mirror of
https://github.com/facebookresearch/pytorch3d.git
synced 2025-08-02 03:42:50 +08:00
Summary: Collection of spelling things, mostly in docs / tutorials. Reviewed By: gkioxari Differential Revision: D26101323 fbshipit-source-id: 652f62bc9d71a4ff872efa21141225e43191353a
1104 lines
42 KiB
Python
1104 lines
42 KiB
Python
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
|
|
|
|
import torch
|
|
|
|
from . import utils as struct_utils
|
|
|
|
|
|
class Pointclouds(object):
|
|
"""
|
|
This class provides functions for working with batches of 3d point clouds,
|
|
and converting between representations.
|
|
|
|
Within Pointclouds, there are three different representations of the data.
|
|
|
|
List
|
|
- only used for input as a starting point to convert to other representations.
|
|
Padded
|
|
- has specific batch dimension.
|
|
Packed
|
|
- no batch dimension.
|
|
- has auxiliary variables used to index into the padded representation.
|
|
|
|
Example
|
|
|
|
Input list of points = [[P_1], [P_2], ... , [P_N]]
|
|
where P_1, ... , P_N are the number of points in each cloud and N is the
|
|
number of clouds.
|
|
|
|
# SPHINX IGNORE
|
|
List | Padded | Packed
|
|
---------------------------|-------------------------|------------------------
|
|
[[P_1], ... , [P_N]] | size = (N, max(P_n), 3) | size = (sum(P_n), 3)
|
|
| |
|
|
Example for locations | |
|
|
or colors: | |
|
|
| |
|
|
P_1 = 3, P_2 = 4, P_3 = 5 | size = (3, 5, 3) | size = (12, 3)
|
|
| |
|
|
List([ | tensor([ | tensor([
|
|
[ | [ | [0.1, 0.3, 0.5],
|
|
[0.1, 0.3, 0.5], | [0.1, 0.3, 0.5], | [0.5, 0.2, 0.1],
|
|
[0.5, 0.2, 0.1], | [0.5, 0.2, 0.1], | [0.6, 0.8, 0.7],
|
|
[0.6, 0.8, 0.7] | [0.6, 0.8, 0.7], | [0.1, 0.3, 0.3],
|
|
], | [0, 0, 0], | [0.6, 0.7, 0.8],
|
|
[ | [0, 0, 0] | [0.2, 0.3, 0.4],
|
|
[0.1, 0.3, 0.3], | ], | [0.1, 0.5, 0.3],
|
|
[0.6, 0.7, 0.8], | [ | [0.7, 0.3, 0.6],
|
|
[0.2, 0.3, 0.4], | [0.1, 0.3, 0.3], | [0.2, 0.4, 0.8],
|
|
[0.1, 0.5, 0.3] | [0.6, 0.7, 0.8], | [0.9, 0.5, 0.2],
|
|
], | [0.2, 0.3, 0.4], | [0.2, 0.3, 0.4],
|
|
[ | [0.1, 0.5, 0.3], | [0.9, 0.3, 0.8],
|
|
[0.7, 0.3, 0.6], | [0, 0, 0] | ])
|
|
[0.2, 0.4, 0.8], | ], |
|
|
[0.9, 0.5, 0.2], | [ |
|
|
[0.2, 0.3, 0.4], | [0.7, 0.3, 0.6], |
|
|
[0.9, 0.3, 0.8], | [0.2, 0.4, 0.8], |
|
|
] | [0.9, 0.5, 0.2], |
|
|
]) | [0.2, 0.3, 0.4], |
|
|
| [0.9, 0.3, 0.8] |
|
|
| ] |
|
|
| ]) |
|
|
-----------------------------------------------------------------------------
|
|
|
|
Auxiliary variables for packed representation
|
|
|
|
Name | Size | Example from above
|
|
-------------------------------|---------------------|-----------------------
|
|
| |
|
|
packed_to_cloud_idx | size = (sum(P_n)) | tensor([
|
|
| | 0, 0, 0, 1, 1, 1,
|
|
| | 1, 2, 2, 2, 2, 2
|
|
| | )]
|
|
| | size = (12)
|
|
| |
|
|
cloud_to_packed_first_idx | size = (N) | tensor([0, 3, 7])
|
|
| | size = (3)
|
|
| |
|
|
num_points_per_cloud | size = (N) | tensor([3, 4, 5])
|
|
| | size = (3)
|
|
| |
|
|
padded_to_packed_idx | size = (sum(P_n)) | tensor([
|
|
| | 0, 1, 2, 5, 6, 7,
|
|
| | 8, 10, 11, 12, 13,
|
|
| | 14
|
|
| | )]
|
|
| | size = (12)
|
|
-----------------------------------------------------------------------------
|
|
# SPHINX IGNORE
|
|
"""
|
|
|
|
_INTERNAL_TENSORS = [
|
|
"_points_packed",
|
|
"_points_padded",
|
|
"_normals_packed",
|
|
"_normals_padded",
|
|
"_features_packed",
|
|
"_features_padded",
|
|
"_packed_to_cloud_idx",
|
|
"_cloud_to_packed_first_idx",
|
|
"_num_points_per_cloud",
|
|
"_padded_to_packed_idx",
|
|
"valid",
|
|
"equisized",
|
|
]
|
|
|
|
def __init__(self, points, normals=None, features=None):
|
|
"""
|
|
Args:
|
|
points:
|
|
Can be either
|
|
|
|
- List where each element is a tensor of shape (num_points, 3)
|
|
containing the (x, y, z) coordinates of each point.
