mirror of
https://github.com/facebookresearch/pytorch3d.git
synced 2025-07-31 10:52:50 +08:00
Summary: Converts the directory specified to use the Ruff formatter in pyfmt ruff_dog If this diff causes merge conflicts when rebasing, please run `hg status -n -0 --change . -I '**/*.{py,pyi}' | xargs -0 arc pyfmt` on your diff, and amend any changes before rebasing onto latest. That should help reduce or eliminate any merge conflicts. allow-large-files Reviewed By: bottler Differential Revision: D66472063 fbshipit-source-id: 35841cb397e4f8e066e2159550d2f56b403b1bef
146 lines
4.5 KiB
Python
146 lines
4.5 KiB
Python
#!/usr/bin/env python3
|
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the BSD-style license found in the
|
|
# LICENSE file in the root directory of this source tree.
|
|
|
|
"""Test right hand/left hand system compatibility."""
|
|
|
|
import sys
|
|
import unittest
|
|
from os import path
|
|
|
|
import numpy as np
|
|
import torch
|
|
from torch import nn
|
|
|
|
|
|
sys.path.insert(0, path.join(path.dirname(__file__), ".."))
|
|
devices = [torch.device("cuda"), torch.device("cpu")]
|
|
|
|
|
|
n_points = 10
|
|
width = 1_000
|
|
height = 1_000
|
|
|
|
|
|
class SceneModel(nn.Module):
|
|
"""A simple model to demonstrate use in Modules."""
|
|
|
|
def __init__(self):
|
|
super(SceneModel, self).__init__()
|
|
from pytorch3d.renderer.points.pulsar import Renderer
|
|
|
|
self.gamma = 1.0
|
|
# Points.
|
|
torch.manual_seed(1)
|
|
vert_pos = torch.rand((1, n_points, 3), dtype=torch.float32) * 10.0
|
|
vert_pos[:, :, 2] += 25.0
|
|
vert_pos[:, :, :2] -= 5.0
|
|
self.register_parameter("vert_pos", nn.Parameter(vert_pos, requires_grad=False))
|
|
self.register_parameter(
|
|
"vert_col",
|
|
nn.Parameter(
|
|
torch.zeros(1, n_points, 3, dtype=torch.float32), requires_grad=True
|
|
),
|
|
)
|
|
self.register_parameter(
|
|
"vert_rad",
|
|
nn.Parameter(
|
|
torch.ones(1, n_points, dtype=torch.float32) * 0.001,
|
|
requires_grad=False,
|
|
),
|
|
)
|
|
self.register_parameter(
|
|
"vert_opy",
|
|
nn.Parameter(
|
|
torch.ones(1, n_points, dtype=torch.float32), requires_grad=False
|
|
),
|
|
)
|
|
self.register_buffer(
|
|
"cam_params",
|
|
torch.tensor(
|
|
[
|
|
[
|
|
np.sin(angle) * 35.0,
|
|
0.0,
|
|
30.0 - np.cos(angle) * 35.0,
|
|
0.0,
|
|
-angle,
|
|
0.0,
|
|
5.0,
|
|
2.0,
|
|
]
|
|
for angle in [-1.5, -0.8, -0.4, -0.1, 0.1, 0.4, 0.8, 1.5]
|
|
],
|
|
dtype=torch.float32,
|
|
),
|
|
)
|
|
self.renderer = Renderer(width, height, n_points)
|
|
|
|
def forward(self, cam=None):
|
|
if cam is None:
|
|
cam = self.cam_params
|
|
n_views = 8
|
|
else:
|
|
n_views = 1
|
|
return self.renderer.forward(
|
|
self.vert_pos.expand(n_views, -1, -1),
|
|
self.vert_col.expand(n_views, -1, -1),
|
|
self.vert_rad.expand(n_views, -1),
|
|
cam,
|
|
self.gamma,
|
|
45.0,
|
|
return_forward_info=True,
|
|
)
|
|
|
|
|
|
class TestSmallSpheres(unittest.TestCase):
|
|
"""Test small sphere rendering and gradients."""
|
|
|
|
def test_basic(self):
|
|
for device in devices:
|
|
# Set up model.
|
|
model = SceneModel().to(device)
|
|
angle = 0.0
|
|
for _ in range(50):
|
|
cam_control = torch.tensor(
|
|
[
|
|
[
|
|
np.sin(angle) * 35.0,
|
|
0.0,
|
|
30.0 - np.cos(angle) * 35.0,
|
|
0.0,
|
|
-angle,
|
|
0.0,
|
|
5.0,
|
|
2.0,
|
|
]
|
|
],
|
|
dtype=torch.float32,
|
|
).to(device)
|
|
result, forw_info = model(cam=cam_control)
|
|
sphere_ids = model.renderer.sphere_ids_from_result_info_nograd(
|
|
forw_info
|
|
)
|
|
# Assert all spheres are rendered.
|
|
for idx in range(n_points):
|
|
self.assertTrue(
|
|
(sphere_ids == idx).sum() > 0, "Sphere ID %d missing!" % (idx)
|
|
)
|
|
# Visualization code. Activate for debugging.
|
|
# result_im = (result.cpu().detach().numpy() * 255).astype(np.uint8)
|
|
# cv2.imshow("res", result_im[0, :, :, ::-1])
|
|
# cv2.waitKey(0)
|
|
# Back-propagate some dummy gradients.
|
|
loss = ((result - torch.ones_like(result)).abs()).sum()
|
|
loss.backward()
|
|
# Now check whether the gradient arrives at every sphere.
|
|
self.assertTrue(torch.all(model.vert_col.grad[:, :, 0].abs() > 0.0))
|
|
angle += 0.15
|
|
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main()
|