mirror of
https://github.com/facebookresearch/pytorch3d.git
synced 2025-07-31 10:52:50 +08:00
Summary: Converts the directory specified to use the Ruff formatter in pyfmt ruff_dog If this diff causes merge conflicts when rebasing, please run `hg status -n -0 --change . -I '**/*.{py,pyi}' | xargs -0 arc pyfmt` on your diff, and amend any changes before rebasing onto latest. That should help reduce or eliminate any merge conflicts. allow-large-files Reviewed By: bottler Differential Revision: D66472063 fbshipit-source-id: 35841cb397e4f8e066e2159550d2f56b403b1bef
1679 lines
64 KiB
Python
1679 lines
64 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the BSD-style license found in the
|
|
# LICENSE file in the root directory of this source tree.
|
|
|
|
# @licenselint-loose-mode
|
|
|
|
# Some of the code below is adapted from Soft Rasterizer (SoftRas)
|
|
#
|
|
# Copyright (c) 2017 Hiroharu Kato
|
|
# Copyright (c) 2018 Nikos Kolotouros
|
|
# Copyright (c) 2019 Shichen Liu
|
|
#
|
|
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
# of this software and associated documentation files (the "Software"), to deal
|
|
# in the Software without restriction, including without limitation the rights
|
|
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
# copies of the Software, and to permit persons to whom the Software is
|
|
# furnished to do so, subject to the following conditions:
|
|
#
|
|
# The above copyright notice and this permission notice shall be included in all
|
|
# copies or substantial portions of the Software.
|
|
#
|
|
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
# SOFTWARE.
|
|
|
|
import math
|
|
import pickle
|
|
import unittest
|
|
from itertools import product
|
|
|
|
import numpy as np
|
|
import torch
|
|
from pytorch3d.common.datatypes import Device
|
|
from pytorch3d.renderer.camera_utils import join_cameras_as_batch
|
|
from pytorch3d.renderer.cameras import (
|
|
camera_position_from_spherical_angles,
|
|
CamerasBase,
|
|
FoVOrthographicCameras,
|
|
FoVPerspectiveCameras,
|
|
get_world_to_view_transform,
|
|
look_at_rotation,
|
|
look_at_view_transform,
|
|
OpenGLOrthographicCameras,
|
|
OpenGLPerspectiveCameras,
|
|
OrthographicCameras,
|
|
PerspectiveCameras,
|
|
SfMOrthographicCameras,
|
|
SfMPerspectiveCameras,
|
|
)
|
|
from pytorch3d.renderer.fisheyecameras import FishEyeCameras
|
|
from pytorch3d.transforms import Transform3d
|
|
from pytorch3d.transforms.rotation_conversions import random_rotations
|
|
from pytorch3d.transforms.so3 import so3_exp_map
|
|
|
|
from .common_camera_utils import init_random_cameras
|
|
|
|
from .common_testing import TestCaseMixin
|
|
|
|
|
|
# Naive function adapted from SoftRasterizer for test purposes.
|
|
def perspective_project_naive(points, fov=60.0):
|
|
"""
|
|
Compute perspective projection from a given viewing angle.
|
|
Args:
|
|
points: (N, V, 3) representing the padded points.
|
|
viewing angle: degrees
|
|
Returns:
|
|
(N, V, 3) tensor of projected points preserving the view space z
|
|
coordinate (no z renormalization)
|
|
"""
|
|
device = points.device
|
|
halfFov = torch.tensor((fov / 2) / 180 * np.pi, dtype=torch.float32, device=device)
|
|
scale = torch.tan(halfFov[None])
|
|
scale = scale[:, None]
|
|
z = points[:, :, 2]
|
|
x = points[:, :, 0] / z / scale
|
|
y = points[:, :, 1] / z / scale
|
|
points = torch.stack((x, y, z), dim=2)
|
|
return points
|
|
|
|
|
|
def sfm_perspective_project_naive(points, fx=1.0, fy=1.0, p0x=0.0, p0y=0.0):
|
|
"""
|
|
Compute perspective projection using focal length and principal point.
|
|
|
|
Args:
|
|
points: (N, V, 3) representing the padded points.
|
|
fx: world units
|
|
fy: world units
|
|
p0x: pixels
|
|
p0y: pixels
|
|
Returns:
|
|
(N, V, 3) tensor of projected points.
|
|
"""
|
|
z = points[:, :, 2]
|
|
x = (points[:, :, 0] * fx) / z + p0x
|
|
y = (points[:, :, 1] * fy) / z + p0y
|
|
points = torch.stack((x, y, 1.0 / z), dim=2)
|
|
return points
|
|
|
|
|
|
# Naive function adapted from SoftRasterizer for test purposes.
|
|
def orthographic_project_naive(points, scale_xyz=(1.0, 1.0, 1.0)):
|
|
"""
|
|
Compute orthographic projection from a given angle
|
|
Args:
|
|
points: (N, V, 3) representing the padded points.
|
|
scaled: (N, 3) scaling factors for each of xyz directions
|
|
Returns:
|
|
(N, V, 3) tensor of projected points preserving the view space z
|
|
coordinate (no z renormalization).
|
|
"""
|
|
if not torch.is_tensor(scale_xyz):
|
|
scale_xyz = torch.tensor(scale_xyz)
|
|
scale_xyz = scale_xyz.view(-1, 3)
|
|
z = points[:, :, 2]
|
|
x = points[:, :, 0] * scale_xyz[:, 0]
|
|
y = points[:, :, 1] * scale_xyz[:, 1]
|
|
points = torch.stack((x, y, z), dim=2)
|
|
return points
|
|
|
|
|
|
def ndc_to_screen_points_naive(points, imsize):
|
|
"""
|
|
Transforms points from PyTorch3D's NDC space to screen space
|
|
Args:
|
|
points: (N, V, 3) representing padded points
|
|
imsize: (N, 2) image size = (height, width)
|
|
Returns:
|
|
(N, V, 3) tensor of transformed points
|
|
"""
|
|
height, width = imsize.unbind(1)
|
|
width = width.view(-1, 1)
|
|
half_width = width / 2.0
|
|
height = height.view(-1, 1)
|
|
half_height = height / 2.0
|
|
|
|
scale = (
|
|
half_width * (height > width).float() + half_height * (height <= width).float()
|
|
)
|
|
|
|
x, y, z = points.unbind(2)
|
|
x = -scale * x + half_width
|
|
y = -scale * y + half_height
|
|
return torch.stack((x, y, z), dim=2)
|
|
|
|
|
|
class TestCameraHelpers(TestCaseMixin, unittest.TestCase):
|
|
def setUp(self) -> None:
|
|
super().setUp()
|
|
torch.manual_seed(42)
|
|
|
|
def test_look_at_view_transform_from_eye_point_tuple(self):
|
|
dist = math.sqrt(2)
|
|
elev = math.pi / 4
|
|
azim = 0.0
|
|
eye = ((0.0, 1.0, 1.0),)
|
|
# using passed values for dist, elev, azim
|
|
R, t = look_at_view_transform(dist, elev, azim, degrees=False)
|
|
# using other values for dist, elev, azim - eye overrides
|
|
R_eye, t_eye = look_at_view_transform(dist=3, elev=2, azim=1, eye=eye)
|
|
# using only eye value
|
|
|
|
R_eye_only, t_eye_only = look_at_view_transform(eye=eye)
|
|
self.assertTrue(torch.allclose(R, R_eye, atol=2e-7))
|
|
self.assertTrue(torch.allclose(t, t_eye, atol=2e-7))
|
|
self.assertTrue(torch.allclose(R, R_eye_only, atol=2e-7))
|
|
self.assertTrue(torch.allclose(t, t_eye_only, atol=2e-7))
|
|
|
|
def test_look_at_view_transform_default_values(self):
|
|
dist = 1.0
|
|
elev = 0.0
|
|
azim = 0.0
|
|
# Using passed values for dist, elev, azim
|
|
R, t = look_at_view_transform(dist, elev, azim)
|
|
# Using default dist=1.0, elev=0.0, azim=0.0
|
|
R_default, t_default = look_at_view_transform()
|
|
# test default = passed = expected
|
|
self.assertTrue(torch.allclose(R, R_default, atol=2e-7))
|
|
self.assertTrue(torch.allclose(t, t_default, atol=2e-7))
|
|
|
|
def test_look_at_view_transform_non_default_at_position(self):
|
|
dist = 1.0
|
|
elev = 0.0
|
|
azim = 0.0
|
|
at = ((1, 1, 1),)
|
|
# Using passed values for dist, elev, azim, at
|
|
R, t = look_at_view_transform(dist, elev, azim, at=at)
|
|
# Using default dist=1.0, elev=0.0, azim=0.0
|
|
R_default, t_default = look_at_view_transform()
|
|
# test default = passed = expected
|
|
# R must be the same, t must be translated by (1,-1,1) with respect to t_default
|
|
t_trans = torch.tensor([1, -1, 1], dtype=torch.float32).view(1, 3)
|
|
self.assertTrue(torch.allclose(R, R_default, atol=2e-7))
|
|
self.assertTrue(torch.allclose(t, t_default + t_trans, atol=2e-7))
|
|
|
