mirror of
https://github.com/facebookresearch/pytorch3d.git
synced 2025-08-02 03:42:50 +08:00
Summary: Pytorch 1.5 is coming soon. I imagine we will want the ability to upload conda packages for pytorch3d to anaconda cloud for each of pytorch 1.4 and pytorch 1.5. This change adds the dependent pytorch version to the name of the conda package to make that feasible. As an example, a built package after this change will have a name like `linux-64/pytorch3d-0.1.1-py38_cu100_pyt14.tar.bz2`, instead of simply `linux-64/pytorch3d-0.1.1-py38_cu100.tar.bz2`. Also some tiny cleanup of circleci config. Other alternatives: (1) forcing users to update pytorch and pytorch3d together, (2) trying to get away with one build for multiple pytorch versions. Reviewed By: nikhilaravi Differential Revision: D20599039 fbshipit-source-id: 20164eda4a5141afed47b3596e559950d796ffc9
229 lines
7.6 KiB
YAML
229 lines
7.6 KiB
YAML
version: 2.1
|
|
|
|
#examples:
|
|
#https://github.com/facebookresearch/ParlAI/blob/master/.circleci/config.yml
|
|
#https://github.com/facebookresearch/hydra/blob/master/.circleci/config.yml
|
|
#https://github.com/facebookresearch/habitat-api/blob/master/.circleci/config.yml
|
|
|
|
#drive tests with nox or tox or pytest?
|
|
|
|
# -------------------------------------------------------------------------------------
|
|
# environments where we run our jobs
|
|
# -------------------------------------------------------------------------------------
|
|
|
|
|
|
setupcuda: &setupcuda
|
|
run:
|
|
name: Setup CUDA
|
|
working_directory: ~/
|
|
command: |
|
|
# download and install nvidia drivers, cuda, etc
|
|
wget --no-verbose --no-clobber -P ~/nvidia-downloads 'https://s3.amazonaws.com/ossci-linux/nvidia_driver/NVIDIA-Linux-x86_64-430.40.run'
|
|
wget --no-verbose --no-clobber -P ~/nvidia-downloads http://developer.download.nvidia.com/compute/cuda/10.2/Prod/local_installers/cuda_10.2.89_440.33.01_linux.run
|
|
sudo /bin/bash ~/nvidia-downloads/NVIDIA-Linux-x86_64-430.40.run --no-drm -q --ui=none
|
|
sudo sh ~/nvidia-downloads/cuda_10.2.89_440.33.01_linux.run --silent
|
|
echo "Done installing CUDA."
|
|
pyenv versions
|
|
nvidia-smi
|
|
pyenv global 3.7.0
|
|
|
|
gpu: &gpu
|
|
environment:
|
|
CUDA_VERSION: "10.2"
|
|
machine:
|
|
image: default
|
|
resource_class: gpu.medium # tesla m60
|
|
|
|
binary_common: &binary_common
|
|
parameters:
|
|
# Edit these defaults to do a release`
|
|
build_version:
|
|
description: "version number of release binary; by default, build a nightly"
|
|
type: string
|
|
default: ""
|
|
pytorch_version:
|
|
description: "PyTorch version to build against; by default, use a nightly"
|
|
type: string
|
|
default: ""
|
|
# Don't edit these
|
|
python_version:
|
|
description: "Python version to build against (e.g., 3.7)"
|
|
type: string
|
|
cu_version:
|
|
description: "CUDA version to build against, in CU format (e.g., cpu or cu100)"
|
|
type: string
|
|
wheel_docker_image:
|
|
description: "Wheel only: what docker image to use"
|
|
type: string
|
|
default: "pytorch/manylinux-cuda101"
|
|
environment:
|
|
PYTHON_VERSION: << parameters.python_version >>
|
|
BUILD_VERSION: << parameters.build_version >>
|
|
PYTORCH_VERSION: << parameters.pytorch_version >>
|
|
CU_VERSION: << parameters.cu_version >>
|
|
|
|
jobs:
|
|
main:
|
|
<<: *gpu
|
|
machine:
|
|
image: ubuntu-1604:201903-01
|
|
steps:
|
|
- checkout
|
|
- <<: *setupcuda
|
|
- run: pip3 install --progress-bar off wheel matplotlib 'pillow<7'
|
|
- run: pip3 install --progress-bar off torch torchvision
|
|
# - run: conda create -p ~/conda_env python=3.7 numpy
|
|
# - run: conda activate ~/conda_env
|
|
# - run: conda install -c pytorch pytorch torchvision
|
|
|
|
- run: pip3 install --progress-bar off 'git+https://github.com/facebookresearch/fvcore'
|
|
- run: LD_LIBRARY_PATH=$LD_LIBARY_PATH:/usr/local/cuda-10.2/lib64 python3 setup.py build_ext --inplace
|
|
- run: LD_LIBRARY_PATH=$LD_LIBARY_PATH:/usr/local/cuda-10.2/lib64 python -m unittest discover -v -s tests
|
|
- run: python3 setup.py bdist_wheel
|
|
|
|
binary_linux_wheel:
|
|
<<: *binary_common
|
|
docker:
|
|
- image: << parameters.wheel_docker_image >>
|
|
resource_class: 2xlarge+
|
|
steps:
|
|
- checkout
|
|
- run: packaging/build_wheel.sh
|
|
- store_artifacts:
|
|
path: dist
|
|
- persist_to_workspace:
|
|
root: dist
|
|
paths:
|
|
- "*"
|
|
|
|
binary_linux_conda:
|
|
<<: *binary_common
|
|
docker:
|
|
- image: "pytorch/conda-cuda"
|
|
resource_class: 2xlarge+
|
|
steps:
