mirror of
https://github.com/facebookresearch/pytorch3d.git
synced 2025-07-31 10:52:50 +08:00
Summary: Converts the directory specified to use the Ruff formatter in pyfmt ruff_dog If this diff causes merge conflicts when rebasing, please run `hg status -n -0 --change . -I '**/*.{py,pyi}' | xargs -0 arc pyfmt` on your diff, and amend any changes before rebasing onto latest. That should help reduce or eliminate any merge conflicts. allow-large-files Reviewed By: bottler Differential Revision: D66472063 fbshipit-source-id: 35841cb397e4f8e066e2159550d2f56b403b1bef
360 lines
13 KiB
Python
360 lines
13 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the BSD-style license found in the
|
|
# LICENSE file in the root directory of this source tree.
|
|
|
|
"""Basic rendering test."""
|
|
|
|
import logging
|
|
import os
|
|
import sys
|
|
import unittest
|
|
from os import path
|
|
|
|
import imageio
|
|
import numpy as np
|
|
import torch
|
|
|
|
|
|
# Making sure you can run this, even if pulsar hasn't been installed yet.
|
|
sys.path.insert(0, path.join(path.dirname(__file__), "..", ".."))
|
|
LOGGER = logging.getLogger(__name__)
|
|
devices = [torch.device("cuda"), torch.device("cpu")]
|
|
|
|
|
|
class TestForward(unittest.TestCase):
|
|
"""Rendering tests."""
|
|
|
|
def test_bg_weight(self):
|
|
"""Test background reweighting."""
|
|
from pytorch3d.renderer.points.pulsar import Renderer
|
|
|
|
LOGGER.info("Setting up rendering test for 3 channels...")
|
|
n_points = 1
|
|
width = 1_000
|
|
height = 1_000
|
|
renderer = Renderer(width, height, n_points, background_normalized_depth=0.999)
|
|
vert_pos = torch.tensor([[0.0, 0.0, 25.0]], dtype=torch.float32)
|
|
vert_col = torch.tensor([[0.3, 0.5, 0.7]], dtype=torch.float32)
|
|
vert_rad = torch.tensor([1.0], dtype=torch.float32)
|
|
cam_params = torch.tensor(
|
|
[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.0, 2.0], dtype=torch.float32
|
|
)
|
|
for device in devices:
|
|
vert_pos = vert_pos.to(device)
|
|
vert_col = vert_col.to(device)
|
|
vert_rad = vert_rad.to(device)
|
|
cam_params = cam_params.to(device)
|
|
renderer = renderer.to(device)
|
|
LOGGER.info("Rendering...")
|
|
# Measurements.
|
|
result = renderer.forward(
|
|
vert_pos, vert_col, vert_rad, cam_params, 1.0e-1, 45.0
|
|
)
|
|
hits = renderer.forward(
|
|
vert_pos,
|
|
vert_col,
|
|
vert_rad,
|
|
cam_params,
|
|
1.0e-1,
|
|
45.0,
|
|
percent_allowed_difference=0.01,
|
|
mode=1,
|
|
)
|
|
if not os.environ.get("FB_TEST", False):
|
|
imageio.imsave(
|
|
path.join(
|
|
path.dirname(__file__),
|
|
"test_out",
|
|
"test_forward_TestForward_test_bg_weight.png",
|
|
),
|
|
(result * 255.0).cpu().to(torch.uint8).numpy(),
|
|
)
|
|
imageio.imsave(
|
|
path.join(
|
|
path.dirname(__file__),
|
|
"test_out",
|
|
"test_forward_TestForward_test_bg_weight_hits.png",
|
|
),
|
|
(hits * 255.0).cpu().to(torch.uint8).squeeze(2).numpy(),
|
|
)
|
|
self.assertEqual(hits[500, 500, 0].item(), 1.0)
|
|
self.assertTrue(
|
|
np.allclose(
|
|
result[500, 500, :].cpu().numpy(),
|
|
[1.0, 1.0, 1.0],
|
|
rtol=1e-2,
|
|
atol=1e-2,
|
|
)
|
|
)
|
|
|
|
def test_basic_3chan(self):
|
|
"""Test rendering one image with one sphere, 3 channels."""