|
def test_camera_position_from_angles_python_scalar(self):
|
|
dist = 2.7
|
|
elev = 90.0
|
|
azim = 0.0
|
|
expected_position = torch.tensor([0.0, 2.7, 0.0], dtype=torch.float32).view(
|
|
1, 3
|
|
)
|
|
position = camera_position_from_spherical_angles(dist, elev, azim)
|
|
self.assertClose(position, expected_position, atol=2e-7)
|
|
|
|
def test_camera_position_from_angles_python_scalar_radians(self):
|
|
dist = 2.7
|
|
elev = math.pi / 2
|
|
azim = 0.0
|
|
expected_position = torch.tensor([0.0, 2.7, 0.0], dtype=torch.float32)
|
|
expected_position = expected_position.view(1, 3)
|
|
position = camera_position_from_spherical_angles(
|
|
dist, elev, azim, degrees=False
|
|
)
|
|
self.assertClose(position, expected_position, atol=2e-7)
|
|
|
|
def test_camera_position_from_angles_torch_scalars(self):
|
|
dist = torch.tensor(2.7)
|
|
elev = torch.tensor(0.0)
|
|
azim = torch.tensor(90.0)
|
|
expected_position = torch.tensor([2.7, 0.0, 0.0], dtype=torch.float32).view(
|
|
1, 3
|
|
)
|
|
position = camera_position_from_spherical_angles(dist, elev, azim)
|
|
self.assertClose(position, expected_position, atol=2e-7)
|
|
|
|
def test_camera_position_from_angles_mixed_scalars(self):
|
|
dist = 2.7
|
|
elev = torch.tensor(0.0)
|
|
azim = 90.0
|
|
expected_position = torch.tensor([2.7, 0.0, 0.0], dtype=torch.float32).view(
|
|
1, 3
|
|
)
|
|
position = camera_position_from_spherical_angles(dist, elev, azim)
|
|
self.assertClose(position, expected_position, atol=2e-7)
|
|
|
|
def test_camera_position_from_angles_torch_scalar_grads(self):
|
|
dist = torch.tensor(2.7, requires_grad=True)
|
|
elev = torch.tensor(45.0, requires_grad=True)
|
|
azim = torch.tensor(45.0)
|
|
position = camera_position_from_spherical_angles(dist, elev, azim)
|
|
position.sum().backward()
|
|
self.assertTrue(hasattr(elev, "grad"))
|
|
self.assertTrue(hasattr(dist, "grad"))
|
|
elev_grad = elev.grad.clone()
|
|
dist_grad = dist.grad.clone()
|
|
elev = math.pi / 180.0 * elev.detach()
|
|
azim = math.pi / 180.0 * azim
|
|
grad_dist = (
|
|
torch.cos(elev) * torch.sin(azim)
|
|
+ torch.sin(elev)
|
|
+ torch.cos(elev) * torch.cos(azim)
|
|
)
|
|
grad_elev = (
|
|
-(torch.sin(elev)) * torch.sin(azim)
|
|
+ torch.cos(elev)
|
|
- torch.sin(elev) * torch.cos(azim)
|
|
)
|
|
grad_elev = dist * (math.pi / 180.0) * grad_elev
|
|
self.assertClose(elev_grad, grad_elev)
|
|
self.assertClose(dist_grad, grad_dist)
|
|
|
|
def test_camera_position_from_angles_vectors(self):
|
|
dist = torch.tensor([2.0, 2.0])
|
|
elev = torch.tensor([0.0, 90.0])
|
|
azim = torch.tensor([90.0, 0.0])
|
|
expected_position = torch.tensor(
|
|
[[2.0, 0.0, 0.0], [0.0, 2.0, 0.0]], dtype=torch.float32
|
|
)
|
|
position = camera_position_from_spherical_angles(dist, elev, azim)
|
|
self.assertClose(position, expected_position, atol=2e-7)
|
|
|
|
def test_camera_position_from_angles_vectors_broadcast(self):
|
|
dist = torch.tensor([2.0, 3.0, 5.0])
|
|
elev = torch.tensor([0.0])
|
|
azim = torch.tensor([90.0])
|
|
expected_position = torch.tensor(
|
|
[[2.0, 0.0, 0.0], [3.0, 0.0, 0.0], [5.0, 0.0, 0.0]], dtype=torch.float32
|
|
)
|
|
position = camera_position_from_spherical_angles(dist, elev, azim)
|
|
self.assertClose(position, expected_position, atol=3e-7)
|
|
|
|
def test_camera_position_from_angles_vectors_mixed_broadcast(self):
|
|
dist = torch.tensor([2.0, 3.0, 5.0])
|
|
elev = 0.0
|
|
azim = torch.tensor(90.0)
|
|
expected_position = torch.tensor(
|
|
[[2.0, 0.0, 0.0], [3.0, 0.0, 0.0], [5.0, 0.0, 0.0]], dtype=torch.float32
|
|
)
|
|
position = camera_position_from_spherical_angles(dist, elev, azim)
|
|
self.assertClose(position, expected_position, atol=3e-7)
|
|
|
|
def test_camera_position_from_angles_vectors_mixed_broadcast_grads(self):
|
|
dist = torch.tensor([2.0, 3.0, 5.0], requires_grad=True)
|
|
elev = torch.tensor(45.0, requires_grad=True)
|
|
azim = 45.0
|
|
position = camera_position_from_spherical_angles(dist, elev, azim)
|
|
position.sum().backward()
|
|
self.assertTrue(hasattr(elev, "grad"))
|
|
self.assertTrue(hasattr(dist, "grad"))
|
|
elev_grad = elev.grad.clone()
|
|
dist_grad = dist.grad.clone()
|
|
azim = torch.tensor(azim)
|
|
elev = math.pi / 180.0 * elev.detach()
|
|
azim = math.pi / 180.0 * azim
|
|
grad_dist = (
|
|
torch.cos(elev) * torch.sin(azim)
|
|
+ torch.sin(elev)
|
|
+ torch.cos(elev) * torch.cos(azim)
|
|
)
|
|
grad_elev = (
|
|
-(torch.sin(elev)) * torch.sin(azim)
|
|
+ torch.cos(elev)
|
|
- torch.sin(elev) * torch.cos(azim)
|
|
)
|
|
grad_elev = (dist * (math.pi / 180.0) * grad_elev).sum()
|
|
self.assertClose(elev_grad, grad_elev)
|
|
self.assertClose(dist_grad, torch.full([3], grad_dist))
|
|
|
|
def test_camera_position_from_angles_vectors_bad_broadcast(self):
|
|
# Batch dim for broadcast must be N or 1
|
|
dist = torch.tensor([2.0, 3.0, 5.0])
|
|
elev = torch.tensor([0.0, 90.0])
|
|
azim = torch.tensor([90.0])
|
|
with self.assertRaises(ValueError):
|
|
camera_position_from_spherical_angles(dist, elev, azim)
|
|
|
|
def test_look_at_rotation_python_list(self):
|
|
camera_position = [[0.0, 0.0, -1.0]] # camera pointing along negative z
|
|
rot_mat = look_at_rotation(camera_position)
|
|
self.assertClose(rot_mat, torch.eye(3)[None], atol=2e-7)
|
|
|
|
def test_look_at_rotation_input_fail(self):
|
|
camera_position = [-1.0] # expected to have xyz positions
|
|
with self.assertRaises(ValueError):
|
|
look_at_rotation(camera_position)
|
|
|
|
def test_look_at_rotation_list_broadcast(self):
|
|
# fmt: off
|
|
camera_positions = [[0.0, 0.0, -1.0], [0.0, 0.0, 1.0]]
|
|
rot_mats_expected = torch.tensor(
|
|
[
|
|
[
|
|
[1.0, 0.0, 0.0],
|
|
[0.0, 1.0, 0.0],
|
|
[0.0, 0.0, 1.0]
|
|
],
|
|
[
|
|
[-1.0, 0.0, 0.0], # noqa: E241, E201
|
|
[ 0.0, 1.0, 0.0], # noqa: E241, E201
|
|
[ 0.0, 0.0, -1.0] # noqa: E241, E201
|
|
],
|
|
],
|
|
dtype=torch.float32
|
|
)
|
|
# fmt: on
|
|
rot_mats = look_at_rotation(camera_positions)
|
|
self.assertClose(rot_mats, rot_mats_expected, atol=2e-7)
|
|
|
|
def test_look_at_rotation_tensor_broadcast(self):
|
|
# fmt: off
|
|
camera_positions = torch.tensor([
|
|
[0.0, 0.0, -1.0],
|
|
[0.0, 0.0, 1.0] # noqa: E241, E201
|
|
], dtype=torch.float32)
|
|
rot_mats_expected = torch.tensor(
|
|
[
|
|
[
|
|
[1.0, 0.0, 0.0],
|
|
[0.0, 1.0, 0.0],
|
|
[0.0, 0.0, 1.0]
|
|
],
|
|
[
|
|
[-1.0, 0.0, 0.0], # noqa: E241, E201
|
|
[ 0.0, 1.0, 0.0], # noqa: E241, E201
|
|
[ 0.0, 0.0, -1.0] # noqa: E241, E201
|
|
],
|
|
],
|
|
dtype=torch.float32
|
|
)
|
|
# fmt: on
|
|
rot_mats = look_at_rotation(camera_positions)
|
|
self.assertClose(rot_mats, rot_mats_expected, atol=2e-7)
|
|
|
|
def test_look_at_rotation_tensor_grad(self):
|
|
camera_position = torch.tensor([[0.0, 0.0, -1.0]], requires_grad=True)
|
|
rot_mat = look_at_rotation(camera_position)
|
|
rot_mat.sum().backward()
|
|
self.assertTrue(hasattr(camera_position, "grad"))
|
|
self.assertClose(
|
|
camera_position.grad, torch.zeros_like(camera_position), atol=2e-7
|
|
)
|
|
|
|
def test_view_transform(self):
|
|
T = torch.tensor([0.0, 0.0, -1.0], requires_grad=True).view(1, -1)
|
|
R = look_at_rotation(T)
|
|
RT = get_world_to_view_transform(R=R, T=T)
|
|
self.assertTrue(isinstance(RT, Transform3d))
|
|
|
|
def test_look_at_view_transform_corner_case(self):
|
|
dist = 2.7
|
|
elev = 90
|
|
azim = 90
|
|
expected_position = torch.tensor([0.0, 2.7, 0.0], dtype=torch.float32).view(
|
|
1, 3
|
|
)
|
|
position = camera_position_from_spherical_angles(dist, elev, azim)
|
|
