pytorch3d/tests/test_render_points.py
Rong Rong (AI Infra) 1216b5765a Extract finding directories for test data
Summary: Make common functions for finding directories where test data is found, instead of lots of tests using their own `__file__`  while trying to get ./tests/data and the tutorials data.

Reviewed By: nikhilaravi

Differential Revision: D27633701

fbshipit-source-id: 1467bb6018cea16eba3cab097d713116d51071e9
2021-04-08 20:03:04 -07:00

375 lines
15 KiB
Python

# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
"""
Sanity checks for output images from the pointcloud renderer.
"""
import unittest
import warnings
from os import path
import numpy as np
import torch
from common_testing import (
TestCaseMixin,
load_rgb_image,
get_pytorch3d_dir,
get_tests_dir,
)
from PIL import Image
from pytorch3d.renderer.cameras import (
FoVOrthographicCameras,
FoVPerspectiveCameras,
OrthographicCameras,
PerspectiveCameras,
look_at_view_transform,
)
from pytorch3d.renderer.compositing import alpha_composite, norm_weighted_sum
from pytorch3d.renderer.points import (
AlphaCompositor,
NormWeightedCompositor,
PointsRasterizationSettings,
PointsRasterizer,
PointsRenderer,
PulsarPointsRenderer,
)
from pytorch3d.structures.pointclouds import Pointclouds
from pytorch3d.utils.ico_sphere import ico_sphere
# If DEBUG=True, save out images generated in the tests for debugging.
# All saved images have prefix DEBUG_
DEBUG = False
DATA_DIR = get_tests_dir() / "data"
class TestRenderPoints(TestCaseMixin, unittest.TestCase):
def test_simple_sphere(self):
device = torch.device("cuda:0")
sphere_mesh = ico_sphere(1, device)
verts_padded = sphere_mesh.verts_padded()
# Shift vertices to check coordinate frames are correct.
verts_padded[..., 1] += 0.2
verts_padded[..., 0] += 0.2
pointclouds = Pointclouds(
points=verts_padded, features=torch.ones_like(verts_padded)
)
R, T = look_at_view_transform(2.7, 0.0, 0.0)
cameras = FoVPerspectiveCameras(device=device, R=R, T=T)
raster_settings = PointsRasterizationSettings(
image_size=256, radius=5e-2, points_per_pixel=1
)
rasterizer = PointsRasterizer(cameras=cameras, raster_settings=raster_settings)
compositor = NormWeightedCompositor()
renderer = PointsRenderer(rasterizer=rasterizer, compositor=compositor)
# Load reference image
filename = "simple_pointcloud_sphere.png"
image_ref = load_rgb_image("test_%s" % filename, DATA_DIR)
for bin_size in [0, None]:
# Check both naive and coarse to fine produce the same output.
renderer.rasterizer.raster_settings.bin_size = bin_size
images = renderer(pointclouds)
rgb = images[0, ..., :3].squeeze().cpu()
if DEBUG:
filename = "DEBUG_%s" % filename
Image.fromarray((rgb.numpy() * 255).astype(np.uint8)).save(
DATA_DIR / filename
)
self.assertClose(rgb, image_ref)
def test_simple_sphere_pulsar(self):
for device in [torch.device("cpu"), torch.device("cuda")]:
sphere_mesh = ico_sphere(1, device)
verts_padded = sphere_mesh.verts_padded()
# Shift vertices to check coordinate frames are correct.
verts_padded[..., 1] += 0.2
verts_padded[..., 0] += 0.2
pointclouds = Pointclouds(
points=verts_padded, features=torch.ones_like(verts_padded)
)
for azimuth in [0.0, 90.0]:
R, T = look_at_view_transform(2.7, 0.0, azimuth)
for camera_name, cameras in [
("fovperspective", FoVPerspectiveCameras(device=device, R=R, T=T)),
(
"fovorthographic",
FoVOrthographicCameras(device=device, R=R, T=T),
),
("perspective", PerspectiveCameras(device=device, R=R, T=T)),
("orthographic", OrthographicCameras(device=device, R=R, T=T)),
]:
raster_settings = PointsRasterizationSettings(
image_size=256, radius=5e-2, points_per_pixel=1
)
rasterizer = PointsRasterizer(
cameras=cameras, raster_settings=raster_settings
)
renderer = PulsarPointsRenderer(rasterizer=rasterizer).to(device)
