mirror of
https://github.com/facebookresearch/pytorch3d.git
synced 2025-07-31 10:52:50 +08:00
Summary: Converts the directory specified to use the Ruff formatter in pyfmt ruff_dog If this diff causes merge conflicts when rebasing, please run `hg status -n -0 --change . -I '**/*.{py,pyi}' | xargs -0 arc pyfmt` on your diff, and amend any changes before rebasing onto latest. That should help reduce or eliminate any merge conflicts. allow-large-files Reviewed By: bottler Differential Revision: D66472063 fbshipit-source-id: 35841cb397e4f8e066e2159550d2f56b403b1bef
96 lines
3.4 KiB
Python
96 lines
3.4 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the BSD-style license found in the
|
|
# LICENSE file in the root directory of this source tree.
|
|
|
|
"""Test the sorting of the closest spheres."""
|
|
|
|
import logging
|
|
import os
|
|
import sys
|
|
import unittest
|
|
from os import path
|
|
|
|
import imageio
|
|
import numpy as np
|
|
import torch
|
|
|
|
from ..common_testing import TestCaseMixin
|
|
|
|
# Making sure you can run this, even if pulsar hasn't been installed yet.
|
|
sys.path.insert(0, path.join(path.dirname(__file__), "..", ".."))
|
|
|
|
devices = [torch.device("cuda"), torch.device("cpu")]
|
|
IN_REF_FP = path.join(path.dirname(__file__), "reference", "nr0000-in.pth")
|
|
OUT_REF_FP = path.join(path.dirname(__file__), "reference", "nr0000-out.pth")
|
|
|
|
|
|
class TestDepth(TestCaseMixin, unittest.TestCase):
|
|
"""Test different numbers of channels."""
|
|
|
|
def test_basic(self):
|
|
from pytorch3d.renderer.points.pulsar import Renderer
|
|
|
|
for device in devices:
|
|
gamma = 1e-5
|
|
max_depth = 15.0
|
|
min_depth = 5.0
|
|
renderer = Renderer(
|
|
256,
|
|
256,
|
|
10000,
|
|
orthogonal_projection=True,
|
|
right_handed_system=False,
|
|
n_channels=1,
|
|
).to(device)
|
|
data = torch.load(IN_REF_FP, map_location="cpu")
|
|
# For creating the reference files.
|
|
# Use in case of updates.
|
|
# data["pos"] = torch.rand_like(data["pos"])
|
|
# data["pos"][:, 0] = data["pos"][:, 0] * 2. - 1.
|
|
# data["pos"][:, 1] = data["pos"][:, 1] * 2. - 1.
|
|
# data["pos"][:, 2] = data["pos"][:, 2] + 9.5
|
|
result, result_info = renderer.forward(
|
|
data["pos"].to(device),
|
|
data["col"].to(device),
|
|
data["rad"].to(device),
|
|
data["cam_params"].to(device),
|
|
gamma,
|
|
min_depth=min_depth,
|
|
max_depth=max_depth,
|
|
return_forward_info=True,
|
|
bg_col=torch.zeros(1, device=device, dtype=torch.float32),
|
|
percent_allowed_difference=0.01,
|
|
)
|
|
depth_map = Renderer.depth_map_from_result_info_nograd(result_info)
|
|
depth_vis = (depth_map - depth_map[depth_map > 0].min()) * 200 / (
|
|
depth_map.max() - depth_map[depth_map > 0.0].min()
|
|
) + 50
|
|
if not os.environ.get("FB_TEST", False):
|
|
imageio.imwrite(
|
|
path.join(
|
|
path.dirname(__file__),
|
|
"test_out",
|
|
"test_depth_test_basic_depth.png",
|
|
),
|
|
depth_vis.cpu().numpy().astype(np.uint8),
|
|
)
|
|
# For creating the reference files.
|
|
# Use in case of updates.
|
|
# torch.save(
|
|
# data, path.join(path.dirname(__file__), "reference", "nr0000-in.pth")
|
|
# )
|
|
# torch.save(
|
|
# {"sphere_ids": sphere_ids, "depth_map": depth_map},
|
|
# path.join(path.dirname(__file__), "reference", "nr0000-out.pth"),
|
|
# )
|
|
# sys.exit(0)
|
|
reference = torch.load(OUT_REF_FP, map_location="cpu")
|
|
self.assertClose(reference["depth_map"].to(device), depth_map)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
logging.basicConfig(level=logging.INFO)
|
|
unittest.main()
|