self.assertClose(position, expected_position, atol=2e-7)
|
|
R, _ = look_at_view_transform(eye=position)
|
|
x_axis = R[:, :, 0]
|
|
expected_x_axis = torch.tensor([0.0, 0.0, -1.0], dtype=torch.float32).view(1, 3)
|
|
self.assertClose(x_axis, expected_x_axis, atol=5e-3)
|
|
|
|
|
|
class TestCamerasCommon(TestCaseMixin, unittest.TestCase):
|
|
def test_K(self, batch_size=10):
|
|
T = torch.randn(batch_size, 3)
|
|
R = random_rotations(batch_size)
|
|
K = torch.randn(batch_size, 4, 4)
|
|
for cam_type in (
|
|
FoVOrthographicCameras,
|
|
FoVPerspectiveCameras,
|
|
OrthographicCameras,
|
|
PerspectiveCameras,
|
|
):
|
|
cam = cam_type(R=R, T=T, K=K)
|
|
cam.get_projection_transform()
|
|
# Just checking that we don't crash or anything
|
|
|
|
def test_view_transform_class_method(self):
|
|
T = torch.tensor([0.0, 0.0, -1.0], requires_grad=True).view(1, -1)
|
|
R = look_at_rotation(T)
|
|
RT = get_world_to_view_transform(R=R, T=T)
|
|
for cam_type in (
|
|
OpenGLPerspectiveCameras,
|
|
OpenGLOrthographicCameras,
|
|
SfMOrthographicCameras,
|
|
SfMPerspectiveCameras,
|
|
FoVOrthographicCameras,
|
|
FoVPerspectiveCameras,
|
|
OrthographicCameras,
|
|
PerspectiveCameras,
|
|
):
|
|
cam = cam_type(R=R, T=T)
|
|
RT_class = cam.get_world_to_view_transform()
|
|
self.assertTrue(torch.allclose(RT.get_matrix(), RT_class.get_matrix()))
|
|
|
|
self.assertTrue(isinstance(RT, Transform3d))
|
|
|
|
def test_get_camera_center(self, batch_size=10):
|
|
T = torch.randn(batch_size, 3)
|
|
R = random_rotations(batch_size)
|
|
for cam_type in (
|
|
OpenGLPerspectiveCameras,
|
|
OpenGLOrthographicCameras,
|
|
SfMOrthographicCameras,
|
|
SfMPerspectiveCameras,
|
|
FoVOrthographicCameras,
|
|
FoVPerspectiveCameras,
|
|
OrthographicCameras,
|
|
PerspectiveCameras,
|
|
):
|
|
cam = cam_type(R=R, T=T)
|
|
C = cam.get_camera_center()
|
|
C_ = -torch.bmm(R, T[:, :, None])[:, :, 0]
|
|
self.assertTrue(torch.allclose(C, C_, atol=1e-05))
|
|
|
|
@staticmethod
|
|
def init_equiv_cameras_ndc_screen(cam_type: CamerasBase, batch_size: int):
|
|
T = torch.randn(batch_size, 3) * 0.03
|
|
T[:, 2] = 4
|
|
R = so3_exp_map(torch.randn(batch_size, 3) * 3.0)
|
|
screen_cam_params = {"R": R, "T": T}
|
|
ndc_cam_params = {"R": R, "T": T}
|
|
if cam_type in (OrthographicCameras, PerspectiveCameras):
|
|
fcl = torch.rand((batch_size, 2)) * 3.0 + 0.1
|
|
prc = torch.randn((batch_size, 2)) * 0.2
|
|
# (height, width)
|
|
image_size = torch.randint(low=2, high=64, size=(batch_size, 2))
|
|
# scale
|
|
scale = (image_size.min(dim=1, keepdim=True).values) / 2.0
|
|
|
|
ndc_cam_params["focal_length"] = fcl
|
|
ndc_cam_params["principal_point"] = prc
|
|
ndc_cam_params["image_size"] = image_size
|
|
|
|
screen_cam_params["image_size"] = image_size
|
|
screen_cam_params["focal_length"] = fcl * scale
|
|
screen_cam_params["principal_point"] = (
|
|
(image_size[:, [1, 0]]) / 2.0 - prc * scale
|
|
)
|
|
screen_cam_params["in_ndc"] = False
|
|
else:
|
|
raise ValueError(str(cam_type))
|
|
return cam_type(**ndc_cam_params), cam_type(**screen_cam_params)
|
|
|
|
def test_unproject_points(self, batch_size=50, num_points=100):
|
|
"""
|
|
Checks that an unprojection of a randomly projected point cloud
|
|
stays the same.
|
|
"""
|
|
|
|
for cam_type in (
|
|
SfMOrthographicCameras,
|
|
OpenGLPerspectiveCameras,
|
|
OpenGLOrthographicCameras,
|
|
SfMPerspectiveCameras,
|
|
FoVOrthographicCameras,
|
|
FoVPerspectiveCameras,
|
|
OrthographicCameras,
|
|
PerspectiveCameras,
|
|
):
|
|
# init the cameras
|
|
cameras = init_random_cameras(cam_type, batch_size)
|
|
# xyz - the ground truth point cloud
|
|
xyz = torch.randn(batch_size, num_points, 3) * 0.3
|
|
# xyz in camera coordinates
|
|
xyz_cam = cameras.get_world_to_view_transform().transform_points(xyz)
|
|
# depth = z-component of xyz_cam
|
|
depth = xyz_cam[:, :, 2:]
|
|
# project xyz
|
|
xyz_proj = cameras.transform_points(xyz)
|
|
xy, cam_depth = xyz_proj.split(2, dim=2)
|
|
# input to the unprojection function
|
|
xy_depth = torch.cat((xy, depth), dim=2)
|
|
|
|
for to_world in (False, True):
|
|
if to_world:
|
|
matching_xyz = xyz
|
|
else:
|
|
matching_xyz = xyz_cam
|
|
|
|
# if we have FoV (= OpenGL) cameras
|
|
# test for scaled_depth_input=True/False
|
|
if cam_type in (
|
|
OpenGLPerspectiveCameras,
|
|
OpenGLOrthographicCameras,
|
|
FoVPerspectiveCameras,
|
|
FoVOrthographicCameras,
|
|
):
|
|
for scaled_depth_input in (True, False):
|
|
if scaled_depth_input:
|
|
xy_depth_ = xyz_proj
|
|
else:
|
|
xy_depth_ = xy_depth
|
|
xyz_unproj = cameras.unproject_points(
|
|
xy_depth_,
|
|
world_coordinates=to_world,
|
|
scaled_depth_input=scaled_depth_input,
|
|
)
|
|
self.assertTrue(
|
|
torch.allclose(xyz_unproj, matching_xyz, atol=1e-4)
|
|
)
|
|
else:
|
|
xyz_unproj = cameras.unproject_points(
|
|
xy_depth, world_coordinates=to_world
|
|
)
|
|
self.assertTrue(torch.allclose(xyz_unproj, matching_xyz, atol=1e-4))
|
|
|
|
@staticmethod
|
|
def unproject_points(
|
|
cam_type, batch_size=50, num_points=100, device: Device = "cpu"
|
|
):
|
|
"""
|
|
Checks that an unprojection of a randomly projected point cloud
|
|
stays the same.
|
|
"""
|
|
if device == "cuda":
|
|
device = torch.device("cuda:0")
|
|
else:
|
|
device = torch.device("cpu")
|
|
|
|
str2cls = { # noqa
|
|
"OpenGLOrthographicCameras": OpenGLOrthographicCameras,
|
|
"OpenGLPerspectiveCameras": OpenGLPerspectiveCameras,
|
|
"SfMOrthographicCameras": SfMOrthographicCameras,
|
|
"SfMPerspectiveCameras": SfMPerspectiveCameras,
|
|
"FoVOrthographicCameras": FoVOrthographicCameras,
|
|
"FoVPerspectiveCameras": FoVPerspectiveCameras,
|
|
"OrthographicCameras": OrthographicCameras,
|
|
"PerspectiveCameras": PerspectiveCameras,
|
|
"FishEyeCameras": FishEyeCameras,
|
|
}
|
|
|
|
def run_cameras():
|
|
# init the cameras
|
|
cameras = init_random_cameras(str2cls[cam_type], batch_size, device=device)
|
|
# xyz - the ground truth point cloud
|
|
xyz = torch.randn(num_points, 3) * 0.3
|
|
xyz = cameras.unproject_points(xyz, scaled_depth_input=True)
|
|
|
|
return run_cameras
|
|
|
|
def test_project_points_screen(self, batch_size=50, num_points=100):
|
|
"""
|
|
Checks that an unprojection of a randomly projected point cloud
|
|
stays the same.
|
|
"""
|
|
|
|
for cam_type in (
|
|
OpenGLOrthographicCameras,
|
|
OpenGLPerspectiveCameras,
|
|
SfMOrthographicCameras,
|
|
SfMPerspectiveCameras,
|
|
FoVOrthographicCameras,
|
|
FoVPerspectiveCameras,
|
|
OrthographicCameras,
|
|
PerspectiveCameras,
|
|
):
|
|
# init the cameras
|
|
cameras = init_random_cameras(cam_type, batch_size)
|
|
# xyz - the ground truth point cloud
|
|
xy = torch.randn(batch_size, num_points, 2) * 2.0 - 1.0
|
|
z = torch.randn(batch_size, num_points, 1) * 3.0 + 1.0
|
|
xyz = torch.cat((xy, z), dim=2)
|
|
# image size
|
|
image_size = torch.randint(low=32, high=64, size=(batch_size, 2))
|
|
# project points
|
|
xyz_project_ndc = cameras.transform_points_ndc(xyz)
|
|
xyz_project_screen = cameras.transform_points_screen(
|
|
xyz, image_size=image_size
|
|
)
|
|
# naive
|
|
xyz_project_screen_naive = ndc_to_screen_points_naive(
|
|
xyz_project_ndc, image_size
|
|
)
|
|
# we set atol to 1e-4, remember that screen points are in [0, W]x[0, H] space
|
|
self.assertClose(xyz_project_screen, xyz_project_screen_naive, atol=1e-4)
|
|
|
|
@staticmethod
|
|
def transform_points(
|
|
cam_type, batch_size=50, num_points=100, device: Device = "cpu"
|
|
):
|
|
"""
|
|
Checks that an unprojection of a randomly projected point cloud
|
|
stays the same.