# Load reference image
filename = (
"pulsar_simple_pointcloud_sphere_"
f"azimuth{azimuth}_{camera_name}.png"
)
image_ref = load_rgb_image("test_%s" % filename, DATA_DIR)
images = renderer(
pointclouds, gamma=(1e-3,), znear=(1.0,), zfar=(100.0,)
)
rgb = images[0, ..., :3].squeeze().cpu()
if DEBUG:
filename = "DEBUG_%s" % filename
Image.fromarray((rgb.numpy() * 255).astype(np.uint8)).save(
DATA_DIR / filename
)
self.assertClose(rgb, image_ref, rtol=7e-3, atol=5e-3)
def test_unified_inputs_pulsar(self):
# Test data on different devices.
for device in [torch.device("cpu"), torch.device("cuda")]:
sphere_mesh = ico_sphere(1, device)
verts_padded = sphere_mesh.verts_padded()
pointclouds = Pointclouds(
points=verts_padded, features=torch.ones_like(verts_padded)
)
R, T = look_at_view_transform(2.7, 0.0, 0.0)
# Test the different camera types.
for _, cameras in [
("fovperspective", FoVPerspectiveCameras(device=device, R=R, T=T)),
(
"fovorthographic",
FoVOrthographicCameras(device=device, R=R, T=T),
),
("perspective", PerspectiveCameras(device=device, R=R, T=T)),
("orthographic", OrthographicCameras(device=device, R=R, T=T)),
]:
# Test different ways for image size specification.
for image_size in (256, (256, 256)):
raster_settings = PointsRasterizationSettings(
image_size=image_size, radius=5e-2, points_per_pixel=1
)
rasterizer = PointsRasterizer(
cameras=cameras, raster_settings=raster_settings
)
# Test that the compositor can be provided. It's value is ignored
# so use a dummy.
_ = PulsarPointsRenderer(rasterizer=rasterizer, compositor=1).to(
device
)
# Constructor without compositor.
_ = PulsarPointsRenderer(rasterizer=rasterizer).to(device)
# Constructor with n_channels.
_ = PulsarPointsRenderer(rasterizer=rasterizer, n_channels=3).to(
device
)
# Constructor with max_num_spheres.
renderer = PulsarPointsRenderer(
rasterizer=rasterizer, max_num_spheres=1000
).to(device)
# Test the forward function.
if isinstance(cameras, (PerspectiveCameras, OrthographicCameras)):
# znear and zfar is required in this case.
self.assertRaises(
ValueError,
lambda: renderer.forward(
point_clouds=pointclouds, gamma=(1e-4,)
),
)
renderer.forward(
point_clouds=pointclouds,
gamma=(1e-4,),
znear=(1.0,),
zfar=(2.0,),
)
# znear and zfar must be batched.
self.assertRaises(
TypeError,
lambda: renderer.forward(
point_clouds=pointclouds,
gamma=(1e-4,),
znear=1.0,
zfar=(2.0,),
),
)
self.assertRaises(
TypeError,
lambda: renderer.forward(
point_clouds=pointclouds,
gamma=(1e-4,),
znear=(1.0,),
zfar=2.0,
),
)
else:
# gamma must be batched.
self.assertRaises(
TypeError,
lambda: renderer.forward(
point_clouds=pointclouds, gamma=1e-4
),
)
renderer.forward(point_clouds=pointclouds, gamma=(1e-4,))
# rasterizer width and height change.
renderer.rasterizer.raster_settings.image_size = 0
self.assertRaises(
ValueError,
lambda: renderer.forward(
point_clouds=pointclouds, gamma=(1e-4,)
),
)
def test_pointcloud_with_features(self):
device = torch.device("cuda:0")
file_dir = get_pytorch3d_dir() / "docs/tutorials/data"
pointcloud_filename = file_dir / "PittsburghBridge/pointcloud.npz"
# Note, this file is too large to check in to the repo.
# Download the file to run the test locally.
if not path.exists(pointcloud_filename):
url = (
"https://dl.fbaipublicfiles.com/pytorch3d/data/"
"PittsburghBridge/pointcloud.npz"
)
msg = (
"pointcloud.npz not found, download from %s, save it at the path %s, and rerun"
% (url, pointcloud_filename)
)
warnings.warn(msg)
return True
# Load point cloud
pointcloud = np.load(pointcloud_filename)
verts = torch.Tensor(pointcloud["verts"]).to(device)
rgb_feats = torch.Tensor(pointcloud["rgb"]).to(device)
verts.requires_grad = True
rgb_feats.requires_grad = True