|
|
- Padded float tensor with shape (num_clouds, num_points, 3).
|
|
normals:
|
|
Can be either
|
|
|
|
- List where each element is a tensor of shape (num_points, 3)
|
|
containing the normal vector for each point.
|
|
- Padded float tensor of shape (num_clouds, num_points, 3).
|
|
features:
|
|
Can be either
|
|
|
|
- List where each element is a tensor of shape (num_points, C)
|
|
containing the features for the points in the cloud.
|
|
- Padded float tensor of shape (num_clouds, num_points, C).
|
|
where C is the number of channels in the features.
|
|
For example 3 for RGB color.
|
|
|
|
Refer to comments above for descriptions of List and Padded
|
|
representations.
|
|
"""
|
|
self.device = None
|
|
|
|
# Indicates whether the clouds in the list/batch have the same number
|
|
# of points.
|
|
self.equisized = False
|
|
|
|
# Boolean indicator for each cloud in the batch.
|
|
# True if cloud has non zero number of points, False otherwise.
|
|
self.valid = None
|
|
|
|
self._N = 0 # batch size (number of clouds)
|
|
self._P = 0 # (max) number of points per cloud
|
|
self._C = None # number of channels in the features
|
|
|
|
# List of Tensors of points and features.
|
|
self._points_list = None
|
|
self._normals_list = None
|
|
self._features_list = None
|
|
|
|
# Number of points per cloud.
|
|
self._num_points_per_cloud = None # N
|
|
|
|
# Packed representation.
|
|
self._points_packed = None # (sum(P_n), 3)
|
|
self._normals_packed = None # (sum(P_n), 3)
|
|
self._features_packed = None # (sum(P_n), C)
|
|
|
|
self._packed_to_cloud_idx = None # sum(P_n)
|
|
|
|
# Index of each cloud's first point in the packed points.
|
|
# Assumes packing is sequential.
|
|
self._cloud_to_packed_first_idx = None # N
|
|
|
|
# Padded representation.
|
|
self._points_padded = None # (N, max(P_n), 3)
|
|
self._normals_padded = None # (N, max(P_n), 3)
|
|
self._features_padded = None # (N, max(P_n), C)
|
|
|
|
# Index to convert points from flattened padded to packed.
|
|
self._padded_to_packed_idx = None # N * max_P
|
|
|
|
# Identify type of points.
|
|
if isinstance(points, list):
|
|
self._points_list = points
|
|
self._N = len(self._points_list)
|
|
self.device = torch.device("cpu")
|
|
self.valid = torch.zeros((self._N,), dtype=torch.bool, device=self.device)
|
|
self._num_points_per_cloud = []
|
|
|
|
if self._N > 0:
|
|
self.device = self._points_list[0].device
|
|
for p in self._points_list:
|
|
if len(p) > 0 and (p.dim() != 2 or p.shape[1] != 3):
|
|
raise ValueError("Clouds in list must be of shape Px3 or empty")
|
|
if p.device != self.device:
|
|
raise ValueError("All points must be on the same device")
|
|
|
|
num_points_per_cloud = torch.tensor(
|
|
[len(p) for p in self._points_list], device=self.device
|
|
)
|
|
self._P = int(num_points_per_cloud.max())
|
|
self.valid = torch.tensor(
|
|
[len(p) > 0 for p in self._points_list],
|
|
dtype=torch.bool,
|
|
device=self.device,
|
|
)
|
|
|
|
if len(num_points_per_cloud.unique()) == 1:
|
|
self.equisized = True
|
|
self._num_points_per_cloud = num_points_per_cloud
|
|
|
|
elif torch.is_tensor(points):
|
|
if points.dim() != 3 or points.shape[2] != 3:
|
|
raise ValueError("Points tensor has incorrect dimensions.")
|
|
self._points_padded = points
|
|
self._N = self._points_padded.shape[0]
|
|
self._P = self._points_padded.shape[1]
|
|
self.device = self._points_padded.device
|
|
self.valid = torch.ones((self._N,), dtype=torch.bool, device=self.device)
|
|
self._num_points_per_cloud = torch.tensor(
|
|
[self._P] * self._N, device=self.device
|
|
)
|
|
self.equisized = True
|
|
else:
|
|
raise ValueError(
|
|
"Points must be either a list or a tensor with \
|
|
shape (batch_size, P, 3) where P is the maximum number of \
|
|
points in a cloud."
|
|
)
|
|
|
|
# parse normals
|
|
normals_parsed = self._parse_auxiliary_input(normals)
|
|
self._normals_list, self._normals_padded, normals_C = normals_parsed
|
|
if normals_C is not None and normals_C != 3:
|
|
raise ValueError("Normals are expected to be 3-dimensional")
|
|
|
|
# parse features
|
|
features_parsed = self._parse_auxiliary_input(features)
|
|
self._features_list, self._features_padded, features_C = features_parsed
|
|
if features_C is not None:
|
|
self._C = features_C
|
|
|
|
def _parse_auxiliary_input(self, aux_input):
|
|
"""
|
|
Interpret the auxiliary inputs (normals, features) given to __init__.
|
|
|
|
Args:
|
|
aux_input:
|
|
Can be either
|
|
|
|
- List where each element is a tensor of shape (num_points, C)
|
|
containing the features for the points in the cloud.
