TestSfMPerspectiveProjection(TestCaseMixin, unittest.TestCase):
|
|
def test_perspective(self):
|
|
cameras = SfMPerspectiveCameras()
|
|
P = cameras.get_projection_transform()
|
|
|
|
vertices = torch.randn([3, 4, 3], dtype=torch.float32)
|
|
v1 = P.transform_points(vertices)
|
|
v2 = sfm_perspective_project_naive(vertices)
|
|
self.assertTrue(torch.allclose(v1, v2))
|
|
|
|
def test_perspective_scaled(self):
|
|
focal_length_x = 10.0
|
|
focal_length_y = 15.0
|
|
p0x = 15.0
|
|
p0y = 30.0
|
|
|
|
cameras = SfMPerspectiveCameras(
|
|
focal_length=((focal_length_x, focal_length_y),),
|
|
principal_point=((p0x, p0y),),
|
|
)
|
|
P = cameras.get_projection_transform()
|
|
|
|
vertices = torch.randn([3, 4, 3], dtype=torch.float32)
|
|
v1 = P.transform_points(vertices)
|
|
v2 = sfm_perspective_project_naive(
|
|
vertices, fx=focal_length_x, fy=focal_length_y, p0x=p0x, p0y=p0y
|
|
)
|
|
v3 = cameras.transform_points(vertices)
|
|
self.assertTrue(torch.allclose(v1, v2))
|
|
self.assertTrue(torch.allclose(v3[..., :2], v2[..., :2]))
|
|
|
|
def test_perspective_kwargs(self):
|
|
cameras = SfMPerspectiveCameras(
|
|
focal_length=5.0, principal_point=((2.5, 2.5),)
|
|
)
|
|
P = cameras.get_projection_transform(
|
|
focal_length=2.0, principal_point=((2.5, 3.5),)
|
|
)
|
|
vertices = torch.randn([3, 4, 3], dtype=torch.float32)
|
|
v1 = P.transform_points(vertices)
|
|
v2 = sfm_perspective_project_naive(
|
|
vertices, fx=2.0, fy=2.0, p0x=2.5, p0y=3.5
|
|
)
|
|
self.assertTrue(torch.allclose(v1, v2))
|