point_cloud = Pointclouds(points=[verts], features=[rgb_feats])
R, T = look_at_view_transform(20, 10, 0)
cameras = FoVOrthographicCameras(device=device, R=R, T=T, znear=0.01)
raster_settings = PointsRasterizationSettings(
# Set image_size so it is not a multiple of 16 (min bin_size)
# in order to confirm that there are no errors in coarse rasterization.
image_size=500,
radius=0.003,
points_per_pixel=10,
)
renderer = PointsRenderer(
rasterizer=PointsRasterizer(
cameras=cameras, raster_settings=raster_settings
),
compositor=AlphaCompositor(),
)
images = renderer(point_cloud)
# Load reference image
filename = "bridge_pointcloud.png"
image_ref = load_rgb_image("test_%s" % filename, DATA_DIR)
for bin_size in [0, None]:
# Check both naive and coarse to fine produce the same output.
renderer.rasterizer.raster_settings.bin_size = bin_size
images = renderer(point_cloud)
rgb = images[0, ..., :3].squeeze().cpu()
if DEBUG:
filename = "DEBUG_%s" % filename
Image.fromarray((rgb.detach().numpy() * 255).astype(np.uint8)).save(
DATA_DIR / filename
)
self.assertClose(rgb, image_ref, atol=0.015)
# Check grad exists.
grad_images = torch.randn_like(images)
images.backward(grad_images)
self.assertIsNotNone(verts.grad)
self.assertIsNotNone(rgb_feats.grad)
def test_simple_sphere_batched(self):
device = torch.device("cuda:0")
sphere_mesh = ico_sphere(1, device)
verts_padded = sphere_mesh.verts_padded()
verts_padded[..., 1] += 0.2
verts_padded[..., 0] += 0.2
pointclouds = Pointclouds(
points=verts_padded, features=torch.ones_like(verts_padded)
)
batch_size = 20
pointclouds = pointclouds.extend(batch_size)
R, T = look_at_view_transform(2.7, 0.0, 0.0)
cameras = FoVPerspectiveCameras(device=device, R=R, T=T)
raster_settings = PointsRasterizationSettings(
image_size=256, radius=5e-2, points_per_pixel=1
)
rasterizer = PointsRasterizer(cameras=cameras, raster_settings=raster_settings)
compositor = NormWeightedCompositor()
renderer = PointsRenderer(rasterizer=rasterizer, compositor=compositor)
# Load reference image
filename = "simple_pointcloud_sphere.png"
image_ref = load_rgb_image("test_%s" % filename, DATA_DIR)
images = renderer(pointclouds)
for i in range(batch_size):
rgb = images[i, ..., :3].squeeze().cpu()
if i == 0 and DEBUG:
filename = "DEBUG_%s" % filename
Image.fromarray((rgb.numpy() * 255).astype(np.uint8)).save(
DATA_DIR / filename
)
self.assertClose(rgb, image_ref)
def test_compositor_background_color(self):
N, H, W, K, C, P = 1, 15, 15, 20, 4, 225
ptclds = torch.randn((C, P))
alphas = torch.rand((N, K, H, W))
pix_idxs = torch.randint(-1, 20, (N, K, H, W)) # 20 < P, large amount of -1
background_color = [0.5, 0, 1]
compositor_funcs = [
(NormWeightedCompositor, norm_weighted_sum),
(AlphaCompositor, alpha_composite),
]
for (compositor_class, composite_func) in compositor_funcs:
compositor = compositor_class(background_color)
# run the forward method to generate masked images
masked_images = compositor.forward(pix_idxs, alphas, ptclds)
# generate unmasked images for testing purposes
images = composite_func(pix_idxs, alphas, ptclds)
is_foreground = pix_idxs[:, 0] >= 0
# make sure foreground values are unchanged
self.assertClose(
torch.masked_select(masked_images, is_foreground[:, None]),
torch.masked_select(images, is_foreground[:, None]),
)
is_background = ~is_foreground[..., None].expand(-1, -1, -1, 4)
# permute masked_images to correctly get rgb values
masked_images = masked_images.permute(0, 2, 3, 1)
for i in range(3):
channel_color = background_color[i]
# check if background colors are properly changed
self.assertTrue(
masked_images[is_background]
.view(-1, 4)[..., i]
.eq(channel_color)
.all()
)
# check background color alpha values
self.assertTrue(
masked_images[is_background].view(-1, 4)[..., 3].eq(1).all()
)