|
|
- Padded float tensor of shape (num_clouds, num_points, C).
|
|
For normals, C = 3
|
|
|
|
Returns:
|
|
3-element tuple of list, padded, num_channels.
|
|
If aux_input is list, then padded is None. If aux_input is a tensor,
|
|
then list is None.
|
|
"""
|
|
if aux_input is None or self._N == 0:
|
|
return None, None, None
|
|
|
|
aux_input_C = None
|
|
|
|
if isinstance(aux_input, list):
|
|
if len(aux_input) != self._N:
|
|
raise ValueError("Points and auxiliary input must be the same length.")
|
|
for p, d in zip(self._num_points_per_cloud, aux_input):
|
|
if p != d.shape[0]:
|
|
raise ValueError(
|
|
"A cloud has mismatched numbers of points and inputs"
|
|
)
|
|
if d.device != self.device:
|
|
raise ValueError(
|
|
"All auxiliary inputs must be on the same device as the points."
|
|
)
|
|
if p > 0:
|
|
if d.dim() != 2:
|
|
raise ValueError(
|
|
"A cloud auxiliary input must be of shape PxC or empty"
|
|
)
|
|
if aux_input_C is None:
|
|
aux_input_C = d.shape[1]
|
|
if aux_input_C != d.shape[1]:
|
|
raise ValueError(
|
|
"The clouds must have the same number of channels"
|
|
)
|
|
return aux_input, None, aux_input_C
|
|
elif torch.is_tensor(aux_input):
|
|
if aux_input.dim() != 3:
|
|
raise ValueError("Auxiliary input tensor has incorrect dimensions.")
|
|
if self._N != aux_input.shape[0]:
|
|
raise ValueError("Points and inputs must be the same length.")
|
|
if self._P != aux_input.shape[1]:
|
|
raise ValueError(
|
|
"Inputs tensor must have the right maximum \
|
|
number of points in each cloud."
|
|
)
|
|
if aux_input.device != self.device:
|
|
raise ValueError(
|
|
"All auxiliary inputs must be on the same device as the points."
|
|
)
|
|
aux_input_C = aux_input.shape[2]
|
|
return None, aux_input, aux_input_C
|
|
else:
|
|
raise ValueError(
|
|
"Auxiliary input must be either a list or a tensor with \
|
|
shape (batch_size, P, C) where P is the maximum number of \
|
|
points in a cloud."
|
|
)
|
|
|
|
def __len__(self):
|
|
return self._N
|
|
|
|
def __getitem__(self, index):
|
|
"""
|
|
Args:
|
|
index: Specifying the index of the cloud to retrieve.
|
|
Can be an int, slice, list of ints or a boolean tensor.
|
|
|
|
Returns:
|
|
Pointclouds object with selected clouds. The tensors are not cloned.
|
|
"""
|
|
normals, features = None, None
|
|
if isinstance(index, int):
|
|
points = [self.points_list()[index]]
|
|
if self.normals_list() is not None:
|
|
normals = [self.normals_list()[index]]
|
|
if self.features_list() is not None:
|
|
features = [self.features_list()[index]]
|
|
elif isinstance(index, slice):
|
|
points = self.points_list()[index]
|
|
if self.normals_list() is not None:
|
|
normals = self.normals_list()[index]
|
|
if self.features_list() is not None:
|
|
features = self.features_list()[index]
|
|
elif isinstance(index, list):
|
|
points = [self.points_list()[i] for i in index]
|
|
if self.normals_list() is not None:
|
|
normals = [self.normals_list()[i] for i in index]
|
|
if self.features_list() is not None:
|
|
features = [self.features_list()[i] for i in index]
|
|
elif isinstance(index, torch.Tensor):
|
|
if index.dim() != 1 or index.dtype.is_floating_point:
|
|
raise IndexError(index)
|
|
# NOTE consider converting index to cpu for efficiency
|
|
if index.dtype == torch.bool:
|
|
# advanced indexing on a single dimension
|
|
index = index.nonzero()
|
|
index = index.squeeze(1) if index.numel() > 0 else index
|
|
index = index.tolist()
|
|
points = [self.points_list()[i] for i in index]
|
|
if self.normals_list() is not None:
|
|
normals = [self.normals_list()[i] for i in index]
|
|
if self.features_list() is not None:
|
|
features = [self.features_list()[i] for i in index]
|
|
else:
|
|
raise IndexError(index)
|
|
|
|
return self.__class__(points=points, normals=normals, features=features)
|
|
|
|
def isempty(self) -> bool:
|
|
"""
|
|
Checks whether any cloud is valid.
|
|
|
|
Returns:
|
|
bool indicating whether there is any data.
|
|
"""
|
|
return self._N == 0 or self.valid.eq(False).all()
|
|
|
|
def points_list(self):
|
|
"""
|
|
Get the list representation of the points.
|
|
|
|
Returns:
|
|
list of tensors of points of shape (P_n, 3).
|
|
"""
|
|
if self._points_list is None:
|
|
assert (
|
|
self._points_padded is not None
|
|
), "points_padded is required to compute points_list."
|
|
points_list = []
|
|
for i in range(self._N):
|
|
points_list.append(
|
|
self._points_padded[i, : self.num_points_per_cloud()[i]]
|
|
)
|
|
self._points_list = points_list
|
|
return self._points_list
|
|
|
|
def normals_list(self):
|
|
"""
|
|
Get the list representation of the normals.
