Jeremy Reizenstein 124bb5e391 spelling
Summary: Collection of spelling things, mostly in docs / tutorials.

Reviewed By: gkioxari

Differential Revision: D26101323

fbshipit-source-id: 652f62bc9d71a4ff872efa21141225e43191353a
2021-04-09 09:58:54 -07:00

180 lines
6.6 KiB
Python

# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
from typing import NamedTuple, Optional, Tuple, Union
import torch
import torch.nn as nn
from .rasterize_meshes import rasterize_meshes
# Class to store the outputs of mesh rasterization
class Fragments(NamedTuple):
pix_to_face: torch.Tensor
zbuf: torch.Tensor
bary_coords: torch.Tensor
dists: torch.Tensor
# Class to store the mesh rasterization params with defaults
class RasterizationSettings:
__slots__ = [
"image_size",
"blur_radius",
"faces_per_pixel",
"bin_size",
"max_faces_per_bin",
"perspective_correct",
"clip_barycentric_coords",
"cull_backfaces",
"z_clip_value",
"cull_to_frustum",
]
def __init__(
self,
image_size: Union[int, Tuple[int, int]] = 256,
blur_radius: float = 0.0,
faces_per_pixel: int = 1,
bin_size: Optional[int] = None,
max_faces_per_bin: Optional[int] = None,
# set perspective_correct = None so that the
# value can be inferred correctly from the Camera type
perspective_correct: Optional[bool] = None,
clip_barycentric_coords: Optional[bool] = None,
cull_backfaces: bool = False,
z_clip_value: Optional[float] = None,
cull_to_frustum: bool = False,
):
self.image_size = image_size
self.blur_radius = blur_radius
self.faces_per_pixel = faces_per_pixel
self.bin_size = bin_size
self.max_faces_per_bin = max_faces_per_bin
self.perspective_correct = perspective_correct
self.clip_barycentric_coords = clip_barycentric_coords
self.cull_backfaces = cull_backfaces
self.z_clip_value = z_clip_value
self.cull_to_frustum = cull_to_frustum
class MeshRasterizer(nn.Module):
"""
This class implements methods for rasterizing a batch of heterogeneous
Meshes.
"""
def __init__(self, cameras=None, raster_settings=None):
"""
Args:
cameras: A cameras object which has a `transform_points` method
which returns the transformed points after applying the
world-to-view and view-to-screen
transformations.
raster_settings: the parameters for rasterization. This should be a
named tuple.
All these initial settings can be overridden by passing keyword
arguments to the forward function.
"""
super().__init__()
if raster_settings is None:
raster_settings = RasterizationSettings()
self.cameras = cameras
self.raster_settings = raster_settings
def to(self, device):
# Manually move to device cameras as it is not a subclass of nn.Module
self.cameras = self.cameras.to(device)
return self
def transform(self, meshes_world, **kwargs) -> torch.Tensor:
"""
Args:
meshes_world: a Meshes object representing a batch of meshes with
vertex coordinates in world space.
Returns:
meshes_screen: a Meshes object with the vertex positions in screen
space
NOTE: keeping this as a separate function for readability but it could
be moved into forward.
"""
cameras = kwargs.get("cameras", self.cameras)
if cameras is None:
msg = "Cameras must be specified either at initialization \
or in the forward pass of MeshRasterizer"
raise ValueError(msg)
n_cameras = len(cameras)
if n_cameras != 1 and n_cameras != len(meshes_world):
msg = "Wrong number (%r) of cameras for %r meshes"
raise ValueError(msg % (n_cameras, len(meshes_world)))
verts_world = meshes_world.verts_padded()
# NOTE: Retaining view space z coordinate for now.
# TODO: Revisit whether or not to transform z coordinate to [-1, 1] or
# [0, 1] range.
eps = kwargs.get("eps", None)
verts_view = cameras.get_world_to_view_transform(**kwargs).transform_points(
verts_world, eps=eps
)
verts_screen = cameras.get_projection_transform(**kwargs).transform_points(
verts_view, eps=eps
)
verts_screen[..., 2] = verts_view[..., 2]
meshes_screen = meshes_world.update_padded(new_verts_padded=verts_screen)
return meshes_screen
def forward(self, meshes_world, **kwargs) -> Fragments:
"""
Args:
meshes_world: a Meshes object representing a batch of meshes with
coordinates in world space.
Returns:
Fragments: Rasterization outputs as a named tuple.
"""
meshes_screen = self.transform(meshes_world, **kwargs)
raster_settings = kwargs.get("raster_settings", self.raster_settings)
# By default, turn on clip_barycentric_coords if blur_radius > 0.
# When blur_radius > 0, a face can be matched to a pixel that is outside the
# face, resulting in negative barycentric coordinates.
clip_barycentric_coords = raster_settings.clip_barycentric_coords
if clip_barycentric_coords is None:
clip_barycentric_coords = raster_settings.blur_radius > 0.0
# If not specified, infer perspective_correct and z_clip_value from the camera
cameras = kwargs.get("cameras", self.cameras)
if raster_settings.perspective_correct is not None:
perspective_correct = raster_settings.perspective_correct
else:
perspective_correct = cameras.is_perspective()
if raster_settings.z_clip_value is not None:
z_clip = raster_settings.z_clip_value
else:
znear = cameras.get_znear()
if isinstance(znear, torch.Tensor):
znear = znear.min().item()
z_clip = None if not perspective_correct or znear is None else znear / 2
pix_to_face, zbuf, bary_coords, dists = rasterize_meshes(
meshes_screen,
image_size=raster_settings.image_size,
blur_radius=raster_settings.blur_radius,
faces_per_pixel=raster_settings.faces_per_pixel,
bin_size=raster_settings.bin_size,
max_faces_per_bin=raster_settings.max_faces_per_bin,
clip_barycentric_coords=clip_barycentric_coords,
perspective_correct=perspective_correct,
cull_backfaces=raster_settings.cull_backfaces,
z_clip_value=z_clip,
cull_to_frustum=raster_settings.cull_to_frustum,
)
return Fragments(
pix_to_face=pix_to_face, zbuf=zbuf, bary_coords=bary_coords, dists=dists
)