|
|
- checkout
|
|
# This is building with cuda but no gpu present,
|
|
# so we aren't running the tests.
|
|
- run: TEST_FLAG=--no-test packaging/build_conda.sh
|
|
- store_artifacts:
|
|
path: /opt/conda/conda-bld/linux-64
|
|
- persist_to_workspace:
|
|
root: /opt/conda/conda-bld/linux-64
|
|
paths:
|
|
- "*"
|
|
|
|
binary_linux_conda_cuda:
|
|
<<: *binary_common
|
|
machine:
|
|
image: ubuntu-1604:201903-01
|
|
resource_class: gpu.medium
|
|
steps:
|
|
- checkout
|
|
- run:
|
|
name: Setup environment
|
|
command: |
|
|
set -e
|
|
|
|
curl -L https://packagecloud.io/circleci/trusty/gpgkey | sudo apt-key add -
|
|
curl -L https://dl.google.com/linux/linux_signing_key.pub | sudo apt-key add -
|
|
|
|
sudo apt-get update
|
|
|
|
sudo apt-get install \
|
|
apt-transport-https \
|
|
ca-certificates \
|
|
curl \
|
|
gnupg-agent \
|
|
software-properties-common
|
|
|
|
curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key add -
|
|
|
|
sudo add-apt-repository \
|
|
"deb [arch=amd64] https://download.docker.com/linux/ubuntu \
|
|
$(lsb_release -cs) \
|
|
stable"
|
|
|
|
sudo apt-get update
|
|
export DOCKER_VERSION="5:19.03.2~3-0~ubuntu-xenial"
|
|
sudo apt-get install docker-ce=${DOCKER_VERSION} docker-ce-cli=${DOCKER_VERSION} containerd.io=1.2.6-3
|
|
|
|
# Add the package repositories
|
|
distribution=$(. /etc/os-release;echo $ID$VERSION_ID)
|
|
curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | sudo apt-key add -
|
|
curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-docker.list | sudo tee /etc/apt/sources.list.d/nvidia-docker.list
|
|
|
|
export NVIDIA_CONTAINER_VERSION="1.0.3-1"
|
|
sudo apt-get update && sudo apt-get install -y nvidia-container-toolkit=${NVIDIA_CONTAINER_VERSION}
|
|
sudo systemctl restart docker
|
|
|
|
DRIVER_FN="NVIDIA-Linux-x86_64-410.104.run"
|
|
wget "https://s3.amazonaws.com/ossci-linux/nvidia_driver/$DRIVER_FN"
|
|
sudo /bin/bash "$DRIVER_FN" -s --no-drm || (sudo cat /var/log/nvidia-installer.log && false)
|
|
nvidia-smi
|
|
|
|
- run:
|
|
name: Pull docker image
|
|
command: |
|
|
set -e
|
|
export DOCKER_IMAGE=pytorch/conda-cuda
|
|
echo Pulling docker image $DOCKER_IMAGE
|
|
docker pull $DOCKER_IMAGE >/dev/null
|
|
|
|
- run:
|
|
name: Build and run tests
|
|
command: |
|
|
set -e
|
|
|
|
cd ${HOME}/project/
|
|
|
|
export DOCKER_IMAGE=pytorch/conda-cuda
|
|
export VARS_TO_PASS="-e PYTHON_VERSION -e BUILD_VERSION -e PYTORCH_VERSION -e UNICODE_ABI -e CU_VERSION"
|
|
|
|
docker run --gpus all --ipc=host -v $(pwd):/remote -w /remote ${VARS_TO_PASS} ${DOCKER_IMAGE} ./packaging/build_conda.sh
|
|
|
|
binary_macos_wheel:
|
|
<<: *binary_common
|
|
macos:
|
|
xcode: "9.0"
|
|
steps:
|
|
- checkout
|
|
- run:
|
|
# Cannot easily deduplicate this as source'ing activate
|
|
# will set environment variables which we need to propagate
|
|
# to build_wheel.sh
|
|
command: |
|
|
curl -o conda.sh https://repo.anaconda.com/miniconda/Miniconda3-latest-MacOSX-x86_64.sh
|
|
sh conda.sh -b
|
|
source $HOME/miniconda3/bin/activate
|
|
packaging/build_wheel.sh
|
|
- store_artifacts:
|
|
path: dist
|
|
|
|
workflows:
|
|
version: 2
|
|
build_and_test:
|
|
jobs:
|
|
- main
|
|
{{workflows()}}
|
|
- binary_linux_conda_cuda:
|
|
name: testrun_conda_cuda_py3.7_cu100
|
|
python_version: "3.7"
|
|
pytorch_version: "1.4"
|
|
cu_version: "cu100"
|
|
- binary_macos_wheel:
|
|
cu_version: cpu
|
|
name: macos_wheel_py3.6_cpu
|
|
python_version: '3.6'
|
|
pytorch_version: '1.4'
|
|
- binary_macos_wheel:
|
|
cu_version: cpu
|
|
name: macos_wheel_py3.7_cpu
|
|
python_version: '3.7'
|
|
pytorch_version: '1.4'
|
|
- binary_macos_wheel:
|
|
cu_version: cpu
|
|
name: macos_wheel_py3.8_cpu
|
|
python_version: '3.8'
|
|
pytorch_version: '1.4'
|