|
|
|
|
Returns:
|
|
list of tensors of normals of shape (P_n, 3).
|
|
"""
|
|
if self._normals_list is None:
|
|
if self._normals_padded is None:
|
|
# No normals provided so return None
|
|
return None
|
|
self._normals_list = struct_utils.padded_to_list(
|
|
self._normals_padded, self.num_points_per_cloud().tolist()
|
|
)
|
|
return self._normals_list
|
|
|
|
def features_list(self):
|
|
"""
|
|
Get the list representation of the features.
|
|
|
|
Returns:
|
|
list of tensors of features of shape (P_n, C).
|
|
"""
|
|
if self._features_list is None:
|
|
if self._features_padded is None:
|
|
# No features provided so return None
|
|
return None
|
|
self._features_list = struct_utils.padded_to_list(
|
|
self._features_padded, self.num_points_per_cloud().tolist()
|
|
)
|
|
return self._features_list
|
|
|
|
def points_packed(self):
|
|
"""
|
|
Get the packed representation of the points.
|
|
|
|
Returns:
|
|
tensor of points of shape (sum(P_n), 3).
|
|
"""
|
|
self._compute_packed()
|
|
return self._points_packed
|
|
|
|
def normals_packed(self):
|
|
"""
|
|
Get the packed representation of the normals.
|
|
|
|
Returns:
|
|
tensor of normals of shape (sum(P_n), 3).
|
|
"""
|
|
self._compute_packed()
|
|
return self._normals_packed
|
|
|
|
def features_packed(self):
|
|
"""
|
|
Get the packed representation of the features.
|
|
|
|
Returns:
|
|
tensor of features of shape (sum(P_n), C).
|
|
"""
|
|
self._compute_packed()
|
|
return self._features_packed
|
|
|
|
def packed_to_cloud_idx(self):
|
|
"""
|
|
Return a 1D tensor x with length equal to the total number of points.
|
|
packed_to_cloud_idx()[i] gives the index of the cloud which contains
|
|
points_packed()[i].
|
|
|
|
Returns:
|
|
1D tensor of indices.
|
|
"""
|
|
self._compute_packed()
|
|
return self._packed_to_cloud_idx
|
|
|
|
def cloud_to_packed_first_idx(self):
|
|
"""
|
|
Return a 1D tensor x with length equal to the number of clouds such that
|
|
the first point of the ith cloud is points_packed[x[i]].
|
|
|
|
Returns:
|
|
1D tensor of indices of first items.
|
|
"""
|
|
self._compute_packed()
|
|
return self._cloud_to_packed_first_idx
|
|
|
|
def num_points_per_cloud(self):
|
|
"""
|
|
Return a 1D tensor x with length equal to the number of clouds giving
|
|
the number of points in each cloud.
|
|
|
|
Returns:
|
|
1D tensor of sizes.
|
|
"""
|
|
return self._num_points_per_cloud
|
|
|
|
def points_padded(self):
|
|
"""
|
|
Get the padded representation of the points.
|
|
|
|
Returns:
|
|
tensor of points of shape (N, max(P_n), 3).
|
|
"""
|
|
self._compute_padded()
|
|
return self._points_padded
|
|
|
|
def normals_padded(self):
|
|
"""
|
|
Get the padded representation of the normals.
|
|
|
|
Returns:
|
|
tensor of normals of shape (N, max(P_n), 3).
|
|
"""
|
|
self._compute_padded()
|
|
return self._normals_padded
|
|
|
|
def features_padded(self):
|
|
"""
|
|
Get the padded representation of the features.
|
|
|
|
Returns:
|
|
tensor of features of shape (N, max(P_n), 3).
|
|
"""
|
|
self._compute_padded()
|
|
return self._features_padded
|
|
|
|
def padded_to_packed_idx(self):
|
|
"""
|
|
Return a 1D tensor x with length equal to the total number of points
|
|
such that points_packed()[i] is element x[i] of the flattened padded
|
|
representation.
|
|
The packed representation can be calculated as follows.
|
|
|
|
.. code-block:: python
|
|
|
|
p = points_padded().reshape(-1, 3)
|
|
points_packed = p[x]
|
|
|
|
Returns:
|
|
1D tensor of indices.
|
|
"""
|
|
if self._padded_to_packed_idx is not None:
|
|
return self._padded_to_packed_idx
|
|
if self._N == 0:
|
|
self._padded_to_packed_idx = []
|
|
else:
|
|
self._padded_to_packed_idx = torch.cat(
|
|
[
|
|
torch.arange(v, dtype=torch.int64, device=self.device) + i * self._P
|
|
for (i, v) in enumerate(self.num_points_per_cloud())
|
|
],
|
|
dim=0,
|
|
)
|
|
return self._padded_to_packed_idx
|
|
|
|
def _compute_padded(self, refresh: bool = False):
|
|
"""
|
|
Computes the padded version from points_list, normals_list and features_list.
|
|
|
|
Args:
|
|
refresh: whether to force the recalculation.