|
|
"""
|
|
|
|
if device == "cuda":
|
|
device = torch.device("cuda:0")
|
|
else:
|
|
device = torch.device("cpu")
|
|
str2cls = { # noqa
|
|
"OpenGLOrthographicCameras": OpenGLOrthographicCameras,
|
|
"OpenGLPerspectiveCameras": OpenGLPerspectiveCameras,
|
|
"SfMOrthographicCameras": SfMOrthographicCameras,
|
|
"SfMPerspectiveCameras": SfMPerspectiveCameras,
|
|
"FoVOrthographicCameras": FoVOrthographicCameras,
|
|
"FoVPerspectiveCameras": FoVPerspectiveCameras,
|
|
"OrthographicCameras": OrthographicCameras,
|
|
"PerspectiveCameras": PerspectiveCameras,
|
|
"FishEyeCameras": FishEyeCameras,
|
|
}
|
|
|
|
def run_cameras():
|
|
# init the cameras
|
|
cameras = init_random_cameras(str2cls[cam_type], batch_size, device=device)
|
|
# xyz - the ground truth point cloud
|
|
xy = torch.randn(num_points, 2) * 2.0 - 1.0
|
|
z = torch.randn(num_points, 1) * 3.0 + 1.0
|
|
xyz = torch.cat((xy, z), dim=-1)
|
|
xy = cameras.transform_points(xyz)
|
|
|
|
return run_cameras
|
|
|
|
def test_equiv_project_points(self, batch_size=50, num_points=100):
|
|
"""
|
|
Checks that NDC and screen cameras project points to ndc correctly.
|
|
Applies only to OrthographicCameras and PerspectiveCameras.
|
|
"""
|
|
for cam_type in (OrthographicCameras, PerspectiveCameras):
|
|
# init the cameras
|
|
(
|
|
ndc_cameras,
|
|
screen_cameras,
|
|
) = TestCamerasCommon.init_equiv_cameras_ndc_screen(cam_type, batch_size)
|
|
# xyz - the ground truth point cloud in Py3D space
|
|
xy = torch.randn(batch_size, num_points, 2) * 0.3
|
|
z = torch.rand(batch_size, num_points, 1) + 3.0 + 0.1
|
|
xyz = torch.cat((xy, z), dim=2)
|
|
# project points
|
|
xyz_ndc = ndc_cameras.transform_points_ndc(xyz)
|
|
xyz_screen = screen_cameras.transform_points_ndc(xyz)
|
|
# check correctness
|
|
self.assertClose(xyz_ndc, xyz_screen, atol=1e-5)
|
|
|
|
def test_clone(self, batch_size: int = 10):
|
|
"""
|
|
Checks the clone function of the cameras.
|
|
"""
|
|
for cam_type in (
|
|
SfMOrthographicCameras,
|
|
OpenGLPerspectiveCameras,
|
|
OpenGLOrthographicCameras,
|
|
SfMPerspectiveCameras,
|
|
FoVOrthographicCameras,
|
|
FoVPerspectiveCameras,
|
|
OrthographicCameras,
|
|
PerspectiveCameras,
|
|
):
|
|
cameras = init_random_cameras(cam_type, batch_size)
|
|
cameras = cameras.to(torch.device("cpu"))
|
|
cameras_clone = cameras.clone()
|
|
|
|
for var in cameras.__dict__.keys():
|
|
val = getattr(cameras, var)
|
|
val_clone = getattr(cameras_clone, var)
|
|
if torch.is_tensor(val):
|
|
self.assertClose(val, val_clone)
|
|
self.assertSeparate(val, val_clone)
|
|
else:
|
|
self.assertTrue(val == val_clone)
|
|
|
|
def test_join_cameras_as_batch_errors(self):
|
|
cam0 = PerspectiveCameras(device="cuda:0")
|
|
cam1 = OrthographicCameras(device="cuda:0")
|
|
|
|
# Cameras not of the same type
|
|
with self.assertRaisesRegex(ValueError, "same type"):
|
|
join_cameras_as_batch([cam0, cam1])
|
|
|
|
cam2 = OrthographicCameras(device="cpu")
|
|
# Cameras not on the same device
|
|
with self.assertRaisesRegex(ValueError, "same device"):
|
|
join_cameras_as_batch([cam1, cam2])
|
|
|
|
cam3 = OrthographicCameras(in_ndc=False, device="cuda:0")
|
|
# Different coordinate systems -- all should be in ndc or in screen
|
|
with self.assertRaisesRegex(
|
|
ValueError, "Attribute _in_ndc is not constant across inputs"
|
|
):
|
|
join_cameras_as_batch([cam1, cam3])
|
|
|
|
def join_cameras_as_batch_fov(self, camera_cls):
|
|
R0 = torch.randn((6, 3, 3))
|
|
R1 = torch.randn((3, 3, 3))
|
|
cam0 = camera_cls(znear=10.0, zfar=100.0, R=R0, device="cuda:0")
|
|
cam1 = camera_cls(znear=10.0, zfar=200.0, R=R1, device="cuda:0")
|
|
|
|
cam_batch = join_cameras_as_batch([cam0, cam1])
|
|
|
|
self.assertEqual(cam_batch._N, cam0._N + cam1._N)
|
|
self.assertEqual(cam_batch.device, cam0.device)
|
|
self.assertClose(cam_batch.R, torch.cat((R0, R1), dim=0).to(device="cuda:0"))
|
|
|
|
def join_cameras_as_batch(self, camera_cls):
|
|
R0 = torch.randn((6, 3, 3))
|
|
R1 = torch.randn((3, 3, 3))
|
|
p0 = torch.randn((6, 2, 1))
|
|
p1 = torch.randn((3, 2, 1))
|
|
f0 = 5.0
|
|
f1 = torch.randn(3, 2)
|
|
f2 = torch.randn(3, 1)
|
|
cam0 = camera_cls(
|
|
R=R0,
|
|
focal_length=f0,
|
|
principal_point=p0,
|
|
)
|
|
cam1 = camera_cls(
|
|
R=R1,
|
|
focal_length=f0,
|
|
principal_point=p1,
|
|
)
|
|
cam2 = camera_cls(
|
|
R=R1,
|
|
focal_length=f1,
|
|
principal_point=p1,
|
|
)
|
|
cam3 = camera_cls(
|
|
R=R1,
|
|
focal_length=f2,
|
|
principal_point=p1,
|
|
)
|
|
cam_batch = join_cameras_as_batch([cam0, cam1])
|
|
|
|
self.assertEqual(cam_batch._N, cam0._N + cam1._N)
|
|
self.assertEqual(cam_batch.device, cam0.device)
|
|
self.assertClose(cam_batch.R, torch.cat((R0, R1), dim=0))
|
|
self.assertClose(cam_batch.principal_point, torch.cat((p0, p1), dim=0))
|
|
self.assertEqual(cam_batch._in_ndc, cam0._in_ndc)
|
|
|
|
# Test one broadcasted value and one fixed value
|
|
# Focal length as (N,) in one camera and (N, 2) in the other
|
|
cam_batch = join_cameras_as_batch([cam0, cam2])
|
|
self.assertEqual(cam_batch._N, cam0._N + cam2._N)
|
|
self.assertClose(cam_batch.R, torch.cat((R0, R1), dim=0))
|
|
self.assertClose(
|
|
cam_batch.focal_length,
|
|
torch.cat([torch.tensor([[f0, f0]]).expand(6, -1), f1], dim=0),
|
|
)
|
|
|
|
# Focal length as (N, 1) in one camera and (N, 2) in the other
|
|
cam_batch = join_cameras_as_batch([cam2, cam3])
|
|
self.assertClose(
|
|
cam_batch.focal_length,
|
|
torch.cat([f1, f2.expand(-1, 2)], dim=0),
|
|
)
|
|
|
|
def test_join_batch_perspective(self):
|
|
self.join_cameras_as_batch_fov(FoVPerspectiveCameras)
|
|
self.join_cameras_as_batch(PerspectiveCameras)
|
|
|
|
def test_join_batch_orthographic(self):
|
|
self.join_cameras_as_batch_fov(FoVOrthographicCameras)
|
|
self.join_cameras_as_batch(OrthographicCameras)
|
|
|
|
def test_iterable(self):
|
|
for camera_type in [PerspectiveCameras, OrthographicCameras]:
|
|
a_list = list(camera_type())
|
|
self.assertEqual(len(a_list), 1)
|
|
|
|
|
|
############################################################
|
|
# FoVPerspective Camera #
|
|
############################################################
|
|
|
|
|
|
class TestFoVPerspectiveProjection(TestCaseMixin, unittest.TestCase):
|
|
def test_perspective(self):
|
|
far = 10.0
|
|
near = 1.0
|
|
cameras = FoVPerspectiveCameras(znear=near, zfar=far, fov=60.0)
|
|
P = cameras.get_projection_transform()