|
|
from pytorch3d.renderer.points.pulsar import Renderer
|
|
|
|
LOGGER.info("Setting up rendering test for 3 channels...")
|
|
n_points = 1
|
|
width = 1_000
|
|
height = 1_000
|
|
renderer = Renderer(width, height, n_points)
|
|
vert_pos = torch.tensor([[0.0, 0.0, 25.0]], dtype=torch.float32)
|
|
vert_col = torch.tensor([[0.3, 0.5, 0.7]], dtype=torch.float32)
|
|
vert_rad = torch.tensor([1.0], dtype=torch.float32)
|
|
cam_params = torch.tensor(
|
|
[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.0, 2.0], dtype=torch.float32
|
|
)
|
|
for device in devices:
|
|
vert_pos = vert_pos.to(device)
|
|
vert_col = vert_col.to(device)
|
|
vert_rad = vert_rad.to(device)
|
|
cam_params = cam_params.to(device)
|
|
renderer = renderer.to(device)
|
|
LOGGER.info("Rendering...")
|
|
# Measurements.
|
|
result = renderer.forward(
|
|
vert_pos, vert_col, vert_rad, cam_params, 1.0e-1, 45.0
|
|
)
|
|
hits = renderer.forward(
|
|
vert_pos,
|
|
vert_col,
|
|
vert_rad,
|
|
cam_params,
|
|
1.0e-1,
|
|
45.0,
|
|
percent_allowed_difference=0.01,
|
|
mode=1,
|
|
)
|
|
if not os.environ.get("FB_TEST", False):
|
|
imageio.imsave(
|
|
path.join(
|
|
path.dirname(__file__),
|
|
"test_out",
|
|
"test_forward_TestForward_test_basic_3chan.png",
|
|
),
|
|
(result * 255.0).cpu().to(torch.uint8).numpy(),
|
|
)
|
|
imageio.imsave(
|
|
path.join(
|
|
path.dirname(__file__),
|
|
"test_out",
|
|
"test_forward_TestForward_test_basic_3chan_hits.png",
|
|
),
|
|
(hits * 255.0).cpu().to(torch.uint8).squeeze(2).numpy(),
|
|
)
|
|
self.assertEqual(hits[500, 500, 0].item(), 1.0)
|
|
self.assertTrue(
|
|
np.allclose(
|
|
result[500, 500, :].cpu().numpy(),
|
|
[0.3, 0.5, 0.7],
|
|
rtol=1e-2,
|
|
atol=1e-2,
|
|
)
|
|
)
|
|
|
|
def test_basic_1chan(self):
|
|
"""Test rendering one image with one sphere, 1 channel."""
|
|
from pytorch3d.renderer.points.pulsar import Renderer
|
|
|
|
LOGGER.info("Setting up rendering test for 1 channel...")
|
|
n_points = 1
|
|
width = 1_000
|
|
height = 1_000
|
|
renderer = Renderer(width, height, n_points, n_channels=1)
|
|
vert_pos = torch.tensor([[0.0, 0.0, 25.0]], dtype=torch.float32)
|
|
vert_col = torch.tensor([[0.3]], dtype=torch.float32)
|
|
vert_rad = torch.tensor([1.0], dtype=torch.float32)
|
|
cam_params = torch.tensor(
|
|
[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.0, 2.0], dtype=torch.float32
|
|
)
|
|
for device in devices:
|
|
vert_pos = vert_pos.to(device)
|
|
vert_col = vert_col.to(device)
|
|
vert_rad = vert_rad.to(device)
|
|
cam_params = cam_params.to(device)
|
|
renderer = renderer.to(device)
|
|
LOGGER.info("Rendering...")