|
|
"""
|
|
if not (refresh or self._points_padded is None):
|
|
return
|
|
|
|
self._normals_padded, self._features_padded = None, None
|
|
if self.isempty():
|
|
self._points_padded = torch.zeros((self._N, 0, 3), device=self.device)
|
|
else:
|
|
self._points_padded = struct_utils.list_to_padded(
|
|
self.points_list(),
|
|
(self._P, 3),
|
|
pad_value=0.0,
|
|
equisized=self.equisized,
|
|
)
|
|
if self.normals_list() is not None:
|
|
self._normals_padded = struct_utils.list_to_padded(
|
|
self.normals_list(),
|
|
(self._P, 3),
|
|
pad_value=0.0,
|
|
equisized=self.equisized,
|
|
)
|
|
if self.features_list() is not None:
|
|
self._features_padded = struct_utils.list_to_padded(
|
|
self.features_list(),
|
|
(self._P, self._C),
|
|
pad_value=0.0,
|
|
equisized=self.equisized,
|
|
)
|
|
|
|
# TODO(nikhilar) Improve performance of _compute_packed.
|
|
def _compute_packed(self, refresh: bool = False):
|
|
"""
|
|
Computes the packed version from points_list, normals_list and
|
|
features_list and sets the values of auxiliary tensors.
|
|
|
|
Args:
|
|
refresh: Set to True to force recomputation of packed
|
|
representations. Default: False.
|
|
"""
|
|
|
|
if not (
|
|
refresh
|
|
or any(
|
|
v is None
|
|
for v in [
|
|
self._points_packed,
|
|
self._packed_to_cloud_idx,
|
|
self._cloud_to_packed_first_idx,
|
|
]
|
|
)
|
|
):
|
|
return
|
|
|
|
# Packed can be calculated from padded or list, so can call the
|
|
# accessor function for the lists.
|
|
points_list = self.points_list()
|
|
normals_list = self.normals_list()
|
|
features_list = self.features_list()
|
|
if self.isempty():
|
|
self._points_packed = torch.zeros(
|
|
(0, 3), dtype=torch.float32, device=self.device
|
|
)
|
|
self._packed_to_cloud_idx = torch.zeros(
|
|
(0,), dtype=torch.int64, device=self.device
|
|
)
|
|
self._cloud_to_packed_first_idx = torch.zeros(
|
|
(0,), dtype=torch.int64, device=self.device
|
|
)
|
|
self._normals_packed = None
|
|
self._features_packed = None
|
|
return
|
|
|
|
points_list_to_packed = struct_utils.list_to_packed(points_list)
|
|
self._points_packed = points_list_to_packed[0]
|
|
if not torch.allclose(self._num_points_per_cloud, points_list_to_packed[1]):
|
|
raise ValueError("Inconsistent list to packed conversion")
|
|
self._cloud_to_packed_first_idx = points_list_to_packed[2]
|
|
self._packed_to_cloud_idx = points_list_to_packed[3]
|
|
|
|
self._normals_packed, self._features_packed = None, None
|
|
if normals_list is not None:
|
|
normals_list_to_packed = struct_utils.list_to_packed(normals_list)
|
|
self._normals_packed = normals_list_to_packed[0]
|
|
|
|
if features_list is not None:
|
|
features_list_to_packed = struct_utils.list_to_packed(features_list)
|
|
self._features_packed = features_list_to_packed[0]
|
|
|
|
def clone(self):
|
|
"""
|
|
Deep copy of Pointclouds object. All internal tensors are cloned
|
|
individually.
|
|
|
|
Returns:
|
|
new Pointclouds object.
|
|
"""
|
|
# instantiate new pointcloud with the representation which is not None
|
|
# (either list or tensor) to save compute.
|
|
new_points, new_normals, new_features = None, None, None
|
|
if self._points_list is not None:
|
|
new_points = [v.clone() for v in self.points_list()]
|
|
normals_list = self.normals_list()
|
|
features_list = self.features_list()
|
|
if normals_list is not None:
|
|
new_normals = [n.clone() for n in normals_list]
|
|
if features_list is not None:
|
|
new_features = [f.clone() for f in features_list]
|
|
elif self._points_padded is not None:
|
|
new_points = self.points_padded().clone()
|
|
normals_padded = self.normals_padded()
|
|
features_padded = self.features_padded()
|
|
if normals_padded is not None:
|
|
new_normals = self.normals_padded().clone()
|
|
if features_padded is not None:
|
|
new_features = self.features_padded().clone()
|
|
other = self.__class__(
|
|
points=new_points, normals=new_normals, features=new_features
|
|
)
|
|
for k in self._INTERNAL_TENSORS:
|
|
v = getattr(self, k)
|
|
if torch.is_tensor(v):
|
|
setattr(other, k, v.clone())
|
|
return other
|
|
|
|
def detach(self):
|
|
"""
|
|
Detach Pointclouds object. All internal tensors are detached
|
|
individually.
|
|
|
|
Returns:
|
|
new Pointclouds object.
|
|
"""
|
|
# instantiate new pointcloud with the representation which is not None
|
|
# (either list or tensor) to save compute.
|
|
new_points, new_normals, new_features = None, None, None
|
|
if self._points_list is not None:
|
|
new_points = [v.detach() for v in self.points_list()]
|
|
normals_list = self.normals_list()
|
|
features_list = self.features_list()
|
|
if normals_list is not None:
|
|
new_normals = [n.detach() for n in normals_list]
|
|
if features_list is not None:
|
|
new_features = [f.detach() for f in features_list]
|
|
elif self._points_padded is not None:
|
|
new_points = self.points_padded().detach()
|
|
normals_padded = self.normals_padded()
|
|
features_padded = self.features_padded()
|
|
if normals_padded is not None:
|
|
new_normals = self.normals_padded().detach()
|
|
if features_padded is not None:
|
|
new_features = self.features_padded().detach()
|
|
other = self.__class__(
|
|
points=new_points, normals=new_normals, features=new_features
|
|
)
|
|
for k in self._INTERNAL_TENSORS:
|
|
v = getattr(self, k)
|
|
if torch.is_tensor(v):
|
|
setattr(other, k, v.detach())
|
|
return other
|
|
|
|
def to(self, device, copy: bool = False):
|
|
"""
|
|
Match functionality of torch.Tensor.to()
|
|
If copy = True or the self Tensor is on a different device, the
|
|
returned tensor is a copy of self with the desired torch.device.