|
|
# vertices are at the far clipping plane so z gets mapped to 1.
|
|
vertices = torch.tensor([1, 2, far], dtype=torch.float32)
|
|
projected_verts = torch.tensor(
|
|
[np.sqrt(3) / far, 2 * np.sqrt(3) / far, 1.0], dtype=torch.float32
|
|
)
|
|
vertices = vertices[None, None, :]
|
|
v1 = P.transform_points(vertices)
|
|
v2 = perspective_project_naive(vertices, fov=60.0)
|
|
self.assertClose(v1[..., :2], v2[..., :2])
|
|
self.assertClose(far * v1[..., 2], v2[..., 2])
|
|
self.assertClose(v1.squeeze(), projected_verts)
|
|
|
|
# vertices are at the near clipping plane so z gets mapped to 0.0.
|
|
vertices[..., 2] = near
|
|
projected_verts = torch.tensor(
|
|
[np.sqrt(3) / near, 2 * np.sqrt(3) / near, 0.0], dtype=torch.float32
|
|
)
|
|
v1 = P.transform_points(vertices)
|
|
v2 = perspective_project_naive(vertices, fov=60.0)
|
|
self.assertClose(v1[..., :2], v2[..., :2])
|
|
self.assertClose(v1.squeeze(), projected_verts)
|
|
|
|
def test_perspective_kwargs(self):
|
|
cameras = FoVPerspectiveCameras(znear=5.0, zfar=100.0, fov=0.0)
|
|
# Override defaults by passing in values to get_projection_transform
|
|
far = 10.0
|
|
P = cameras.get_projection_transform(znear=1.0, zfar=far, fov=60.0)
|
|
vertices = torch.tensor([1, 2, far], dtype=torch.float32)
|
|
projected_verts = torch.tensor(
|
|
[np.sqrt(3) / far, 2 * np.sqrt(3) / far, 1.0], dtype=torch.float32
|
|
)
|
|
vertices = vertices[None, None, :]
|
|
v1 = P.transform_points(vertices)
|
|
self.assertClose(v1.squeeze(), projected_verts)
|
|
|
|
def test_perspective_mixed_inputs_broadcast(self):
|
|
far = torch.tensor([10.0, 20.0], dtype=torch.float32)
|
|
near = 1.0
|
|
fov = torch.tensor(60.0)
|
|
cameras = FoVPerspectiveCameras(znear=near, zfar=far, fov=fov)
|
|
P = cameras.get_projection_transform()
|
|
vertices = torch.tensor([1, 2, 10], dtype=torch.float32)
|
|
z1 = 1.0 # vertices at far clipping plane so z = 1.0
|
|
z2 = (20.0 / (20.0 - 1.0) * 10.0 + -20.0 / (20.0 - 1.0)) / 10.0
|
|
projected_verts = torch.tensor(
|
|
[
|
|
[np.sqrt(3) / 10.0, 2 * np.sqrt(3) / 10.0, z1],
|
|
[np.sqrt(3) / 10.0, 2 * np.sqrt(3) / 10.0, z2],
|
|
],
|
|
dtype=torch.float32,
|
|
)
|
|
vertices = vertices[None, None, :]
|
|
v1 = P.transform_points(vertices)
|
|
v2 = perspective_project_naive(vertices, fov=60.0)
|
|
self.assertClose(v1[..., :2], torch.cat([v2, v2])[..., :2])
|
|
self.assertClose(v1.squeeze(), projected_verts)
|
|
|
|
def test_perspective_mixed_inputs_grad(self):
|
|
far = torch.tensor([10.0])
|
|
near = 1.0
|
|
fov = torch.tensor(60.0, requires_grad=True)
|
|
cameras = FoVPerspectiveCameras(znear=near, zfar=far, fov=fov)
|
|
P = cameras.get_projection_transform()
|
|
vertices = torch.tensor([1, 2, 10], dtype=torch.float32)
|
|
vertices_batch = vertices[None, None, :]
|
|
v1 = P.transform_points(vertices_batch).squeeze()
|
|
v1.sum().backward()
|
|
self.assertTrue(hasattr(fov, "grad"))
|
|
fov_grad = fov.grad.clone()
|
|
half_fov_rad = (math.pi / 180.0) * fov.detach() / 2.0
|
|
grad_cotan = -(1.0 / (torch.sin(half_fov_rad) ** 2.0) * 1 / 2.0)
|
|
grad_fov = (math.pi / 180.0) * grad_cotan
|
|
grad_fov = (vertices[0] + vertices[1]) * grad_fov / 10.0
|
|
self.assertClose(fov_grad, grad_fov)
|
|
|
|
def test_camera_class_init(self):
|
|
device = torch.device("cuda:0")
|
|
cam = FoVPerspectiveCameras(znear=10.0, zfar=(100.0, 200.0))
|
|
|
|
# Check broadcasting
|
|
self.assertTrue(cam.znear.shape == (2,))
|
|
self.assertTrue(cam.zfar.shape == (2,))
|
|
|
|
# Test to
|
|
new_cam = cam.to(device=device)
|
|
self.assertTrue(new_cam.device == device)
|
|
|
|
def test_getitem(self):
|
|
N_CAMERAS = 6
|
|
R_matrix = torch.randn((N_CAMERAS, 3, 3))
|
|
cam = FoVPerspectiveCameras(znear=10.0, zfar=100.0, R=R_matrix)
|
|
|
|
# Check get item returns an instance of the same class
|
|
# with all the same keys
|
|
c0 = cam[0]
|
|
self.assertTrue(isinstance(c0, FoVPerspectiveCameras))
|
|
self.assertEqual(cam.__dict__.keys(), c0.__dict__.keys())
|
|
|
|
# Check all fields correct in get item with int index
|
|
self.assertEqual(len(c0), 1)
|
|
self.assertClose(c0.zfar, torch.tensor([100.0]))
|
|
self.assertClose(c0.znear, torch.tensor([10.0]))
|
|
self.assertClose(c0.R, R_matrix[0:1, ...])
|
|
self.assertEqual(c0.device, torch.device("cpu"))
|
|
|
|
# Check list(int) index
|
|
c012 = cam[[0, 1, 2]]
|
|
self.assertEqual(len(c012), 3)
|
|
self.assertClose(c012.zfar, torch.tensor([100.0] * 3))
|
|
self.assertClose(c012.znear, torch.tensor([10.0] * 3))
|
|
self.assertClose(c012.R, R_matrix[0:3, ...])
|
|
|
|
# Check torch.LongTensor index
|
|
SLICE = [1, 3, 5]
|
|
index = torch.tensor(SLICE, dtype=torch.int64)
|
|
c135 = cam[index]
|
|
self.assertEqual(len(c135), 3)
|
|
self.assertClose(c135.zfar, torch.tensor([100.0] * 3))
|
|
self.assertClose(c135.znear, torch.tensor([10.0] * 3))
|
|
self.assertClose(c135.R, R_matrix[SLICE, ...])
|
|
|
|
# Check torch.BoolTensor index
|
|
bool_slice = [i in SLICE for i in range(N_CAMERAS)]
|
|
index = torch.tensor(bool_slice, dtype=torch.bool)
|
|
c135 = cam[index]
|
|
self.assertEqual(len(c135), 3)
|
|
self.assertClose(c135.zfar, torch.tensor([100.0] * 3))
|
|
self.assertClose(c135.znear, torch.tensor([10.0] * 3))
|
|
self.assertClose(c135.R, R_matrix[SLICE, ...])