|
|
# Measurements.
|
|
result = renderer.forward(
|
|
vert_pos, vert_col, vert_rad, cam_params, 1.0e-1, 45.0
|
|
)
|
|
hits = renderer.forward(
|
|
vert_pos,
|
|
vert_col,
|
|
vert_rad,
|
|
cam_params,
|
|
1.0e-1,
|
|
45.0,
|
|
percent_allowed_difference=0.01,
|
|
mode=1,
|
|
)
|
|
if not os.environ.get("FB_TEST", False):
|
|
imageio.imsave(
|
|
path.join(
|
|
path.dirname(__file__),
|
|
"test_out",
|
|
"test_forward_TestForward_test_basic_1chan.png",
|
|
),
|
|
(result * 255.0).cpu().to(torch.uint8).squeeze(2).numpy(),
|
|
)
|
|
imageio.imsave(
|
|
path.join(
|
|
path.dirname(__file__),
|
|
"test_out",
|
|
"test_forward_TestForward_test_basic_1chan_hits.png",
|
|
),
|
|
(hits * 255.0).cpu().to(torch.uint8).squeeze(2).numpy(),
|
|
)
|
|
self.assertEqual(hits[500, 500, 0].item(), 1.0)
|
|
self.assertTrue(
|
|
np.allclose(
|
|
result[500, 500, :].cpu().numpy(), [0.3], rtol=1e-2, atol=1e-2
|
|
)
|
|
)
|
|
|
|
def test_basic_8chan(self):
|
|
"""Test rendering one image with one sphere, 8 channels."""
|
|
from pytorch3d.renderer.points.pulsar import Renderer
|
|
|
|
LOGGER.info("Setting up rendering test for 8 channels...")
|
|
n_points = 1
|
|
width = 1_000
|
|
height = 1_000
|
|
renderer = Renderer(width, height, n_points, n_channels=8)
|
|
vert_pos = torch.tensor([[0.0, 0.0, 25.0]], dtype=torch.float32)
|
|
vert_col = torch.tensor(
|
|
[[1.0, 1.0, 1.0, 1.0, 1.0, 0.3, 0.5, 0.7]], dtype=torch.float32
|
|
)
|
|
vert_rad = torch.tensor([1.0], dtype=torch.float32)
|
|
cam_params = torch.tensor(
|
|
[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.0, 2.0], dtype=torch.float32
|
|
)
|
|
for device in devices:
|
|
vert_pos = vert_pos.to(device)
|
|
vert_col = vert_col.to(device)
|
|
vert_rad = vert_rad.to(device)
|
|
cam_params = cam_params.to(device)
|
|
renderer = renderer.to(device)
|
|
LOGGER.info("Rendering...")
|
|
# Measurements.
|
|
result = renderer.forward(
|
|
vert_pos, vert_col, vert_rad, cam_params, 1.0e-1, 45.0
|
|
)
|
|
hits = renderer.forward(
|
|
vert_pos,
|
|
vert_col,
|
|
vert_rad,
|
|
cam_params,
|
|
1.0e-1,
|
|
45.0,
|
|
percent_allowed_difference=0.01,
|
|
mode=1,
|
|
)
|
|
if not os.environ.get("FB_TEST", False):
|
|
imageio.imsave(
|
|
path.join(
|
|
path.dirname(__file__),
|
|
"test_out",
|
|
"test_forward_TestForward_test_basic_8chan.png",
|
|
),
|
|
(result[:, :, 5:8] * 255.0).cpu().to(torch.uint8).numpy(),
|
|
)
|
|
imageio.imsave(
|
|
path.join(
|
|
path.dirname(__file__),
|
|
"test_out",
|
|
"test_forward_TestForward_test_basic_8chan_hits.png",
|
|
),
|
|
(hits * 255.0).cpu().to(torch.uint8).squeeze(2).numpy(),
|
|
)
|
|
self.assertEqual(hits[500, 500, 0].item(), 1.0)
|
|
self.assertTrue(
|
|
np.allclose(
|
|
result[500, 500, 5:8].cpu().numpy(),
|
|
[0.3, 0.5, 0.7],
|
|
rtol=1e-2,
|
|
atol=1e-2,
|
|
)
|
|
)
|
|
self.assertTrue(
|
|
np.allclose(
|
|
result[500, 500, :5].cpu().numpy(), 1.0, rtol=1e-2, atol=1e-2
|
|
)
|
|
)
|
|
|
|
def test_principal_point(self):
|
|
"""Test shifting the principal point."""