|
|
If copy = False and the self Tensor already has the correct torch.device,
|
|
then self is returned.
|
|
|
|
Args:
|
|
device: Device id for the new tensor.
|
|
copy: Boolean indicator whether or not to clone self. Default False.
|
|
|
|
Returns:
|
|
Pointclouds object.
|
|
"""
|
|
if not copy and self.device == device:
|
|
return self
|
|
other = self.clone()
|
|
if self.device != device:
|
|
other.device = device
|
|
if other._N > 0:
|
|
other._points_list = [v.to(device) for v in other.points_list()]
|
|
if other._normals_list is not None:
|
|
other._normals_list = [n.to(device) for n in other.normals_list()]
|
|
if other._features_list is not None:
|
|
other._features_list = [f.to(device) for f in other.features_list()]
|
|
for k in self._INTERNAL_TENSORS:
|
|
v = getattr(self, k)
|
|
if torch.is_tensor(v):
|
|
setattr(other, k, v.to(device))
|
|
return other
|
|
|
|
def cpu(self):
|
|
return self.to(torch.device("cpu"))
|
|
|
|
def cuda(self):
|
|
return self.to(torch.device("cuda"))
|
|
|
|
def get_cloud(self, index: int):
|
|
"""
|
|
Get tensors for a single cloud from the list representation.
|
|
|
|
Args:
|
|
index: Integer in the range [0, N).
|
|
|
|
Returns:
|
|
points: Tensor of shape (P, 3).
|
|
normals: Tensor of shape (P, 3)
|
|
features: LongTensor of shape (P, C).
|
|
"""
|
|
if not isinstance(index, int):
|
|
raise ValueError("Cloud index must be an integer.")
|
|
if index < 0 or index > self._N:
|
|
raise ValueError(
|
|
"Cloud index must be in the range [0, N) where \
|
|
N is the number of clouds in the batch."
|
|
)
|
|
points = self.points_list()[index]
|
|
normals, features = None, None
|
|
if self.normals_list() is not None:
|
|
normals = self.normals_list()[index]
|
|
if self.features_list() is not None:
|
|
features = self.features_list()[index]
|
|
return points, normals, features
|
|
|
|
# TODO(nikhilar) Move function to a utils file.
|
|
def split(self, split_sizes: list):
|
|
"""
|
|
Splits Pointclouds object of size N into a list of Pointclouds objects
|
|
of size len(split_sizes), where the i-th Pointclouds object is of size
|
|
split_sizes[i]. Similar to torch.split().
|
|
|
|
Args:
|
|
split_sizes: List of integer sizes of Pointclouds objects to be
|
|
returned.
|
|
|
|
Returns:
|
|
list[Pointclouds].
|
|
"""
|
|
if not all(isinstance(x, int) for x in split_sizes):
|
|
raise ValueError("Value of split_sizes must be a list of integers.")
|
|
cloudlist = []
|
|
curi = 0
|
|
for i in split_sizes:
|
|
cloudlist.append(self[curi : curi + i])
|
|
curi += i
|
|
return cloudlist
|
|
|
|
def offset_(self, offsets_packed):
|
|
"""
|
|
Translate the point clouds by an offset. In place operation.
|
|
|
|
Args:
|
|
offsets_packed: A Tensor of shape (3,) or the same shape
|
|
as self.points_packed giving offsets to be added to
|
|
all points.
|
|
|
|
Returns:
|
|
self.
|
|
"""
|
|
points_packed = self.points_packed()
|
|
if offsets_packed.shape == (3,):
|
|
offsets_packed = offsets_packed.expand_as(points_packed)
|
|
if offsets_packed.shape != points_packed.shape:
|
|
raise ValueError("Offsets must have dimension (all_p, 3).")
|
|
self._points_packed = points_packed + offsets_packed
|
|
new_points_list = list(
|
|
self._points_packed.split(self.num_points_per_cloud().tolist(), 0)
|
|
)
|
|
# Note that since _compute_packed() has been executed, points_list
|
|
# cannot be None even if not provided during construction.
|
|
self._points_list = new_points_list
|
|
if self._points_padded is not None:
|
|
for i, points in enumerate(new_points_list):
|
|
if len(points) > 0:
|
|
self._points_padded[i, : points.shape[0], :] = points
|
|
return self
|
|
|
|
# TODO(nikhilar) Move out of place operator to a utils file.
|
|
def offset(self, offsets_packed):
|
|
"""
|
|
Out of place offset.
|
|
|
|
Args:
|
|
offsets_packed: A Tensor of the same shape as self.points_packed
|
|
giving offsets to be added to all points.
|
|
Returns:
|
|
new Pointclouds object.