|
|
|
|
# Check errors with get item
|
|
with self.assertRaisesRegex(IndexError, "out of bounds"):
|
|
cam[N_CAMERAS]
|
|
|
|
index = torch.tensor([1, 0, 1], dtype=torch.bool)
|
|
with self.assertRaisesRegex(ValueError, "does not match cameras"):
|
|
cam[index]
|
|
|
|
with self.assertRaisesRegex(ValueError, "Invalid index type"):
|
|
cam[slice(0, 1)]
|
|
|
|
with self.assertRaisesRegex(ValueError, "Invalid index type"):
|
|
cam[[True, False]]
|
|
|
|
index = torch.tensor(SLICE, dtype=torch.float32)
|
|
with self.assertRaisesRegex(ValueError, "Invalid index type"):
|
|
cam[index]
|
|
|
|
def test_get_full_transform(self):
|
|
cam = FoVPerspectiveCameras()
|
|
T = torch.tensor([0.0, 0.0, 1.0]).view(1, -1)
|
|
R = look_at_rotation(T)
|
|
P = cam.get_full_projection_transform(R=R, T=T)
|
|
self.assertTrue(isinstance(P, Transform3d))
|
|
self.assertClose(cam.R, R)
|
|
self.assertClose(cam.T, T)
|
|
|
|
def test_transform_points(self):
|
|
# Check transform_points methods works with default settings for
|
|
# RT and P
|
|
far = 10.0
|
|
cam = FoVPerspectiveCameras(znear=1.0, zfar=far, fov=60.0)
|
|
points = torch.tensor([1, 2, far], dtype=torch.float32)
|
|
points = points.view(1, 1, 3).expand(5, 10, -1)
|
|
projected_points = torch.tensor(
|
|
[np.sqrt(3) / far, 2 * np.sqrt(3) / far, 1.0], dtype=torch.float32
|
|
)
|
|
projected_points = projected_points.view(1, 1, 3).expand(5, 10, -1)
|
|
new_points = cam.transform_points(points)
|
|
self.assertClose(new_points, projected_points)
|
|
|
|
def test_perspective_type(self):
|
|
cam = FoVPerspectiveCameras(znear=1.0, zfar=10.0, fov=60.0)
|
|
self.assertTrue(cam.is_perspective())
|
|
self.assertEqual(cam.get_znear(), 1.0)
|
|
|
|
|
|
############################################################
|
|
# FoVOrthographic Camera #
|
|
############################################################
|
|
|
|
|
|
class TestFoVOrthographicProjection(TestCaseMixin, unittest.TestCase):
|
|
def test_orthographic(self):
|
|
far = 10.0
|
|
near = 1.0
|
|
cameras = FoVOrthographicCameras(znear=near, zfar=far)
|
|
P = cameras.get_projection_transform()
|
|
|
|
vertices = torch.tensor([1, 2, far], dtype=torch.float32)
|
|
projected_verts = torch.tensor([1, 2, 1], dtype=torch.float32)
|
|
vertices = vertices[None, None, :]
|
|
v1 = P.transform_points(vertices)
|
|
v2 = orthographic_project_naive(vertices)
|
|
self.assertClose(v1[..., :2], v2[..., :2])
|
|
self.assertClose(v1.squeeze(), projected_verts)
|
|
|
|
vertices[..., 2] = near
|
|
projected_verts[2] = 0.0
|
|
v1 = P.transform_points(vertices)
|
|
v2 = orthographic_project_naive(vertices)
|
|
self.assertClose(v1[..., :2], v2[..., :2])
|
|
self.assertClose(v1.squeeze(), projected_verts)
|
|
|
|
def test_orthographic_scaled(self):
|
|
vertices = torch.tensor([1, 2, 0.5], dtype=torch.float32)
|
|
vertices = vertices[None, None, :]
|
|
scale = torch.tensor([[2.0, 0.5, 20]])
|
|
# applying the scale puts the z coordinate at the far clipping plane
|
|
# so the z is mapped to 1.0
|
|
projected_verts = torch.tensor([2, 1, 1], dtype=torch.float32)
|
|
cameras = FoVOrthographicCameras(znear=1.0, zfar=10.0, scale_xyz=scale)
|
|
P = cameras.get_projection_transform()
|
|
v1 = P.transform_points(vertices)
|
|
v2 = orthographic_project_naive(vertices, scale)
|
|
self.assertClose(v1[..., :2], v2[..., :2])
|
|
self.assertClose(v1, projected_verts[None, None])
|
|
|
|
def test_orthographic_kwargs(self):
|
|
cameras = FoVOrthographicCameras(znear=5.0, zfar=100.0)
|
|
far = 10.0
|
|
P = cameras.get_projection_transform(znear=1.0, zfar=far)
|
|
vertices = torch.tensor([1, 2, far], dtype=torch.float32)
|
|
projected_verts = torch.tensor([1, 2, 1], dtype=torch.float32)
|
|
vertices = vertices[None, None, :]
|
|
v1 = P.transform_points(vertices)
|
|
self.assertClose(v1.squeeze(), projected_verts)
|
|
|
|
def test_orthographic_mixed_inputs_broadcast(self):
|
|
far = torch.tensor([10.0, 20.0])
|
|
near = 1.0
|
|
cameras = FoVOrthographicCameras(znear=near, zfar=far)
|
|
P = cameras.get_projection_transform()
|
|
vertices = torch.tensor([1.0, 2.0, 10.0], dtype=torch.float32)
|
|
z2 = 1.0 / (20.0 - 1.0) * 10.0 + -1.0 / (20.0 - 1.0)
|
|
projected_verts = torch.tensor(
|
|
[[1.0, 2.0, 1.0], [1.0, 2.0, z2]], dtype=torch.float32
|
|
)
|
|
vertices = vertices[None, None, :]
|
|
v1 = P.transform_points(vertices)
|
|
v2 = orthographic_project_naive(vertices)
|
|
self.assertClose(v1[..., :2], torch.cat([v2, v2])[..., :2])
|
|
self.assertClose(v1.squeeze(), projected_verts)
|
|
|
|
def test_orthographic_mixed_inputs_grad(self):
|
|
far = torch.tensor([10.0])
|
|
near = 1.0
|
|
scale = torch.tensor([[1.0, 1.0, 1.0]], requires_grad=True)
|
|
cameras = FoVOrthographicCameras(znear=near, zfar=far, scale_xyz=scale)
|
|
P = cameras.get_projection_transform()
|
|
vertices = torch.tensor([1.0, 2.0, 10.0], dtype=torch.float32)
|
|
vertices_batch = vertices[None, None, :]
|
|
v1 = P.transform_points(vertices_batch)
|
|
v1.sum().backward()
|
|
self.assertTrue(hasattr(scale, "grad"))
|
|
scale_grad = scale.grad.clone()
|
|
grad_scale = torch.tensor(
|
|
[
|
|
[
|
|
vertices[0] * P._matrix[:, 0, 0],
|
|
vertices[1] * P._matrix[:, 1, 1],
|
|
vertices[2] * P._matrix[:, 2, 2],
|
|
]
|
|
]
|
|
)
|
|
self.assertClose(scale_grad, grad_scale)
|
|
|
|
def test_perspective_type(self):
|
|
cam = FoVOrthographicCameras(znear=1.0, zfar=10.0)
|
|
self.assertFalse(cam.is_perspective())
|
|
self.assertEqual(cam.get_znear(), 1.0)
|
|
|
|
def test_getitem(self):
|
|
R_matrix = torch.randn((6, 3, 3))
|
|
scale = torch.tensor([[1.0, 1.0, 1.0]], requires_grad=True)
|
|
cam = FoVOrthographicCameras(
|
|
znear=10.0, zfar=100.0, R=R_matrix, scale_xyz=scale
|
|
)
|
|
|
|
# Check get item returns an instance of the same class
|
|
# with all the same keys
|
|
c0 = cam[0]
|
|
self.assertTrue(isinstance(c0, FoVOrthographicCameras))
|
|
self.assertEqual(cam.__dict__.keys(), c0.__dict__.keys())
|
|
|
|
# Check torch.LongTensor index
|
|
index = torch.tensor([1, 3, 5], dtype=torch.int64)
|
|
c135 = cam[index]
|
|
self.assertEqual(len(c135), 3)
|
|
self.assertClose(c135.zfar, torch.tensor([100.0] * 3))
|
|
self.assertClose(c135.znear, torch.tensor([10.0] * 3))
|
|
self.assertClose(c135.min_x, torch.tensor([-1.0] * 3))
|
|
self.assertClose(c135.max_x, torch.tensor([1.0] * 3))
|
|
self.assertClose(c135.R, R_matrix[[1, 3, 5], ...])
|
|
self.assertClose(c135.scale_xyz, scale.expand(3, -1))
|
|
|
|
|
|
############################################################
|
|
# Orthographic Camera #
|
|
############################################################
|
|
|
|
|
|
class TestOrthographicProjection(TestCaseMixin, unittest.TestCase):
|
|
def test_orthographic(self):
|
|
cameras = OrthographicCameras()
|
|
P = cameras.get_projection_transform()
|
|
|
|
vertices = torch.randn([3, 4, 3], dtype=torch.float32)
|
|
projected_verts = vertices.clone()
|
|
v1 = P.transform_points(vertices)
|
|
v2 = orthographic_project_naive(vertices)
|
|
|
|
self.assertClose(v1[..., :2], v2[..., :2])
|
|
self.assertClose(v1, projected_verts)
|
|
|
|
def test_orthographic_scaled(self):
|
|
focal_length_x = 10.0
|
|
focal_length_y = 15.0
|
|
|
|
cameras = OrthographicCameras(focal_length=((focal_length_x, focal_length_y),))
|
|
P = cameras.get_projection_transform()
|
|
|
|
vertices = torch.randn([3, 4, 3], dtype=torch.float32)
|
|
projected_verts = vertices.clone()
|
|
projected_verts[:, :, 0] *= focal_length_x
|
|
projected_verts[:, :, 1] *= focal_length_y
|
|
v1 = P.transform_points(vertices)
|
|
v2 = orthographic_project_naive(
|
|
vertices, scale_xyz=(focal_length_x, focal_length_y, 1.0)
|
|
)
|
|
v3 = cameras.transform_points(vertices)
|
|
self.assertClose(v1[..., :2], v2[..., :2])
|
|
self.assertClose(v3[..., :2], v2[..., :2])
|
|
self.assertClose(v1, projected_verts)
|
|
|
|
def test_orthographic_kwargs(self):
|
|
cameras = OrthographicCameras(focal_length=5.0, principal_point=((2.5, 2.5),))
|
|
P = cameras.get_projection_transform(
|
|
focal_length=2.0, principal_point=((2.5, 3.5),)
|
|
)
|
|
vertices = torch.randn([3, 4, 3], dtype=torch.float32)
|
|
projected_verts = vertices.clone()
|
|
projected_verts[:, :, :2] *= 2.0
|
|
projected_verts[:, :, 0] += 2.5
|
|
projected_verts[:, :, 1] += 3.5
|
|
v1 = P.transform_points(vertices)
|
|
self.assertClose(v1, projected_verts)
|
|
|
|
def test_perspective_type(self):
|
|
cam = OrthographicCameras(focal_length=5.0, principal_point=((2.5, 2.5),))
|
|
self.assertFalse(cam.is_perspective())
|
|
self.assertIsNone(cam.get_znear())
|
|
|
|
def test_getitem(self):
|
|
R_matrix = torch.randn((6, 3, 3))
|
|
principal_point = torch.randn((6, 2, 1))
|
|
focal_length = 5.0
|
|
cam = OrthographicCameras(
|
|
R=R_matrix,
|
|
focal_length=focal_length,
|
|
principal_point=principal_point,
|
|
)
|
|
|
|
# Check get item returns an instance of the same class
|
|
# with all the same keys
|
|
c0 = cam[0]
|
|
self.assertTrue(isinstance(c0, OrthographicCameras))
|
|
self.assertEqual(cam.__dict__.keys(), c0.__dict__.keys())
|
|
|
|
# Check torch.LongTensor index
|
|
index = torch.tensor([1, 3, 5], dtype=torch.int64)
|
|
c135 = cam[index]
|
|
self.assertEqual(len(c135), 3)
|
|
self.assertClose(c135.focal_length, torch.tensor([[5.0, 5.0]] * 3))
|
|
self.assertClose(c135.R, R_matrix[[1, 3, 5], ...])
|
|
self.assertClose(c135.principal_point, principal_point[[1, 3, 5], ...])