|
|
from pytorch3d.renderer.points.pulsar import Renderer
|
|
|
|
LOGGER.info("Setting up rendering test for shifted principal point...")
|
|
n_points = 1
|
|
width = 1_000
|
|
height = 1_000
|
|
renderer = Renderer(width, height, n_points, n_channels=1)
|
|
vert_pos = torch.tensor([[0.0, 0.0, 25.0]], dtype=torch.float32)
|
|
vert_col = torch.tensor([[0.0]], dtype=torch.float32)
|
|
vert_rad = torch.tensor([1.0], dtype=torch.float32)
|
|
cam_params = torch.tensor(
|
|
[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.0, 2.0, 0.0, 0.0], dtype=torch.float32
|
|
)
|
|
for device in devices:
|
|
vert_pos = vert_pos.to(device)
|
|
vert_col = vert_col.to(device)
|
|
vert_rad = vert_rad.to(device)
|
|
cam_params = cam_params.to(device)
|
|
cam_params[-2] = -250.0
|
|
cam_params[-1] = -250.0
|
|
renderer = renderer.to(device)
|
|
LOGGER.info("Rendering...")
|
|
# Measurements.
|
|
result = renderer.forward(
|
|
vert_pos, vert_col, vert_rad, cam_params, 1.0e-1, 45.0
|
|
)
|
|
if not os.environ.get("FB_TEST", False):
|
|
imageio.imsave(
|
|
path.join(
|
|
path.dirname(__file__),
|
|
"test_out",
|
|
"test_forward_TestForward_test_principal_point.png",
|
|
),
|
|
(result * 255.0).cpu().to(torch.uint8).numpy(),
|
|
)
|
|
self.assertTrue(
|
|
np.allclose(
|
|
result[750, 750, :].cpu().numpy(), [0.0], rtol=1e-2, atol=1e-2
|
|
)
|
|
)
|
|
for device in devices:
|
|
vert_pos = vert_pos.to(device)
|
|
vert_col = vert_col.to(device)
|
|
vert_rad = vert_rad.to(device)
|
|
cam_params = cam_params.to(device)
|
|
cam_params[-2] = 250.0
|
|
cam_params[-1] = 250.0
|
|
renderer = renderer.to(device)
|
|
LOGGER.info("Rendering...")
|
|
# Measurements.
|
|
result = renderer.forward(
|
|
vert_pos, vert_col, vert_rad, cam_params, 1.0e-1, 45.0
|
|
)
|
|
if not os.environ.get("FB_TEST", False):
|
|
imageio.imsave(
|
|
path.join(
|
|
path.dirname(__file__),
|
|
"test_out",
|
|
"test_forward_TestForward_test_principal_point.png",
|
|
),
|
|
(result * 255.0).cpu().to(torch.uint8).numpy(),
|
|
)
|
|
self.assertTrue(
|
|
np.allclose(
|
|
result[250, 250, :].cpu().numpy(), [0.0], rtol=1e-2, atol=1e-2
|
|
)
|
|
)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
logging.basicConfig(level=logging.INFO)
|
|
logging.getLogger("pulsar.renderer").setLevel(logging.WARN)
|
|
unittest.main()
|