|
|
"""
|
|
new_clouds = self.clone()
|
|
return new_clouds.offset_(offsets_packed)
|
|
|
|
def scale_(self, scale):
|
|
"""
|
|
Multiply the coordinates of this object by a scalar value.
|
|
- i.e. enlarge/dilate
|
|
In place operation.
|
|
|
|
Args:
|
|
scale: A scalar, or a Tensor of shape (N,).
|
|
|
|
Returns:
|
|
self.
|
|
"""
|
|
if not torch.is_tensor(scale):
|
|
scale = torch.full((len(self),), scale, device=self.device)
|
|
new_points_list = []
|
|
points_list = self.points_list()
|
|
for i, old_points in enumerate(points_list):
|
|
new_points_list.append(scale[i] * old_points)
|
|
self._points_list = new_points_list
|
|
if self._points_packed is not None:
|
|
self._points_packed = torch.cat(new_points_list, dim=0)
|
|
if self._points_padded is not None:
|
|
for i, points in enumerate(new_points_list):
|
|
if len(points) > 0:
|
|
self._points_padded[i, : points.shape[0], :] = points
|
|
return self
|
|
|
|
def scale(self, scale):
|
|
"""
|
|
Out of place scale_.
|
|
|
|
Args:
|
|
scale: A scalar, or a Tensor of shape (N,).
|
|
|
|
Returns:
|
|
new Pointclouds object.
|
|
"""
|
|
new_clouds = self.clone()
|
|
return new_clouds.scale_(scale)
|
|
|
|
# TODO(nikhilar) Move function to utils file.
|
|
def get_bounding_boxes(self):
|
|
"""
|
|
Compute an axis-aligned bounding box for each cloud.
|
|
|
|
Returns:
|
|
bboxes: Tensor of shape (N, 3, 2) where bbox[i, j] gives the
|
|
min and max values of cloud i along the jth coordinate axis.
|
|
"""
|
|
all_mins, all_maxes = [], []
|
|
for points in self.points_list():
|
|
cur_mins = points.min(dim=0)[0] # (3,)
|
|
cur_maxes = points.max(dim=0)[0] # (3,)
|
|
all_mins.append(cur_mins)
|
|
all_maxes.append(cur_maxes)
|
|
all_mins = torch.stack(all_mins, dim=0) # (N, 3)
|
|
all_maxes = torch.stack(all_maxes, dim=0) # (N, 3)
|
|
bboxes = torch.stack([all_mins, all_maxes], dim=2)
|
|
return bboxes
|
|
|
|
def estimate_normals(
|
|
self,
|
|
neighborhood_size: int = 50,
|
|
disambiguate_directions: bool = True,
|
|
assign_to_self: bool = False,
|
|
):
|
|
"""
|
|
Estimates the normals of each point in each cloud and assigns
|
|
them to the internal tensors `self._normals_list` and `self._normals_padded`
|
|
|
|
The function uses `ops.estimate_pointcloud_local_coord_frames`
|
|
to estimate the normals. Please refer to that function for more
|
|
detailed information about the implemented algorithm.
|
|
|
|
Args:
|
|
**neighborhood_size**: The size of the neighborhood used to estimate the
|
|
geometry around each point.
|
|
**disambiguate_directions**: If `True`, uses the algorithm from [1] to
|
|
ensure sign consistency of the normals of neighboring points.
|
|
**normals**: A tensor of normals for each input point
|
|
of shape `(minibatch, num_point, 3)`.
|
|
If `pointclouds` are of `Pointclouds` class, returns a padded tensor.
|
|
**assign_to_self**: If `True`, assigns the computed normals to the
|
|
internal buffers overwriting any previously stored normals.
|
|
|
|
References:
|
|
[1] Tombari, Salti, Di Stefano: Unique Signatures of Histograms for
|
|
Local Surface Description, ECCV 2010.
|
|
"""
|
|
from .. import ops
|
|
|
|
# estimate the normals
|
|
normals_est = ops.estimate_pointcloud_normals(
|
|
self,
|
|
neighborhood_size=neighborhood_size,
|
|
disambiguate_directions=disambiguate_directions,
|
|
)
|
|
|
|
# assign to self
|
|
if assign_to_self:
|
|
_, self._normals_padded, _ = self._parse_auxiliary_input(normals_est)
|
|
self._normals_list, self._normals_packed = None, None
|
|
if self._points_list is not None:
|
|
# update self._normals_list
|
|
self.normals_list()
|
|
if self._points_packed is not None:
|
|
# update self._normals_packed
|
|
self._normals_packed = torch.cat(self._normals_list, dim=0)
|
|
|
|
return normals_est
|
|
|
|
def extend(self, N: int):
|
|
"""
|
|
Create new Pointclouds which contains each cloud N times.
|
|
|
|
Args:
|
|
N: number of new copies of each cloud.
|
|
|
|
Returns:
|
|
new Pointclouds object.
|
|
"""
|
|
if not isinstance(N, int):
|
|
raise ValueError("N must be an integer.")
|
|
if N <= 0:
|
|
raise ValueError("N must be > 0.")