|
|
|
|
|
|
############################################################
|
|
# Perspective Camera #
|
|
############################################################
|
|
|
|
|
|
class TestPerspectiveProjection(TestCaseMixin, unittest.TestCase):
|
|
def test_perspective(self):
|
|
cameras = PerspectiveCameras()
|
|
P = cameras.get_projection_transform()
|
|
|
|
vertices = torch.randn([3, 4, 3], dtype=torch.float32)
|
|
v1 = P.transform_points(vertices)
|
|
v2 = sfm_perspective_project_naive(vertices)
|
|
self.assertClose(v1, v2)
|
|
|
|
def test_perspective_scaled(self):
|
|
focal_length_x = 10.0
|
|
focal_length_y = 15.0
|
|
p0x = 15.0
|
|
p0y = 30.0
|
|
|
|
cameras = PerspectiveCameras(
|
|
focal_length=((focal_length_x, focal_length_y),),
|
|
principal_point=((p0x, p0y),),
|
|
)
|
|
P = cameras.get_projection_transform()
|
|
|
|
vertices = torch.randn([3, 4, 3], dtype=torch.float32)
|
|
v1 = P.transform_points(vertices)
|
|
v2 = sfm_perspective_project_naive(
|
|
vertices, fx=focal_length_x, fy=focal_length_y, p0x=p0x, p0y=p0y
|
|
)
|
|
v3 = cameras.transform_points(vertices)
|
|
self.assertClose(v1, v2)
|
|
self.assertClose(v3[..., :2], v2[..., :2])
|
|
|
|
def test_perspective_kwargs(self):
|
|
cameras = PerspectiveCameras(focal_length=5.0, principal_point=((2.5, 2.5),))
|
|
P = cameras.get_projection_transform(
|
|
focal_length=2.0, principal_point=((2.5, 3.5),)
|
|
)
|
|
vertices = torch.randn([3, 4, 3], dtype=torch.float32)
|
|
v1 = P.transform_points(vertices)
|
|
v2 = sfm_perspective_project_naive(vertices, fx=2.0, fy=2.0, p0x=2.5, p0y=3.5)
|
|
self.assertClose(v1, v2, atol=1e-6)
|
|
|
|
def test_perspective_type(self):
|
|
cam = PerspectiveCameras(focal_length=5.0, principal_point=((2.5, 2.5),))
|
|
self.assertTrue(cam.is_perspective())
|
|
self.assertIsNone(cam.get_znear())
|
|
|
|
def test_getitem(self):
|
|
R_matrix = torch.randn((6, 3, 3))
|
|
principal_point = torch.randn((6, 2, 1))
|
|
focal_length = 5.0
|
|
cam = PerspectiveCameras(
|
|
R=R_matrix,
|
|
focal_length=focal_length,
|
|
principal_point=principal_point,
|
|
)
|
|
|
|
# Check get item returns an instance of the same class
|
|
# with all the same keys
|
|
c0 = cam[0]
|
|
self.assertTrue(isinstance(c0, PerspectiveCameras))
|
|
self.assertEqual(cam.__dict__.keys(), c0.__dict__.keys())
|
|
|
|
# Check torch.LongTensor index
|
|
index = torch.tensor([1, 3, 5], dtype=torch.int64)
|
|
c135 = cam[index]
|
|
self.assertEqual(len(c135), 3)
|
|
self.assertClose(c135.focal_length, torch.tensor([[5.0, 5.0]] * 3))
|
|
self.assertClose(c135.R, R_matrix[[1, 3, 5], ...])
|
|
self.assertClose(c135.principal_point, principal_point[[1, 3, 5], ...])
|
|
|
|
# Check in_ndc is handled correctly
|
|
self.assertEqual(cam._in_ndc, c0._in_ndc)
|
|
|
|
def test_clone_picklable(self):
|
|
camera = PerspectiveCameras()
|
|
pickle.dumps(camera)
|
|
pickle.dumps(camera.clone())
|
|
|
|
|
|
############################################################
|
|
# FishEye Camera #
|
|
############################################################
|
|
|
|
|
|
class TestFishEyeProjection(TestCaseMixin, unittest.TestCase):
|
|
def setUpSimpleCase(self) -> None:
|
|
super().setUp()
|
|
focal = torch.tensor([[240]], dtype=torch.float32)
|
|
principal_point = torch.tensor([[320, 240]])
|
|
p_3d = torch.tensor(
|
|
[
|
|
[2.0, 3.0, 1.0],
|
|
[3.0, 2.0, 1.0],
|
|
],
|
|
dtype=torch.float32,
|
|
)
|
|
return focal, principal_point, p_3d
|
|
|
|
def setUpAriaCase(self) -> None:
|
|
super().setUp()
|
|
torch.manual_seed(42)
|
|
focal = torch.tensor([[608.9255557152]], dtype=torch.float32)
|
|
principal_point = torch.tensor(
|
|
[[712.0114821205, 706.8666571177]], dtype=torch.float32
|
|
)
|
|
radial_params = torch.tensor(
|
|
[
|
|
[
|
|
0.3877090026,
|
|
-0.315613384,
|
|
-0.3434984955,
|
|
1.8565874201,
|
|
-2.1799372221,
|
|
0.7713834763,
|
|
],
|
|
],
|
|
dtype=torch.float32,
|
|
)
|
|
tangential_params = torch.tensor(
|
|
[[-0.0002747019, 0.0005228974]], dtype=torch.float32
|
|
)
|
|
thin_prism_params = torch.tensor(
|
|
[
|
|
[0.000134884, -0.000084822, -0.0009420014, -0.0001276838],
|
|
],
|
|
dtype=torch.float32,
|
|
)
|
|
return (
|
|
focal,
|
|
principal_point,
|
|
radial_params,
|
|
tangential_params,
|
|
thin_prism_params,
|
|
)
|
|
|
|
def setUpBatchCameras(self, combination: None) -> None:
|
|
super().setUp()
|
|
focal, principal_point, p_3d = self.setUpSimpleCase()
|
|
radial_params = torch.tensor(
|
|
[
|
|
[0, 0, 0, 0, 0, 0],
|
|
],
|
|
dtype=torch.float32,
|
|
)
|
|
tangential_params = torch.tensor([[0, 0]], dtype=torch.float32)
|
|
thin_prism_params = torch.tensor([[0, 0, 0, 0]], dtype=torch.float32)
|
|
(
|
|
focal1,
|
|
principal_point1,
|
|
radial_params1,
|
|
tangential_params1,
|
|
thin_prism_params1,
|
|
) = self.setUpAriaCase()
|
|
focal = torch.cat([focal, focal1], dim=0)
|
|
principal_point = torch.cat([principal_point, principal_point1], dim=0)
|
|
radial_params = torch.cat([radial_params, radial_params1], dim=0)
|
|
tangential_params = torch.cat([tangential_params, tangential_params1], dim=0)
|
|
thin_prism_params = torch.cat([thin_prism_params, thin_prism_params1], dim=0)
|
|
if combination is None:
|
|
combination = [True, True, True]
|
|
cameras = FishEyeCameras(
|
|
use_radial=combination[0],
|
|
use_tangential=combination[1],
|
|
use_thin_prism=combination[2],
|
|
focal_length=focal,
|
|
principal_point=principal_point,
|
|
radial_params=radial_params,
|
|
tangential_params=tangential_params,
|
|
thin_prism_params=thin_prism_params,
|
|
)
|
|
|
|
return cameras
|
|
|
|
def test_distortion_params_set_to_zeors(self):
|
|
# test case 1: all distortion params are 0. Note that
|
|
# setting radial_params to zeros is not equivalent to
|
|
# disabling radial distortions, set use_radial=False does
|
|
focal, principal_point, p_3d = self.setUpSimpleCase()
|
|
cameras = FishEyeCameras(
|
|
focal_length=focal,
|
|
principal_point=principal_point,
|
|
)
|
|
uv_case1 = cameras.transform_points(p_3d)
|
|
self.assertClose(
|
|
uv_case1,
|
|
torch.tensor(
|
|
[[493.0993, 499.6489, 1.0], [579.6489, 413.0993, 1.0]],
|
|
),
|
|
)
|
|
# test case 2: equivalent of test case 1 by
|
|
# disabling use_tangential and use_thin_prism
|
|
cameras = FishEyeCameras(
|
|
focal_length=focal,
|
|
principal_point=principal_point,
|
|
use_tangential=False,
|
|
use_thin_prism=False,
|
|
)
|
|
uv_case2 = cameras.transform_points(p_3d)
|
|
self.assertClose(uv_case2, uv_case1)
|
|
|
|
def test_fisheye_against_perspective_cameras(self):
|
|
# test case: check equivalence with PerspectiveCameras
|
|
# by disabling all distortions
|
|
focal, principal_point, p_3d = self.setUpSimpleCase()
|
|
cameras = PerspectiveCameras(
|
|
focal_length=focal,
|
|
principal_point=principal_point,
|
|
)
|
|
P = cameras.get_projection_transform()
|
|
uv_perspective = P.transform_points(p_3d)
|
|
|
|
# disable all distortions
|
|
cameras = FishEyeCameras(
|
|
focal_length=focal,
|
|
principal_point=principal_point,
|
|
use_radial=False,
|
|
use_tangential=False,
|
|
use_thin_prism=False,
|
|
)
|
|
uv = cameras.transform_points(p_3d)
|
|
self.assertClose(uv, uv_perspective)
|
|
|
|
def test_project_shape_broadcasts(self):
|
|