|
|
|
|
new_points_list, new_normals_list, new_features_list = [], None, None
|
|
for points in self.points_list():
|
|
new_points_list.extend(points.clone() for _ in range(N))
|
|
if self.normals_list() is not None:
|
|
new_normals_list = []
|
|
for normals in self.normals_list():
|
|
new_normals_list.extend(normals.clone() for _ in range(N))
|
|
if self.features_list() is not None:
|
|
new_features_list = []
|
|
for features in self.features_list():
|
|
new_features_list.extend(features.clone() for _ in range(N))
|
|
return self.__class__(
|
|
points=new_points_list, normals=new_normals_list, features=new_features_list
|
|
)
|
|
|
|
def update_padded(
|
|
self, new_points_padded, new_normals_padded=None, new_features_padded=None
|
|
):
|
|
"""
|
|
Returns a Pointcloud structure with updated padded tensors and copies of
|
|
the auxiliary tensors. This function allows for an update of
|
|
points_padded (and normals and features) without having to explicitly
|
|
convert it to the list representation for heterogeneous batches.
|
|
|
|
Args:
|
|
new_points_padded: FloatTensor of shape (N, P, 3)
|
|
new_normals_padded: (optional) FloatTensor of shape (N, P, 3)
|
|
new_features_padded: (optional) FloatTensor of shape (N, P, C)
|
|
|
|
Returns:
|
|
Pointcloud with updated padded representations
|
|
"""
|
|
|
|
def check_shapes(x, size):
|
|
if x.shape[0] != size[0]:
|
|
raise ValueError("new values must have the same batch dimension.")
|
|
if x.shape[1] != size[1]:
|
|
raise ValueError("new values must have the same number of points.")
|
|
if size[2] is not None:
|
|
if x.shape[2] != size[2]:
|
|
raise ValueError(
|
|
"new values must have the same number of channels."
|
|
)
|
|
|
|
check_shapes(new_points_padded, [self._N, self._P, 3])
|
|
if new_normals_padded is not None:
|
|
check_shapes(new_normals_padded, [self._N, self._P, 3])
|
|
if new_features_padded is not None:
|
|
check_shapes(new_features_padded, [self._N, self._P, self._C])
|
|
|
|
new = self.__class__(
|
|
points=new_points_padded,
|
|
normals=new_normals_padded,
|
|
features=new_features_padded,
|
|
)
|
|
|
|
# overwrite the equisized flag
|
|
new.equisized = self.equisized
|
|
|
|
# copy normals
|
|
if new_normals_padded is None:
|
|
# If no normals are provided, keep old ones (shallow copy)
|
|
new._normals_list = self._normals_list
|
|
new._normals_padded = self._normals_padded
|
|
new._normals_packed = self._normals_packed
|
|
|
|
# copy features
|
|
if new_features_padded is None:
|
|
# If no features are provided, keep old ones (shallow copy)
|
|
new._features_list = self._features_list
|
|
new._features_padded = self._features_padded
|
|
new._features_packed = self._features_packed
|
|
|
|
# copy auxiliary tensors
|
|
copy_tensors = [
|
|
"_packed_to_cloud_idx",
|
|
"_cloud_to_packed_first_idx",
|
|
"_num_points_per_cloud",
|
|
"_padded_to_packed_idx",
|
|
"valid",
|
|
]
|
|
for k in copy_tensors:
|
|
v = getattr(self, k)
|
|
if torch.is_tensor(v):
|
|
setattr(new, k, v) # shallow copy
|
|
|
|
# update points
|
|
new._points_padded = new_points_padded
|
|
assert new._points_list is None
|
|
assert new._points_packed is None
|
|
|
|
# update normals and features if provided
|
|
if new_normals_padded is not None:
|
|
new._normals_padded = new_normals_padded
|
|
new._normals_list = None
|
|
new._normals_packed = None
|
|
if new_features_padded is not None:
|
|
new._features_padded = new_features_padded
|
|
new._features_list = None
|
|
new._features_packed = None
|
|
return new
|
|
|
|
def inside_box(self, box):
|
|
"""
|
|
Finds the points inside a 3D box.
|
|
|
|
Args:
|
|
box: FloatTensor of shape (2, 3) or (N, 2, 3) where N is the number
|
|
of clouds.
|
|
box[..., 0, :] gives the min x, y & z.
|
|
box[..., 1, :] gives the max x, y & z.
|
|
Returns:
|
|
idx: BoolTensor of length sum(P_i) indicating whether the packed points are
|
|
within the input box.
|
|
"""
|
|
if box.dim() > 3 or box.dim() < 2:
|
|
raise ValueError("Input box must be of shape (2, 3) or (N, 2, 3).")
|
|
|
|
if box.dim() == 3 and box.shape[0] != 1 and box.shape[0] != self._N:
|
|
raise ValueError(
|
|
"Input box dimension is incompatible with pointcloud size."
|
|
)
|
|
|
|
if box.dim() == 2:
|
|
box = box[None]
|
|
|
|
if (box[..., 0, :] > box[..., 1, :]).any():
|
|
raise ValueError("Input box is invalid: min values larger than max values.")
|
|
|
|
points_packed = self.points_packed()
|
|
sumP = points_packed.shape[0]
|
|
|
|
if box.shape[0] == 1:
|
|
box = box.expand(sumP, 2, 3)
|
|
elif box.shape[0] == self._N:
|
|
box = box.unbind(0)
|
|
box = [
|
|
b.expand(p, 2, 3) for (b, p) in zip(box, self.num_points_per_cloud())
|
|
]
|
|
box = torch.cat(box, 0)
|
|
|
|
idx = (points_packed >= box[:, 0]) * (points_packed <= box[:, 1])
|
|
return idx
|