focal, principal_point, p_3d = self.setUpSimpleCase()
|
|
torch.set_printoptions(precision=6)
|
|
combinations = product([0, 1], repeat=3)
|
|
for combination in combinations:
|
|
cameras = FishEyeCameras(
|
|
use_radial=combination[0],
|
|
use_tangential=combination[1],
|
|
use_thin_prism=combination[2],
|
|
focal_length=focal,
|
|
principal_point=principal_point,
|
|
)
|
|
# test case 1:
|
|
# 1 transform with points of shape (P, 3) -> (P, 3)
|
|
# 1 transform with points of shape (1, P, 3) -> (1, P, 3)
|
|
# 1 transform with points of shape (M, P, 3) -> (M, P, 3)
|
|
points = p_3d.repeat(1, 1, 1)
|
|
cameras = FishEyeCameras(
|
|
focal_length=focal,
|
|
principal_point=principal_point,
|
|
use_radial=False,
|
|
use_tangential=False,
|
|
use_thin_prism=False,
|
|
)
|
|
uv = cameras.transform_points(p_3d)
|
|
uv_point_batch = cameras.transform_points(points)
|
|
self.assertClose(uv_point_batch, uv.repeat(1, 1, 1))
|
|
|
|
points = p_3d.repeat(3, 1, 1)
|
|
uv_point_batch = cameras.transform_points(points)
|
|
self.assertClose(uv_point_batch, uv.repeat(3, 1, 1))
|
|
|
|
# test case 2
|
|
# test with N transforms and points of shape (P, 3) -> (N, P, 3)
|
|
# test with N transforms and points of shape (1, P, 3) -> (N, P, 3)
|
|
torch.set_printoptions(sci_mode=False)
|
|
p_3d = torch.tensor(
|
|
[
|
|
[2.0, 3.0, 1.0],
|
|
[3.0, 2.0, 1.0],
|
|
]
|
|
)
|
|
expected_res = torch.tensor(
|
|
[
|
|
[
|
|
[
|
|
[800.000000, 960.000000, 1.000000],
|
|
[1040.000000, 720.000000, 1.000000],
|
|
],
|
|
[
|
|
[1929.862549, 2533.643311, 1.000000],
|
|
[2538.788086, 1924.717773, 1.000000],
|
|
],
|
|
],
|
|
[
|
|
[
|
|
[800.000000, 960.000000, 1.000000],
|
|
[1040.000000, 720.000000, 1.000000],
|
|
],
|
|
[
|
|
[1927.272095, 2524.220459, 1.000000],
|
|
[2536.197754, 1915.295166, 1.000000],
|
|
],
|
|
],
|
|
[
|
|
[
|
|
[800.000000, 960.000000, 1.000000],
|
|
[1040.000000, 720.000000, 1.000000],
|
|
],
|
|
[
|
|
[1930.050293, 2538.434814, 1.000000],
|
|
[2537.956543, 1927.569092, 1.000000],
|
|
],
|
|
],
|
|
[
|
|
[
|
|
[800.000000, 960.000000, 1.000000],
|
|
[1040.000000, 720.000000, 1.000000],
|
|
],
|
|
[
|
|
[1927.459839, 2529.011963, 1.000000],
|
|
[2535.366211, 1918.146484, 1.000000],
|
|
],
|
|
],
|
|
[
|
|
[
|
|
[493.099304, 499.648926, 1.000000],
|
|
[579.648926, 413.099304, 1.000000],
|
|
],
|
|
[
|
|
[1662.673950, 2132.860352, 1.000000],
|
|
[2138.005127, 1657.529053, 1.000000],
|
|
],
|
|
],
|
|
[
|
|
[
|
|
[493.099304, 499.648926, 1.000000],
|
|
[579.648926, 413.099304, 1.000000],
|
|
],
|
|
[
|
|
[1660.083496, 2123.437744, 1.000000],
|
|
[2135.414795, 1648.106445, 1.000000],
|
|
],
|
|
],
|
|
[
|
|
[
|
|
[493.099304, 499.648926, 1.000000],
|
|
[579.648926, 413.099304, 1.000000],
|
|
],
|
|
[
|
|
[1662.861816, 2137.651855, 1.000000],
|
|
[2137.173828, 1660.380371, 1.000000],
|
|
],
|
|
],
|
|
[
|
|
[
|
|
[493.099304, 499.648926, 1.000000],
|
|
[579.648926, 413.099304, 1.000000],
|
|
],
|
|
[
|
|
[1660.271240, 2128.229248, 1.000000],
|
|
[2134.583496, 1650.957764, 1.000000],
|
|
],
|
|
],
|
|
]
|
|
)
|
|
combinations = product([0, 1], repeat=3)
|
|
for i, combination in enumerate(combinations):
|
|
cameras = self.setUpBatchCameras(combination)
|
|
uv_point_batch = cameras.transform_points(p_3d)
|
|
self.assertClose(uv_point_batch, expected_res[i])
|
|
|
|
uv_point_batch = cameras.transform_points(p_3d.repeat(1, 1, 1))
|
|
self.assertClose(uv_point_batch, expected_res[i].repeat(1, 1, 1))
|
|
|
|
def test_cuda(self):
|
|
"""
|
|
Test cuda device
|
|
"""
|
|
focal, principal_point, p_3d = self.setUpSimpleCase()
|
|
cameras_cuda = FishEyeCameras(
|
|
focal_length=focal,
|
|
principal_point=principal_point,
|
|
device="cuda:0",
|
|
)
|
|
uv = cameras_cuda.transform_points(p_3d)
|
|
expected_res = torch.tensor(
|
|
[[493.0993, 499.6489, 1.0], [579.6489, 413.0993, 1.0]],
|
|
)
|
|
self.assertClose(uv, expected_res.to("cuda:0"))
|
|
|
|
rep_3d = cameras_cuda.unproject_points(uv)
|
|
self.assertClose(rep_3d, p_3d.to("cuda:0"))
|
|
|
|
def test_unproject_shape_broadcasts(self):
|
|
# test case 1:
|
|
# 1 transform with points of (P, 3) -> (P, 3)
|
|
# 1 transform with points of (M, P, 3) -> (M, P, 3)
|
|
(
|
|
focal,
|
|
principal_point,
|
|
radial_params,
|
|
tangential_params,
|
|
thin_prism_params,
|
|
) = self.setUpAriaCase()
|
|
xy_depth = torch.tensor(
|
|
[
|
|
[2134.5814033, 1650.95653328, 1.0],
|
|
[1074.25442904, 1159.52461285, 1.0],
|
|
]
|
|
)
|
|
cameras = FishEyeCameras(
|
|
focal_length=focal,
|
|
principal_point=principal_point,
|
|
radial_params=radial_params,
|
|
tangential_params=tangential_params,
|
|
thin_prism_params=thin_prism_params,
|
|
)
|
|
rep_3d = cameras.unproject_points(xy_depth)
|
|
expected_res = torch.tensor(
|
|
[
|
|
[[2.999442, 1.990583, 1.000000], [0.666728, 0.833142, 1.000000]],
|
|
[[2.997338, 2.005411, 1.000000], [0.666859, 0.834456, 1.000000]],
|
|
[[3.002090, 1.985229, 1.000000], [0.666537, 0.832025, 1.000000]],
|
|
[[2.999999, 2.000000, 1.000000], [0.666667, 0.833333, 1.000000]],
|
|
[[2.999442, 1.990583, 1.000000], [0.666728, 0.833142, 1.000000]],
|
|
[[2.997338, 2.005411, 1.000000], [0.666859, 0.834456, 1.000000]],
|
|
[[3.002090, 1.985229, 1.000000], [0.666537, 0.832025, 1.000000]],
|
|
[[2.999999, 2.000000, 1.000000], [0.666667, 0.833333, 1.000000]],
|
|
]
|
|
)
|
|
torch.set_printoptions(precision=6)
|
|
combinations = product([0, 1], repeat=3)
|
|
for i, combination in enumerate(combinations):
|
|
cameras = FishEyeCameras(
|
|
use_radial=combination[0],
|
|
use_tangential=combination[1],
|
|
use_thin_prism=combination[2],
|
|
focal_length=focal,
|
|
principal_point=principal_point,
|
|
radial_params=radial_params,
|
|
tangential_params=tangential_params,
|
|
thin_prism_params=thin_prism_params,
|
|
)
|
|
rep_3d = cameras.unproject_points(xy_depth)
|
|
self.assertClose(rep_3d, expected_res[i])
|
|
rep_3d = cameras.unproject_points(xy_depth.repeat(3, 1, 1))
|
|
self.assertClose(rep_3d, expected_res[i].repeat(3, 1, 1))
|
|
|
|
# test case 2:
|
|
# N transforms with points of (P, 3) -> (N, P, 3)
|
|
# N transforms with points of (1, P, 3) -> (N, P, 3)
|
|
cameras = FishEyeCameras(
|
|
use_radial=combination[0],
|
|
use_tangential=combination[1],
|
|
use_thin_prism=combination[2],
|
|
focal_length=focal.repeat(2, 1),
|
|
principal_point=principal_point.repeat(2, 1),
|
|
radial_params=radial_params.repeat(2, 1),
|
|
tangential_params=tangential_params.repeat(2, 1),
|
|
thin_prism_params=thin_prism_params.repeat(2, 1),
|
|
)
|
|
rep_3d = cameras.unproject_points(xy_depth)
|
|
self.assertClose(rep_3d, expected_res[i].repeat(2, 1, 1))
|
|
|
|
def test_unhandled_shape(self):
|
|
"""
|
|
Test error handling when shape of transforms
|
|
and points are not expected.
|
|
"""
|
|
cameras = self.setUpBatchCameras(None)
|
|
points = torch.rand(3, 3, 1)
|
|
with self.assertRaises(ValueError):
|
|
cameras.transform_points(points)
|
|
|
|
def test_getitem(self):
|
|
# Check get item returns an instance of the same class
|
|
# with all the same keys
|
|
cam = self.setUpBatchCameras(None)
|
|
c0 = cam[0]
|
|
self.assertTrue(isinstance(c0, FishEyeCameras))
|
|
self.assertEqual(cam.__dict__.keys(), c0.__dict__.keys())
|